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Abstract

In this paper, we aim at establishing some formulas and identities
for a new class of octonions called the (p, ¢)-Fibonacci octonions which

is introduced here.
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1 Introduction

Fibonacci and Lucas quaternions and octonions are another important step in
the develoment of Fibonacci and Lucas numbers theory.

We deal here with the algebra of quaternions over R-denoted by H with the
canonical basis, {1 ~ ep,i ~ e1,] =~ ey, k ~ ez} having the multiplication rules
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in tabular form:

1 €1 (&) €3
1 1 €1 €9 €3
€1 | €1 —1 €3 —€2
€y | €9 —€3 —1 €1
€3 | €3 €9 —e1 —1

A quaternion is a element of H, and a quaternion is defined by
a = qpeg + ae; + ages +ag ez, a; € Roi=0,1,2,3

(see, [3]). For the first time Horadam [6] introduced and studied the so-called
Fibonacci and Lucas quaternions, which are new classes of quaternion numbers
for the classic Fibonacci and Lucas numbers. They are given respectively by
the following recurrence relations:

Qn:Fn+iFn+l +an+2+an+37

and
Tn = Ln + iLn-{—l + jLn—i—Q + kLn+37

where F,, and L,,, respectively, are the nth classic Fibonacci and Lucas numbers
that are given respectively by the following recurrence relations for n > 0:

Fn+2:Fn+1+Fn

and

Ln+2 - Ln+1 + Ln

with the initial values Fy =0, F; = 1,L; =2 and L; =1 (see, [11]).
Fibonacci quaternions and their generalizations have been presented and stud-
ied in the several papers (see, [1], [2], [4], [5], [6], [7], [8], [12], [13] ).

The octonions in Clifford algebra C are a normed division algebra with
eight dimensions over the real numbers larger than the quaternions. The field
0 = C* of octonions

a = qpey+ e +anes +ag ez +ages+ases +ageg +arer,a;(i = 0,1,...,7) € R

is an eight-dimensional non-commutative and non-associative R-field generated
by eight base elements eg, €1, ..., eg and e;. The multiplication rules for the basis
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of @ are listed in the following table[14]:

X 1 €1 €9 €3 €4 €5 €q er

1 1 €1 €9 €3 €4 €5 €g (&g

e1|legr —1 es —ey €5 —ey —e7 €5

es | e —es —1 e g er —eq —€5

es | es e —e; —1 ey —eg €5 —ey (1)
eq | €4 —e5 —eg —er —1 e €9 es

€5 | €5 €4 —€7 €g —e€1 —1 —€3 €9

€ | €6 €7 €4 —€; —€9 €3 —1 —e€1

er | er —eg es ea —e3 —ey e -1

We refer the reader to [3] for quaternions and octonions.

Kegiliogh ve Akkus [10] introduced Fibonacci and Lucas octonions and gave
some identities and properties of them. They are given respectively by the
following recurrence relations:

7
Qn = Z Fn+ses> (2)
s=0

and
7
Tn - § Ln+3637
s=0

where F), and L, respectively, are the nth classic Fibonacci and Lucas num-
bers.

The main purpose of the present paper is to give a very wide generalization
called the (p, q)-Fibonacci octonion sequence {Oy,(p, q) }n>o of the Fibonacci oc-
tonion sequence given by (2), and then to obtain new and interesting formulas
and identities involving the sequence {O,,(p, q) }n>0-

Our paper is organized as follows: the main results and their proofs for
(p, q)-Fibonacci octonions is stated in the next section. Conclusions are pre-
sented in the last section.

2 (p,q)-Fibonacci Octonions

A generalization of the classic Fibonacci sequence { F}, },,>0 which are called the
(p, q)-Fibonacci sequence F,,(p,q)}n>o0 is defined by the following recurrence
relation for p? +4¢q > 0 and n > 0:

Frio(p,q) = pFosa(p, @) + qFu(p, q) (3)
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with Fo(p,q) = 0 and Fi(p,q) = 1. The paper [8] was devoted to studying the
following quaternionic sequence for n > 0:

QFn(p> q) = Fn€0 + Fn-i-lel + Fn+262 + Fn+3€3
where F), is the nth (p, ¢)-Fibonacci number and ey, €1, €2, €3 is the basis in H.

Definition 2.1 The (p, q)-Fibonacci octonion sequence {Oy,(p, ) }n>o0 is de-
fined by the following recurrence relation:

7
On(pu Q) - Z Fn-l—ses (4)
s=0

where F,, is the nth generalized (p, q)-Fibonacci number.

Before proceeding to the study of the (p, ¢)-Fibonacci octonion sequence,
we fix the following prpperties which will useful in our computations.

1. The characteristic equation of (3) is

2 —pr—q=0. (5)

2. Solving this equation for p? + 4¢q > 0, we get two distinct characteristic

roots:
_p+VA L p-VA
g 5 5
where A = p? + 4q.

3. Binet’s formula for the sequence F,(p, q)}n>o is

Fo(p,q) == : (6)

4. For p* + 4q > 0, the numbers v and ¢ are real and v # J. Also notice
that
7 +a=7VA (7)

and

0% +q=—6VA. (8)
5. For every non-negative integer m

e

n=0

where a and b are any real numbers.
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These properties will be used extensively in the proofs of our main results.
From the definitions of (3) and (4), we obtain

On+l = pon + Qanl (9)

for n > 1.

Theorem 2.2 Let O,, be the nth (p, q)-Fibonacci octonion number. Then

n __ (5571
0, = % (10)

7 7
where v = Y ¥%es and § = ) §%es.

s=0 s=0

Proof 2.3 From (4) and (6), we have (10) with

0.-% (1=,
s=0

— 7 =0

7 7
in which v =Y vy%es and 0 = Y §°e;.
- s=0

s=0

It is well known that for O,, defined by (4) the ordinary generating function

o0

is G(z) = ). O,2" and the exponential generating function is E(x) = )
n=0

= n=0
xn
0,7.

Theorem 2.4 For O,, defined by (4), we have:

Oo + (—pOO + 01)
G(z) = ——— (11)

Proof 2.5 Let G(x) = >, O,a". Substituting the recurrence relation (9)
n=0
into (1 — pr — qz*) G(z) and after some lengthy manipulation, we have (11).
Theorem 2.6 For O,, defined by (4), we have:

,qu/:c o éedx
E _= @-
(@) = =5
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Proof 2.7 Using (10) in E(z) = Y. O,%;, we obtain:

n=0
o) = S A= (12
Now we end the proof by combining e* = ni;(] fL—T,L and (12).
Theorem 2.8 Let m be a non-negative integer. Then
(Mo = Q2E e

n=0

Proof 2.9 Let the left-hand side of the assertion (13) of Theorem 2.8 be
denoted by S1. From (10), we have

m ,y,}/?n—l—k o é62n+k .
= Z o )g" "

Note that Z ( )( ) q" (’}/ + q) and ZO(ZL)((;?)nqun _ (52 _‘_q)m‘
C’ombmmg thzs with (7) and (8) we get that

* ok
S1=7_5(’Y\/Z) = (5\/_)

If m is even, then

vy é5k+m .
S1 = (= Az
1= ( o
and hence
Sl = OkerA%
If m is odd, then
Sl — (1’7k+m +é5k+m) AmT_l (14)

since v — 6 = V. Finally, if we apply the following the Binet formula for the
nth (p, q)-Lucas octonion number K,

K, =17" +00"[7]

for evaluating the right-hand side in (14) we arrive at the desired result (13)
for any odd integer m.
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Theorem 2.10 Let m be a non-negative integer. Then

" /m iy men P"Okim, peven
Z(n)( 1)" Ountrg _{ —p"Okim, podd (15)

n=0

Proof 2.11 For convenience, let the left-hand side of the assertion (15) of
Theorem 2.10 be denoted by Sy. Applying (10), we have that

2n+k _ (552n+k

=3 (") i & (10

n=0

Bmploying 32 () (=7*)"q"™" = (=" + @)™ and 32 (7)(=0%)"¢"™" = (=% +

q)™ into we Zzet that in this case
k k
Y 2 90 2
Sy = = — m— =y . 17
> 7_5( ) 7_5( +q) (17)

We know by the characteristic equation in (5) that the roots of this equation
can be written as —py = —y2+q and —pd = —0%+q. Inserting these into (17)
gives

k+m k+m
m XY™ — 00

Thus, we complete the proof.

)

Theorem 2.12 Let m be a non-negative integer. Then

m

> (Z)p”anm‘" = Ogp. (18)

n=0

Proof 2.13 Let us denote Sz = ) (?Z)p”anm*”. Applying the Binet for-
n=0
mula (10) we transform the left-hand side of (18) into:

— (m\ " =8
ngZ(n)p (F——)d" ™

n=0 7_5

With elementary calculations we have that:
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We can now use Zo( ) ()" ¢™ " = (py + @)™ and Z (™) (p6)" g™ =
(pd + q)™ to conclude that

1" — 0%

_'yT

which completes the proof of Theorem 2.12.

Ss =

Theorem 2.14 Let m be a non-negative integer. Then

L (m > mem ) (™4 8%6™) A"Z" | meven
Z <n> (On)"q B { (2™ — §%0™) A" modd

n=0

Proof 2.15 Let us denote Sy = Y. () (0,)° ¢™ ™. 1t follows from (10)

that the sum Sy can be written in a concise form in terms of the roots of Eq.

(5) : RN
s=2 () (555 )

() g Qi( ) (6%)" g™ " (19)

n=0

or

(7 - 6)2 n=0
The sums ( ) (v®)" ¢™ ™ and é (7;) (62)" g™ are respectively equal to
> (ZL) ()" =0+ 9" (20)
and .
Z (7:) (8) g = (5 +q)". (21)

We use (19), (20) and ( 1) with (7), (8) and v6 = —q to obtain
1 (wA)" +8* (-6VA)
Sy = 5

(v —9)
If m is even, the equality (22) becomes the following formula
Similarly, if m is odd, the equality (22) becomes

m—2

5«4: (127m_é25m)A 5
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3 Conclusions

In this work, we introduced and studied some fundamental properties and
characteristics of the (p, ¢)-Fibonacci octonion sequence.
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