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Abstract

In this paper, we aim at establishing some formulas and identities
for a new class of octonions called the (p, q)-Fibonacci octonions which
is introduced here.
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1 Introduction

Fibonacci and Lucas quaternions and octonions are another important step in
the develoment of Fibonacci and Lucas numbers theory.
We deal here with the algebra of quaternions over R-denoted by H with the
canonical basis, {1 ' e0, i ' e1, j ' e2, k ' e3} having the multiplication rules
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in tabular form:

× 1 e1 e2 e3
1 1 e1 e2 e3
e1 e1 −1 e3 −e2
e2 e2 −e3 −1 e1
e3 e3 e2 −e1 −1

A quaternion is a element of H, and a quaternion is defined by

α = α0e0 + α1e1 + α2e2 + α3 e3, ai ∈ R, i = 0, 1, 2, 3

(see, [3]). For the first time Horadam [6] introduced and studied the so-called
Fibonacci and Lucas quaternions, which are new classes of quaternion numbers
for the classic Fibonacci and Lucas numbers. They are given respectively by
the following recurrence relations:

Qn = Fn + iFn+1 + jFn+2 + kFn+3,

and

Tn = Ln + iLn+1 + jLn+2 + kLn+3,

where Fn and Ln, respectively, are the nth classic Fibonacci and Lucas numbers
that are given respectively by the following recurrence relations for n ≥ 0:

Fn+2 = Fn+1 + Fn

and

Ln+2 = Ln+1 + Ln

with the initial values F0 = 0, F1 = 1, L1 = 2 and L1 = 1 (see, [11]).
Fibonacci quaternions and their generalizations have been presented and stud-
ied in the several papers (see, [1], [2], [4], [5], [6], [7], [8], [12], [13] ).

The octonions in Clifford algebra C are a normed division algebra with
eight dimensions over the real numbers larger than the quaternions. The field
O ∼= C4 of octonions

α = α0e0+α1e1+α2e2+α3 e3+α4e4+α5e5+α6e6+α7e7, ai(i = 0, 1, ..., 7) ∈ R

is an eight-dimensional non-commutative and non-associative R-field generated
by eight base elements e0, e1, ..., e6 and e7. The multiplication rules for the basis
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of O are listed in the following table[14]:

× 1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

(1)

We refer the reader to [3] for quaternions and octonions.
Keçilioğlı ve Akkuş [10] introduced Fibonacci and Lucas octonions and gave
some identities and properties of them. They are given respectively by the
following recurrence relations:

Qn =
7∑
s=0

Fn+ses, (2)

and

Tn =
7∑
s=0

Ln+ses,

where Fn and Ln, respectively, are the nth classic Fibonacci and Lucas num-
bers.

The main purpose of the present paper is to give a very wide generalization
called the (p, q)-Fibonacci octonion sequence {On(p, q)}n≥0 of the Fibonacci oc-
tonion sequence given by (2), and then to obtain new and interesting formulas
and identities involving the sequence {On(p, q)}n≥0.

Our paper is organized as follows: the main results and their proofs for
(p, q)-Fibonacci octonions is stated in the next section. Conclusions are pre-
sented in the last section.

2 (p, q)-Fibonacci Octonions

A generalization of the classic Fibonacci sequence {Fn}n≥0 which are called the
(p, q)-Fibonacci sequence Fn(p, q)}n≥0 is defined by the following recurrence
relation for p2 + 4q > 0 and n ≥ 0:

Fn+2(p, q) = pFn+1(p, q) + qFn(p, q) (3)
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with F0(p, q) = 0 and F1(p, q) = 1. The paper [8] was devoted to studying the
following quaternionic sequence for n ≥ 0:

QFn(p, q) = Fne0 + Fn+1e1 + Fn+2e2 + Fn+3e3

where Fn is the nth (p, q)-Fibonacci number and e0, e1, e2, e3 is the basis in H.

Definition 2.1 The (p, q)-Fibonacci octonion sequence {On(p, q)}n≥0 is de-
fined by the following recurrence relation:

On(p, q) =
7∑
s=0

Fn+ses (4)

where Fn is the nth generalized (p, q)-Fibonacci number.

Before proceeding to the study of the (p, q)-Fibonacci octonion sequence,
we fix the following prpperties which will useful in our computations.

1. The characteristic equation of (3) is

x2 − px− q = 0. (5)

2. Solving this equation for p2 + 4q > 0, we get two distinct characteristic
roots:

γ =
p+
√

∆

2
, δ =

p−
√

∆

2
,

where ∆ = p2 + 4q.

3. Binet’s formula for the sequence Fn(p, q)}n≥0 is

Fn(p, q) ==
γn − δn

γ − δ
. (6)

4. For p2 + 4q > 0, the numbers γ and δ are real and γ 6= δ. Also notice
that

γ2 + q = γ
√

∆ (7)

and
δ2 + q = −δ

√
∆. (8)

5. For every non-negative integer m

(a+ b)m =
m∑
n=0

(
m

n

)
anbm−n

where a and b are any real numbers.
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These properties will be used extensively in the proofs of our main results.

From the definitions of (3) and (4), we obtain

On+1 = pOn + qQn−1 (9)

for n ≥ 1.

Theorem 2.2 Let On be the nth (p, q)-Fibonacci octonion number. Then

On =
γγn − δδn

γ − δ
, (10)

where γ =
7∑
s=0

γses and δ =
7∑
s=0

δses.

Proof 2.3 From (4) and (6), we have (10) with

On =
7∑
s=0

(
γn+s − δn+s

γ − δ

)
es.

in which γ =
7∑
s=0

γses and δ =
7∑
s=0

δses.

It is well known that for On defined by (4) the ordinary generating function

is G(x) =
∞∑
n=0

Onx
n and the exponential generating function is E(x) =

∞∑
n=0

On
xn

n!
.

Theorem 2.4 For On defined by (4), we have:

G(x) =
O0 + (−pO0 + O1)

1− px− qx2
. (11)

Proof 2.5 Let G(x) =
∞∑
n=0

Onx
n. Substituting the recurrence relation (9)

into (1− px− qx2)G(x) and after some lengthy manipulation, we have (11).

Theorem 2.6 For On defined by (4), we have:

E(x) =
γeγx − δeδx

γ − δ
.
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Proof 2.7 Using (10) in E(x) =
∞∑
n=0

On
xn

n!
, we obtain:

E(x) =
∞∑
n=0

(
γγn − δδn

γ − δ
)
xn

n!
. (12)

Now we end the proof by combining ex =
∞∑
n=0

xn

n!
and (12).

Theorem 2.8 Let m be a non-negative integer. Then

m∑
n=0

(
m

n

)
O2n+kq

m−n =

{
Ok+m∆

m
2 , meven

Ok+m∆
m−1

2 , modd
. (13)

Proof 2.9 Let the left-hand side of the assertion (13) of Theorem 2.8 be
denoted by S1. From (10), we have

S1 =
m∑
n=0

(
m

n

)
(
γγ2n+k − δδ2n+k

γ − δ
)qm−n.

Note that
m∑
n=0

(
m
n

)
(γ2)nqm−n = (γ2 + q)m and

m∑
n=0

(
m
n

)
(δ2)nqm−n = (δ2 + q)m.

Combining this with (7) and (8) we get that

S1 =
γγk

γ − δ
(γ
√

∆)m − δδk

γ − δ
(−δ
√

∆)m.

If m is even, then

S1 = (
γγk+m − δδk+m

γ − δ
)∆

m
2

and hence

S1 = Ok+m∆
m
2 .

If m is odd, then

S1 =
(
γγk+m + δδk+m

)
∆

m−1
2 (14)

since γ− δ =
√

∆. Finally, if we apply the following the Binet formula for the
nth (p, q)-Lucas octonion number Kn :

Kn = γγn + δδn[7]

for evaluating the right-hand side in (14) we arrive at the desired result (13)
for any odd integer m.
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Theorem 2.10 Let m be a non-negative integer. Then

m∑
n=0

(
m

n

)
(−1)n O2n+kq

m−n =

{
pmOk+m, peven
−pmOk+m, podd

. (15)

Proof 2.11 For convenience, let the left-hand side of the assertion (15) of
Theorem 2.10 be denoted by S2. Applying (10), we have that

S2 =
m∑
n=0

(
m

n

)
(−1)n (

γγ2n+k − δδ2n+k

γ − δ
)qm−n. (16)

Employing
m∑
n=0

(
m
n

)
(−γ2)nqm−n = (−γ2+q)m and

m∑
n=0

(
m
n

)
(−δ2)nqm−n = (−δ2+

q)m into we get that in this case

S2 =
γγk

γ − δ
(−γ2 + q)m − δδk

γ − δ
(−δ2 + q)m. (17)

We know by the characteristic equation in (5) that the roots of this equation
can be written as −pγ = −γ2 +q and −pδ = −δ2 +q. Inserting these into (17)
gives

S2 = (−p)m(
γγk+m − δδk+m

γ − δ
)

= (−p)mOk+m.

Thus, we complete the proof.

Theorem 2.12 Let m be a non-negative integer. Then

m∑
n=0

(
m

n

)
pnOnq

m−n = O2m. (18)

Proof 2.13 Let us denote S3 =
m∑
n=0

(
m
n

)
pnOnq

m−n. Applying the Binet for-

mula (10) we transform the left-hand side of (18) into:

S3 =
m∑
n=0

(
m

n

)
pn(

γγn − δδn

γ − δ
)qm−n.

With elementary calculations we have that:

S3 =
γ

γ − δ

m∑
n=0

(
m

n

)
(pγ)n qm−n − δ

γ − δ

m∑
n=0

(
m

n

)
(pδ)n qm−n.
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We can now use
m∑
n=0

(
m
n

)
(pγ)n qm−n = (pγ + q)m and

m∑
n=0

(
m
n

)
(pδ)n qm−n =

(pδ + q)m to conclude that

S3 =
γγ2m − δδ2m

γ − δ
which completes the proof of Theorem 2.12.

Theorem 2.14 Let m be a non-negative integer. Then
m∑
n=0

(
m

n

)
(On)2 qm−n =

{ (
γ2γm + δ2δm

)
∆

m−2
2 , meven(

γ2γm − δ2δm
)

∆
m−2

2 modd
.

Proof 2.15 Let us denote S4 =
m∑
n=0

(
m
n

)
(On)2 qm−n. It follows from (10)

that the sum S4 can be written in a concise form in terms of the roots of Eq.
(5) :

S4 =
m∑
n=0

(
m

n

)(
γγn − δδn

γ − δ

)2

qm−n

or

S4 =
γ2

(γ − δ)2
m∑
n=0

(
m

n

)(
γ2
)n
qm−n +

δ2

(γ − δ)2
m∑
n=0

(
m

n

)(
δ2
)n
qm−n(19)

−
(
γδ + δγ

)
(γ − δ)2

m∑
n=0

(
m

n

)
(γδ)n qm−n.

The sums
m∑
n=0

(
m
n

)
(γ2)

n
qm−n and

m∑
n=0

(
m
n

)
(δ2)

n
qm−n are respectively equal to

m∑
n=0

(
m

n

)(
γ2
)n
qm−n =

(
γ2 + q

)m
(20)

and
m∑
n=0

(
m

n

)(
δ2
)n
qm−n =

(
δ2 + q

)m
. (21)

We use (19), (20) and (21) with (7), (8) and γδ = −q to obtain

S4 =
γ2
(
γ
√

∆
)m

+ δ2
(
−δ
√

∆
)m

(γ − δ)2
. (22)

If m is even, the equality (22) becomes the following formula

S4 =
(
γ2γm + δ2δm

)
∆

m−2
2 .

Similarly, if m is odd, the equality (22) becomes

S4 =
(
γ2γm − δ2δm

)
∆

m−2
2 .
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3 Conclusions

In this work, we introduced and studied some fundamental properties and
characteristics of the (p, q)-Fibonacci octonion sequence.
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[9] İpek, A. and Ar, K. (2015). On h (x)-Fibonacci octonion polynomials.
Alabama Journal of Mathematics, 39.
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