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Abstract

In this paper we prove classical the Ostrowski’s integral inequalities
for stochastic processes. Several inequalities for Ostrowski’s type via
concave, convex, s-convex and quasi-convex stochastic processes are in-
troduced. Some bounds for the difference between the integral mean of
a stochastic process X defined on the interval [a, b] and it is value in
the midpoint a+b

2 are provided. Therefore, the inequalities are related
to the left hand side of Hadamard inequality.
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1 Introduction

The research of inequalities on stochastic processes is new. However, the study
of convex stochastic processes began in 1974 when Nagy [27], applied a charac-
terization of measurable stochastic processes to solving a generalization of the
(additive) Cauchy functional equation. Soon after, in 1980, K. Nikodem in [28],
established some properties of convex stochastic processes and, in [29], intro-
duced properties of quasi-convex stochastic processes. Later, D. Kotrys in 2011
presented in [24] an inequality of Hermite-Hadamard type for Jensen-convex
stochastic processes. Nevertheless, in 2014 Set, M. Tomar and S. Maden in
[25], presented the s-convex stochastic processes in the second sense and some
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well-known results concerning s-convex functions are extended to s-convex
stochastic processes in the second sense. Also, they investigated a relation be-
tween s-convex stochastic processes in the second sense and convex stochastic
processes. Recently, in 2015 E. Set, M. Tomar and S. Maden [33], obtained
a similar result to the previous one but for s-convex functions. The previ-
ous result extended the concept of s-convex functions, which was introduced
and improved by H. Hudzik and L. Maligranda [23], and S. S. Dragomir, S.
Fitzpatrik [16] in 1998, to s-convex stochastic processes and obtained some
results similar to the ones in s-convex functions. Also, during 2015, N. Mer-
entes et al., proved in [6] a generalization for h-convex stochastic processes.
In particular, with the function h equals to the identity, a Hermite-Hadamard
inequality type for convex stochastic processes were obtained in [6]. Another
research in the same year was performed by L. Gonzalez, N. Merentes and M.
Valera-López in [22] which establish some estimates of the left and right-hand
side of the Hermite-Hadamard inequality for convex stochastic processes with
convex or quasi-convex first second derivatives in absolute value establishing
for the first time an estimate of error for this kind of inequalities in stochas-
tic processes. Then, J. Materano, N. Merentes and M. Valera-Lopez, [26],
tried several type inequalities Simpson giving error limits with Simpson’s rule
through Peano type and results of the modern theory of inequalities using s-
convex and quasi-convex stochastic processes in terms up to second derivative.

The Ostrowski’s inequality was performed in 1938. In [30], A. Ostrowski
proved the following integral inequality:

Let f : I → R be a differentiable mapping on I and let a, b ∈ I with a < b.
If f ′ : (a, b) → R is bounded on (a, b), i.e., ||f ′||∞ := supt∈(a,b) |f

′(t)| < ∞,
then we have the inequality:
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for all t ∈ [a, b]. The constant 1
4
is sharp in the sense that it cannot be replaced

by a smaller one.
Many research has been done about the Ostrowski’s inequality. During the

years 1997 and 1998, S. S. Dragomir and S. Wang in [17]-[19] extended the
inequality (1) for absolutely continuous functions and applied the extended
result to numerical quadrature rules and to the estimation of error bounds for
special means. The reader can be found other similar results in [8],[11],[12][34].

Further, between 1999 and 2001, S. S. Dragomir in [10]-[12], extended the
result (1) to incorporate mappings of bounded variation, Lipschitzian mapping
and monotonous mapping, respectively. In these papers, he apply the results
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in obtaining a Riemann’s type quadrature formula for this class of mapping
and give some applications for Euler’s Beta function.

A extension of the result (1), it has been made considering n-times differ-
entiable mappings on an interior point t ∈ (a, b), (see [7] and [5]). Aditionally,
in [9] was establish some generalizations of Ostrowski inequality for Lipschitz
functions and functions of bounded variation. Also, was provide in [20] [31]
and [32], generalizations and improvements of a variety of some results for
Ostrowski and Simpson inequalities.

Furthermore, in 2001 S.S. Dragomir in [13]-[15] refined the inequality (1)
by considering an interval [a, b] with a multiple number of subdivisions.

Recently, several generalizations of the Ostrowski’s integral inequality has
been the subject of intensive research. In particular, many generalizations,
improvements and applications for the Ostrowski’s inequality can be found in
the literature. In 2009, M. Alomari et al. [4], established some Ostrowski
type inequalities for the class of functions whose derivatives in absolute value
are s-convex functions in the second sense and, in 2010, M. Alomari and M.
Darus, obtained inequalities for differentiable convex and quasi-convex map-
pings ([2] and [3], respectively), which are connected with Ostrowski’s inequal-
ity. Additionally, M. Alomari in 2012, [1], obtained a companion inequality of
Ostrowski’s type using Grss’ result and then discussed its applications for a
composite quadrature rule and for probability density functions.

The aim of this paper is extend the results by M. Alomari [1], M. Alomari
and M. Darus [3]-[4] on Ostrowski’s type inequalities for function to concave,
convex, s-convex and quasi-convex stochastic processes. The proofs follow
from the standard arguments and a Montgomery-type equality.

2 On the Ostrowski’s Inequality

We start off proving the Ostrowski’s inequality for stochastic processes.

Theorem 2.1 Let X : I×Ω → R be a mean-square differentiable stochastic
process on I such that X ′ is mean-square integrable on [a, b], where a, b ∈ I

with a < b, and X ′ is bounded, i.e., ||X ′||∞ := sup |X ′(t, ·)| < ∞. If X is
concave on I, then the following inequality holds almost everywhere:
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Proof.

Because the process X(t, ·) is mean-square differentiable on I and concave
on I, then for any t, y ∈ I,

X(t0, ·)−X(t, ·)

t0 − t
≤ X ′(t, ·),

X(t0, ·) ≤ X(t, ·) + (t− t0)X
′(t, ·), (a.e).

it follows that integrating both sides over [a, b], with respect to u, we get

(b− a)X(t0, ·) ≤

∫ b

a

X(u, ·)du+

∫ b

a

(u− t0)X
′(u, ·)du, (a.e),

which is equivalent to write
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∫ b
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1
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∫ b
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which completes the proof.
Another Ostrowski’s type inequality, which gives the weighted difference

between the mean-square integrals of a stochastic processX and its first deriva-
tive, is considered bellow:

Theorem 2.2 Let X : I × Ω → R be a twice mean-square differentiable
stochastic process on I, where a, b ∈ I with a < b. Assume that X and X ′
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are concave on (a, b). If ||X ′||∞ = supt∈(a,b) |X
′(t, ·)| < ∞ and ||X ′′||∞ =

supt∈(a,b) |X
′′(t, ·)| < ∞, then the following inequality takes place almost every-

where:
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where t0, t ∈ (a, b).

Proof.

Since X is concave on [a, b] and X ′ is concave on (a, b), for any s, u ∈ (a, b)

X(t0, ·) ≤ X(u, ·) + (t0 − u)X ′(u, ·), (a.e), (4)

and

X ′(t, ·) ≤ X ′(s, ·) + (t− s)X ′′(s, ·), (a.e). (5)

Integrating both sides of (4) over [a, b], with respect to u, and (5) over [a, b]
with respect to s:

(b− a)X(t0, ·) ≤

∫ b
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Adding (6) and (7), we get
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′′(t, ·)| <
∞, so
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for t, t0 ∈ (a, b), and proof is completed.

Remark 2.3 In the inequality (3) one can see that when t, t0 → b−:
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∣

∣

∣

∣

X ′

(

a + b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤

∣

∣

∣

∣

X(b, ·)−X(a, ·)

b− a
−X

(

a+ b

2
, ·

)∣

∣

∣

∣

(11)

+
(b− a)

4
[||X ′||∞ + ||X ′′||∞], (a.e).

In the following result we propose an error estimation for the first derivative.

Theorem 2.4 Considering the assumption in Theorem 2.2. Then the fol-
lowing inequality holds almost everywhere:
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X ′(t, ·)−
X(b, ·)−X(a, ·)

b− a
≤

1

b− a

∫ b

a

(t− s)X ′′(s, ·)ds

−
1

(b− a)2

∫ b

a

∫ b

a

(t0 − u)X ′(u, ·)dudt0, (a.e).

Since X ′ and X ′′ are bounded,
∣

∣

∣

∣

X ′(t, ·)−
X(b, ·)−X(a, ·)

b− a

∣

∣

∣

∣

≤
1

b− a

∫ b

a

|t− s||X ′′(s, ·)|ds+
1

(b− a)2

∫ b

a

∫ b

a

|t0 − u||X ′(u, ·)|dudt0

≤
||X ′′||∞
b− a

∫ b

a

|t− s|ds+
||X ′||∞
(b− a)2

∫ b

a

∫ b

a

|t0 − u|dudt0

≤ ||X ′′||∞

[

(t− a)2 + (b− t)2

2(b− a)

]

+ ||X ′||∞

∫ b

a

(t0 − a)2 + (b− t0)
2

2(b− a)
dt0

= ||X ′′||∞

[

(t− a)2 + (b− t)2

2(b− a)

]

+ ||X ′||∞
(b− a)2

3
, (a.e),

for all t ∈ (a, b).
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Using the same technique in the proof of Theorem 2.2, we can generalize
the inequality (3) for n-times mean-square differentiable stochastic process as
follows:

Corollary 2.6 Let X : I×Ω → R be n−times a mean-square differentiables
stochastic process on I, where a, b ∈ I with a < b. Assume that X and X(n−1)

are concave stochastic process, n ≥ 2 on (a, b). If ||X ′||∞ = supt∈(a,b) |X
′(t, ·)| <

∞ and ||X(n)||∞ = supt∈(a,b) |X
(n)(t, ·)| < ∞, then the following inequality

shows up almost everywhere:
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Since X is concave in [a, b] and X(n−1) is concave in (a, b) then for any
s, t ∈ (a, b)
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Whence,
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almost everywhere for t, t0 ∈ (a, b).
Next result gives an Ostrowski type inequality involving product of two

stochastic processes.

Theorem 2.7 Let X, Y : I × Ω → R+ be two bounded mean-square differ-
entiable stochastic process on I such that X ′, Y ′ are mean-square integrables
where a, b ∈ I with a < b whose derivatives X ′Y ′ are bounded. If X is concave
and M = maxt∈(a,b){|X(t, ·)|, |X ′(t, ·)|, |Y (t, ·)|, |Y ′(t, ·)|} then:
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where t, s, u ∈ [a, b].
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Proof.

Since X and Y are concave stochastic process on I, then for any t, s, u ∈
(a, b),

X(t, ·) ≤ X(u, ·) + (t− u)X ′(u, ·), (a.e),

and

Y (t, ·) ≤ Y (s, ·) + (t− s)Y ′(s, ·), (a.e).

Multiplying the above inequalities,

X(t, ·)Y (t, ·) ≤ [X(u, ·) + (t− u)X ′(u, ·)] [Y (s, ·) + (t− s)Y ′(s, ·)]

= X(u, ·)Y (s, ·) + (t− s)Y ′(s, ·)X(u, ·)

+(t− u)X ′(u, ·)Y (s, ·) + (t− u)(t− s)X ′(u, ·)Y ′(s, ·), (a.e).

Integrating both sides over [a, b], with respect to t, we get

∫ b

a

X(t, ·)Y (t, ·)dt ≤ (b− a)X(u, ·)Y (s, ·) +X ′(u, ·)Y (s, ·)

∫ b

a

(t− u)dt

+X(u, ·)Y ′(s, ·)

∫ b

a

(t− s)dt+X ′(u, ·)Y (s, ·)

∫ b

a

(t− u)(t− s)dt, (a.e),

or better

∫ b

a

X(t, ·)Y (t, ·)dt− (b− a)X(u, ·)Y (s, ·) ≤ X ′(u, ·)Y (s, ·)

∫ b

a

(t− u)dt

+X(u, ·)Y ′(s, ·)

∫ b

a

(t− s)dt+X ′(u, ·)Y ′(s, ·)

∫ b

a

(t− u)(t− s)dt, (a.e).

In this way:

∣

∣

∣

∣

∫ b

a

X(t, ·)Y (t, ·)dt− (b− a)X(u, ·)Y (s, ·)

∣

∣

∣

∣

≤ M

[
∫ b

a

|t− u|dt+

∫ b

a

|t− s|dt+

∫ b

a

|t− u||t− s|dt

]

= M

[

(u− a)2 + (b− u)2

2
+

(s− a)2 − (b− s)2

2

+
u3 − s3

3
− 2











0, s ≤ u

1, u ≤ s



 us2 +
b3 − a3

3
−

b2 − a2

2
u

−
b2 − a2

2
s− u2s+ us2 + usb− usa+ 2











0, s < u

1, u ≤ s



 u2s
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−
2

3











0, s < u

1, u ≤ s



u3 +
2

3











0, s < u

1, u ≤ s



 s3





= M

[

(u− a)2 + (b− u)2

2
+

(s− a)2 + (b− s)2

2
+

b3 − a3

3

−
b2 − a2

2
(u+ s) + us(b− a) +



















(u− s)3

3
, s < u

(s− u)3

3
, u ≤ s











,

almost everywhere.

3 Ostrowski’s Type via Convex Stochastic Pro-

cess

We shall introduce some inequalities of Ostrowski’s type via convex stochastic
process in the second sense. For this, we need to use the following lemma:

Lemma 3.1 Let X : I ×Ω → R be a mean-square differentiable stochastic
process on I where a, b ∈ I with a < b. If X ′ is mean-square integrable, then
the following equality is true almost everywhere:

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du = (b− a)

∫ 1

0

p(y)X ′(ya+ (1− y)b, ·)dy,

for each y ∈ [0, 1], where

p(y) =























y, y ∈

[

0,
b− t

b− a

]

,

y − 1, y ∈

(

b− t

b− a
, 1

]

,

for all t ∈ [a, b].

Proof.

Integrating by parts and considering β =
b− t

b− a
, we have

I =

∫ 1

0

p(y)X ′(ya+ (1− y)b, ·)dy

=

∫ β

0

yX ′(ya+ (1− y)b, ·)dy +

∫ 1

β

(1− y)X ′(ya+ (1− y)b, ·)dy
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= y
X(ya+ (1− y)b, ·)

b− a

∣

∣

∣

∣

β

0

−

∫ β

0

X(ya+ (1− y)b, ·)

a− b
dy

+(1− y)
X(ya+ (1− y)b, ·)

b− a

∣

∣

∣

∣

1

β

−

∫ 1

β

X(ya+ (1− y)b, ·)

a− b
dy

=
b− t

(b− a)2
X(t, ·)−

∫ β

0

X(ya+ (1− y)b, ·)

a− b
dy

+
y − a

(b− a)2
X(y, ·)−

∫ 1

β

X(ya+ (1− y)b, ·)

a− b
dy

=
1

b− a
X(t, ·)−

∫ 1

0

X(ya+ (1− y)b, ·)

a− b
dy

=
1

b− a
X(t, ·)−

∫ b

a

X(u, ·)du, (a.e).

Then, multiplying by (b − a) the above integral, gives the desired representa-
tion.

We will proceed with the proof of the Ostrowski’s inequality when the
magnitude of the first derivative is convex.

Theorem 3.2 Let X : I×Ω → R be a mean-square differentiable stochastic
process on I, such that X ′ is mean-square integrable where a, b ∈ I with a < b.

If |X ′| is convex on [a, b], then the following inequality holds almost everywhere:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
b− a

6

[(

4

(

b− t

b− a

)3

− 3

(

b− t

b− a

)2

+ 1

)

|X ′(a, ·)|

+

(

9

(

b− t

b− a

)2

− 4

(

b− t

b− a

)3

− 6

(

b− t

b− a

)

+ 2

)

|X ′(b, ·)|

]

,

for each t ∈ [a, b].

Proof.

Applying absolute valued to Lemma 3.1 using the triangle inequality, the

fact that |X ′| is convex and taking β =
b− t

b− a
, we have:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

∫ β

0

y|X ′(ya+ (1− y)b, ·)|dy
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+(b− a)

∫ 1

β

(1− y)|X ′(ya+ (1− y)b, ·)|dy

≤ (b− a)

∫ β

0

y[y|X ′(a, ·)|+ (1− y)|X ′(b, ·)|]dy

+(b− a)

∫ 1

β

(1− y)[y|X ′(a, ·)|+ (1− y)|X ′(b, ·)|]dy

= (b− a)

[

|X ′(a, ·)|
1

3
β3 + |X ′(b, ·)|

1

2
β2 − |X ′(b, ·)|

1

3
β3

+|X ′(a, ·)|
1

6
− |X ′(a, ·)|

1

2
β2 + |X ′(a, ·)|

1

3
β3

+ |X ′(b, ·)|
1

3

(

1− 3β + 3β2 − β3
)

]

= (b− a)

[

2

3
β3|X ′(a, )| −

1

2
β2|X(a, ·)|+

1

6
|X ′(a, ·)|

+
1

3
|X ′(b, ·)| − β|X ′(b, ·)|+

3

2
β2|X ′(b, ·)| −

2

3
β3|X ′(b, ·)|

]

, (a.e).

Hence,

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

[

2

3
β3 −

1

2
β2 +

1

6

]

|X(a, ·)|

+(b− a)

[

1

3
− β +

3

2
β2 −

2

3
β3

]

|X ′(b, ·)|, (a.e).

Then,

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(b− a)

6

[(

4

(

b− t

b− a

)3

− 3

(

b− t

b− a

)2

+ 1

)

|X ′(a, ·)|

+

(

9

(

b− t

b− a

)2

− 4

(

b− t

b− a

)3

− 6

(

b− t

b− a

)

+ 2

)

|X ′(b, ·)|

]

, (a.e),

which complete the proof.
One can deduce a Ostrowski’s type inequality for stochastic processes whose

derivative are bounded, as follows:

Corollary 3.3 In Theorem (3.2), and considering additionally that, if |X ′(t, ·)| ≤
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M , for M > 0, then inequality

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ M(b− a)

[

(

b− t

b− a

)2

−

(

b− t

b− a

)

+
1

2

]

,

holds almost everywhere. The constant 1
2
is the best possible in the sense that

cannot be replaced by a smaller one.

The corresponding version for powers of the absolute value of the first
derivative is incorporated in the following result:

Theorem 3.4 Let X : I×Ω → R be a mean-square differentiable stochastic
process on I such that X ′ is mean-square integrable on [a, b], where a, b ∈ I

with a < b. If |X ′|p/p−1 is convex on [a, b], the following inequality takes place
almost everywhere:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
2−1/q

[(b− a)(p+ 1)]1/p

[

(b− t)
p+1

p (|X ′(t, ·)|q + |X(b, ·)|q)1/q

+ (t− a)
p+1

p (|X ′(a, ·)|q + |X ′(t, ·)|q)1/q
]

,

for each t ∈ [a, b], where
1

p
+

1

q
= 1.

Proof.

Suppose p > 1. From Lemma 3.1, using the Hölder inequality and consid-

ering β =
b− t

b− a
, we have:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

∫ β

0

y|X ′(ya+ (1− y)b, ·)|dy

+(b− a)

∫ 1

β

|y − 1||X ′(ya+ (1− y)b, ·)|dy

≤ (b− a)

(
∫ β

0

ypdy

)1/p(∫ β

0

|X ′(ya+ (1− y)b, ·)|qdy

)1/q

+(b− a)

(
∫ 1

β

(1− y)pdy

)1/p(∫ 1

β

|X ′(ya+ (1− y)b, ·)|qdy

)1/q

, (a.e).
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Since |X ′| is convex, by Hermite-Hadamard inequality,

∫ β

0

|X ′(ya+ (1− y)b, ·)|dy ≤
|X ′(b, ·)|+ |X ′(t, ·)|

2
, (a.e),

and
∫ 1

β

|X ′(ya+ (1− y)b, ·)|dy ≤
|X ′(b, ·)|+ |X ′(t, ·)|

2
, (a.e).

Therefore, if γ =
t− a

b− a

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

(

1

p+ 1
βp+1

)1/p(
|X ′(b, ·)|q + |X ′(t, ·)|q

2

)1/q

+ (b− a)

(

1

p + 1
γp+1

)1/p(
|X ′(t, ·)|q + |X ′(a, ·)|q

2

)1/q

=

(

(b− a)p

p + 1
βp+1

)1/p(
|X ′(b, ·)|q + |X ′(t, ·)|q

2

)1/q

+

(

(b− a)p

p+ 1
γp+1

)1/p(
|X ′(t, ·)|q + |X ′(a, ·)|q

2

)1/q

=
1

21/q

[

(

1

p + 1

(b− t)p+1

(b− a)

)1/p

(|X ′(b, ·)|q + |X ′(t, ·)|q)
1/q

+

(

1

p+ 1

(t− a)p+1

(b− a)

)1/p

(|X ′(t, ·)|q + |X ′(a, ·)|q)
1/q

]

=
2−1/q

[(p+ q)(b− a)]1/p

[

(b− t)
p+1

p (|X ′(b, ·)|q + |X ′(t, ·)|q)1/q

+(t− a)
p+1

p (|X ′(a, ·)|q + |X ′(t, ·)|q)1/q
]

, (a.e),

where 1
q
+ 1

p
= 1.

Corollary 3.5 In Theorem (3.4), if additionally |X ′(t, ·)| ≤ M , for some
M > 0, then inequality

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ M
(b− t)

p+1

p + (t− a)
p+1

p

(p+ 1)1/p(b− a)1/p
.

holds almost everywhere, where
1

p
+

1

q
= 1.
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Corollary 3.6 In Theorem (3.4), choose t = a+b
2
, then

∣

∣

∣

∣

X

(

a + b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(b− a)

4(p+ 1)1/p

[

(∣

∣

∣

∣

X ′

(

a+ b

2
, ·

)∣

∣

∣

∣

q

+ |X ′(b, ·)|q
)1/q

+

(

|X ′(a, ·)|q +

∣

∣

∣

∣

X ′

(

a + b

2
, ·

)∣

∣

∣

∣

q)1/q
]

,

holds almost everywhere.

Theorem 3.7 Let f : I×Ω → R be a mean-square differentiable stochastic
process on I such that X ′ is mean-square integrable on [a, b], where a, b ∈ I

with a < b. If |X ′|p/(p−1) is concave on [a, b], then the following inequality is
true almost everywhere:
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(b− a)

(p + 1)1/p

[

(

b− t

b− a

)(p+1)/p ∣
∣

∣

∣

X ′

(

t+ b

2
, ·

)∣

∣

∣

∣

(17)

+

(

t− a

b− a

)(p+1)/p ∣
∣

∣

∣

X ′

(

a+ t

2
, ·

)∣

∣

∣

∣

]

,

for each t ∈ [a, b], where p > 1.

Proof.

Suppose that p > 1. As the Theorem (3.4),
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

∫ β

0

y|X ′(ya+ (1− y)b, ·)|dy

+(b− a)

∫ 1

β

|y − 1||X ′(ya+ (1− y)b, ·)|dy

≤ (b− a)

(
∫ β

0

ypdy

)1/p(∫ β

0

|X ′(ya+ (1− y)b, ·)|qdy

)1/q

+(b− a)

(
∫ 1

β

(1− y)pdy

)1/p(∫ 1

β

|X ′(ya+ (1− y)b, ·)|qdy

)1/q

,

almost everywhere. Since |X ′|q is concave on [a, b], by Hermite-Hadamard’s
inequality, we get

∫ β

0

|X ′(ya+ (1− y)b, ·)|qdy ≤

∣

∣

∣

∣

X ′

(

b+ t

2
, ·

)∣

∣

∣

∣

q

,
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and
∫ 1

β

|X ′(ya+ (1− y)b, ·)|qdy ≤

∣

∣

∣

∣

X ′

(

a+ t

2
, ·

)q∣
∣

∣

∣

.

Therefore,
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

(

1

p+ 1
βp+1

)1/p(∣
∣

∣

∣

X ′

(

t + b

2
, ·

)∣

∣

∣

∣

q)1/q

+ (b− a)

(

1

p+ 1
γp+1

)1/p(∣
∣

∣

∣

X ′

(

a + t

2
, ·

)∣

∣

∣

∣

q)1/q

=
(b− a)

(p + 1)1/p

(

b− t

b− a

)(p+1)/p ∣
∣

∣

∣

X ′

(

t + b

2
, ·

)∣

∣

∣

∣

+
(b− a)

(p+ 1)1/p
γ(p+1)/p

∣

∣

∣

∣

X ′

(

a + t

2
, ·

)∣

∣

∣

∣

=
(b− a)

(p + 1)1/p

[

β(p+1)/p

∣

∣

∣

∣

X ′

(

t+ b

2
, ·

)∣

∣

∣

∣

+γ(p+1)/p

∣

∣

∣

∣

X ′

(

a+ t

2
, ·

)∣

∣

∣

∣

]

.

almost everywhere, and proof is completed.

Corollary 3.8 In Theorem (3.7), choose t = a+b
2
, then

∣

∣

∣

∣

X

(

a+ b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(b− a)

(2p+1(p+ 1))1/p

[∣

∣

∣

∣

X ′

(

a+ 3b

4
, ·

)∣

∣

∣

∣

+

∣

∣

∣

∣

X ′

(

3a+ b

4
, ·

)∣

∣

∣

∣

]

, (a.e).

for each y ∈ [a, b], where p > 1.

The following result refines the above inequality (17).

Theorem 3.9 Let X : I × Ω → R a mean-square differentiable stochastic
process on I such that X ′ is mean-square integrable, where a, b ∈ I with a < b.

If |X ′|p/(p−1) is concave on [a, b], then:
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

(18)

≤
(b− t)2

(b− a)(p+ 1)1/p

∣

∣

∣

∣

X ′

(

t+ b

2
, ·

)∣

∣

∣

∣

+
(t− a)2

(b− a)(p+ 1)1/p

∣

∣

∣

∣

X ′

(

a + t

2
, ·

)∣

∣

∣

∣

, (a.e).

for each t ∈ [a, b], where p > 1.
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Proof.

Suppose that p > 1. From Lemma 3.1 and using the Hölder inequality,
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

∫ β

a

t0|X
′(ya+ (1− y)b, ·)|dy

+(b− a)

∫ 1

β

|y − 1||X ′(ya+ (1− y)b, ·)|dy

≤

(
∫ β

0

ypdy

)1/p(∫ β

0

|X ′(ya+ (1− y)b, ·)|q
)1/q

+(b− a)

(
∫ 1

β

(1− y)p
)1/p(∫ 1

β

|X ′(ya+ (1− y)b, ·)|qdy

)1/q

, (a.e).

Since |X ′|q is concave on [a, b], we can use the Jense’s integral inequality to
obtain
∫ β

0

|X ′(ya+ (1− y)b, ·)|qdy =

∫ β

0

1|X ′(ya+ (1− y)b, ·)|qdy

≤

(
∫ β

0

vdy

)

∣

∣

∣

∣

∣

X ′

(

1
∫ β

0
vdy

∫ β

0

(ya+ (1− y)b)dy, ·

)∣

∣

∣

∣

∣

q

=
b− t

b− a

∣

∣

∣

∣

X ′

(

a + t

2
, ·

)∣

∣

∣

∣

q

, (a.e).

and

∫ 1

β

|X ′(ya+ (1− y)b, ·)|qdy =

∫ 1

β

1|X ′(ya+ (1− y)b, ·)|qdy

≤

(
∫ 1

β

vdy

)

∣

∣

∣

∣

∣

X ′

(

1
∫ 1

β
vdy

∫ 1

β

(ya+ (1− y)b)dy, ·

)∣

∣

∣

∣

∣

q

=
t− a

b− a

∣

∣

∣

∣

X ′

(

a+ t

2
, ·

)∣

∣

∣

∣

q

(a.e).

Therefore,

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(b− t)2

(b− a)(p+ 1)1/p

∣

∣

∣

∣

X ′

(

a+ b

2
, ·

)∣

∣

∣

∣

+
(t− a)2

(b− a)(p+ 1)1/p

∣

∣

∣

∣

X ′

(

a + b

2
, ·

)∣

∣

∣

∣

, (a.e).
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Corollary 3.10 In Theorem (3.9), choose t = a+b
2
, then

∣

∣

∣

∣

X

(

a+ b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)

∣

∣

∣

∣

≤
(b− a)

4(p+ 1)1/p

[∣

∣

∣

∣

X ′

(

a+ 3b

4
, ·

)∣

∣

∣

∣

+

∣

∣

∣

∣

X ′

(

3a + b

2
, ·

)∣

∣

∣

∣

]

, (19)

holds almost everywhere for each t ∈ [a, b], where p > 1.

A different approach for powers of the absolute value of the first derivative
leads to the following result:

Theorem 3.11 Let X : I×Ω → R be a mean-square differentiable stochas-
tic process on I such that X ′ is mean-square integrable, where a, b ∈ I with
a < b. If |X ′|q is convex on [a, b], q ≥ 1, and |X ′(t)| ≤ M, t ∈ [a, b], then the
following inequality holds almost everywhere:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

(

1

2

(b− t)2

(b− a)2

)1− 1

q

{(

1

2

(b− t)2

(b− a)2
−

1

3

(b− t)3

(b− a)3

)

|X ′(b, ·)|q

+
1

3

(b− t)3

(b− a)3
|X ′(a, ·)|q

}1/q

+ (b− a)

(

1

2
−

(b− t)

(b− a)
+

1

2

(b− t)2

(b− a)2

)1− 1

q

×

{[

1

3

(

1−
(b− t)3

(b− a)3

)

−

(

1−
(b− t)2

(b− a)2

)

+

(

1−
(b− x)

(b− a)

)]

|X ′(b, ·)|q

+

[

1

2

(

1−
(b− t)2

(b− a)2

)

−
1

3

(

1−
(b− t)3

(b− a)3

)]

|X ′(a, ·)|q
}

1

q

,

for each t ∈ [a, b].

Proof.

Suppose that q ≥ 1. From Lemma 3.1 and using the power mean inequality,
we have

∣

∣

∣

∣

X(t, ·)
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

∫ β

0

y|X ′(ya+ (1− y)b, ·)|dy

+(b− a)

∫ 1

β

|y − 1||X ′(ya+ (1− y)b, ·)|dy
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≤ (b− a)

(
∫ β

0

ydy

)1− 1

q
(
∫ β

0

y|X ′(ya+ (1− y)b, ·)|qdy

)

1

q

+(b− a)

(
∫ 1

β

(1− y)dy

)1− 1

q

(
∫ 1

β

(1− y)|X ′(ya+ (1− y)b, ·)|qdy

)
1

q

, (a.e).

Since |X ′|q is convex,
∫ β

0

y|X ′(ya+ (1− y)b, ·)|qdy

≤

∫ β

0

y[y|X ′(a, ·)|q + (1− y)|X ′(b, ·)|q]dy

=

(

1

2

(b− t)2

(b− a)2
−

1

3

(b− t)3

(b− a)3

)

|X ′(b, ·)|q +
1

3

(b− t)3

(b− a)3
|X ′(a, ·)|q, (a.e),

and
∫ 1

β

(1− y)|X ′(ya+ (1− y)b, ·)|qdy

≤

∫ 1

β

(1− y)[y|X ′(a, ·)|q + (1− y)|X ′(b, ·)|q]dy

=

[

1

3

(

1−
(b− t)3

(b− a)3

)

−

(

1−
(b− t)2

(b− a)2

)

+

(

1−
(b− t)

(b− a)

)]

|X ′(b, ·)|q

+

[

1

2

(

1−
(b− t)2

(b− a)2

)

−
1

3

(

1−
(b− t)3

(b− a)3

)]

|X ′(a, ·)|q, (a.e).

Therefore,
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

(

1

2

(b− t)2

(b− a)2

)1− 1

q

{(

1

2

(b− t)2

(b− a)2
−

1

3

(b− t)3

(b− a)3

)

|X ′(b, ·)|q

+
1

3

(b− t)3

(b− a)3
|X ′(a, ·)|q

}
1

q

+ (b− a)

(

1

2
−

(b− t)

(b− a)
+

1

2

(b− t)2

(b− a)2

)1− 1

q

×

{[

1

3

(

1−
(b− t)3

(b− a)3

)

−

(

1−
(b− t)2

(b− a)2

)

+

(

1−
(b− t)

(b− a)

)]

|X ′(b, ·)|q

+

[

1

2

(

1−
(b− x)2

(b− a)2

)

−
1

3

(

1−
(b− t)3

(b− a)3

)]

|X ′(a, ·)|q
}

1

q

, (a.e).

Corollary 3.12 In Theorem (3.11), choose t = a+b
2
, then

∣

∣

∣

∣

X

(

a + b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

(20)
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≤ (b− a)
8

1

q

192

[

(|X ′(a, ·)|q + 2|X ′(b, ·)|q)
1

q + (2|X ′(a, ·)|q + |X ′(b, ·)|q)
1

q

]

, (a.e).

For instance, if q = 1, then (20) becomes

∣

∣

∣

∣

X

(

a + b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(b− a)

8
(|X ′(a, ·)|+ |X ′(b, ·)|), (a.e).

In the following inequality, we may refine the result (17) and (18).

Theorem 3.13 Let f : I×Ω → R be a mean-square differentiable stochas-
tic process, on I such that X ′ is mean-square integrable, where a, b ∈ I with
a < b. If |X ′|q is concave on [a, b], q ≥ 1, then the following inequality holds
almost everywhere:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ 2−1/q(b− a)

[

(

b− t

b− a

)2 ∣
∣

∣

∣

X ′

(

b+ 2t

3
, ·

)∣

∣

∣

∣

+

(

t− a

b− a

)2 ∣
∣

∣

∣

X ′

(

a+ 2t

3
, ·

)∣

∣

∣

∣

]

, (a.e),

for each y ∈ [a, b].

Proof.

First, we note that by concavity of |X ′|q and the power-mean inequality,

|X ′(αt+ (1− α)t0, ·)|
q ≥ α|X ′(t, ·)|q + (1− α)|X ′(t0, ·)|

q, (a.e)

Hence,

|X ′(αt+ (1− α)t0, ·)| ≥ α|X ′(t, ·)|+ (1− α)|X ′(t0, ·)|, (a.e)

so, |X ′| is also concave,

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

∫ β

0

y|X ′(ya+ (1− y)b, ·)|dy

+(b− a)

∫ 1

β

|y − 1||X ′(ya+ (1− y)b, ·)|dy

≤ (b− a)

(
∫ β

0

ydy

)1−1/q (∫ β

0

y|X ′(ya+ (1− y)b, ·)|qdy

)1/q

+(b− a)

(
∫ 1

β

(1− y)dy

)1−1/q (∫ 1

β

(1− y)|X ′(ya+ (1− y)b, ·)|qdy

)1/q

, (a.e).
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Accordingly, by Lemma 3.1, the Jensen integral inequality and taken β =
b− t

b− a

and γ =
t− a

b− a
, we have

∫ β

0

y|X ′(ya+ (1− y)b, ·)|qdy ≤

(
∫ β

0

ydt

)

∣

∣

∣

∣

∣

∣

∣

∣

X ′









∫ β

0

y(ya+ (1− y)b)dy

∫ β

0

ydy

, ·









∣

∣

∣

∣

∣

∣

∣

∣

q

=
1

2

(

b− t

b− a

)2 ∣
∣

∣

∣

X ′

(

2t+ b

3
, ·

)∣

∣

∣

∣

q

, (a.e),

and

∫ 1

β

(1− y)|X ′(ya+ (1− y)b, ·)|qdt =

∫ γ

0

v|X ′((1− v)a+ vb, ·)|qdv

≤

(
∫ γ

0

vdv

)

∣

∣

∣

∣

∣

∣

∣

∣

X ′









∫ γ

0

(v(1− v)a+ vb, ·)dv
∫ γ

0

vdv

, ·









∣

∣

∣

∣

∣

∣

∣

∣

q

=
1

2

(

t− a

b− a

)2 ∣
∣

∣

∣

X ′

(

a+ 2t

3
, ·

)∣

∣

∣

∣

q

, (a.e).

So,
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ 2−1/q(b− a)

[

(

b− t

b− a

)2 ∣
∣

∣

∣

X ′

(

b+ 2t

2
, ·

)∣

∣

∣

∣

+

(

t− a

b− a

)2 ∣
∣

∣

∣

X ′

(

a+ 2t

3
, ·

)∣

∣

∣

∣

]

, (a.e).

3.1 Results and discussion

The results presented in this section represent refinements of error estimate
in an Ostrowski type integral inequality when the first derivative is convex,
concave or bounded. Also, the corresponding version for power of the first
derivative in absolute value is incorporated. For this type of estimations the
Hölder inequality is implemented and these estimates are enhanced applied
the well known power mean inequality. All inequalities built in this section
represent an improvement of the original Ostrowski inequality (1) using the
above conditions.
The results presented in the above section are a generalization of the theorems
established in [2].
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4 Ostrowski’s Type Inequalities for s-Convex

Stochastic Process

In this section, we consider some inequalities of Ostrowski’s type for s-convex
(s-concave) stochastic process. We start with the following result:

Lemma 4.1 Let X : [a, b]×Ω → R be a mean-square differentiable stochas-
tic process on I where a, b ∈ I with a < b. If X ′ is mean-square integrable the
following equality holds almost everywhere:

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du (21)

=
(t− a)2

b− a

∫ 1

0

yX ′(yt+ (1− y)a, ·)dy −
(b− t)2

b− a

∫ 1

0

yX ′(yt+ (1− y)b, ·)dy,

for each y ∈ [a, b].

Proof.

We perform a change of variable, u = yt+ (1− y)a and w = yt+ (1− y)b.
Then integrating by parts:

(t− a)2

b− a

∫ 1

0

yX ′(yt+ (1− y)a, ·)dy −
(b− t)2

b− a

∫ 1

0

yX ′(yt+ (1− y)b, ·)dy

=
(t− a)2

b− a

∫ t

a

(u− a)

(t− a)
X ′(u, ·)

du

(t− a)
−

(b− t)2

b− a

∫ b

t

(b− w)

(b− t)
X ′(w, ·)

dw

(b− t)

=
1

b− a

∫ t

a

(u− a)X ′(u, ·)du−
1

b− a

∫ b

t

(b− w)X ′(w, ·)dw

=
1

b− a

[

(t− a)X(t, ·)−

∫ t

a

X(u, ·)du

]

+
1

b− a

[

(b− t)X(t, ·)−

∫ b

t

X(w, ·)dw

]

=
1

b− a

[

(t− a)X(t, ·)−

∫ t

a

X(u, ·)du+ (b− t)X(t, ·)−

∫ b

t

X(w, ·)dw

]

=
1

b− a

[

X(t, ·)(b− a)−

∫ b

a

X(u, ·)du

]

= X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du, (a.e).

so proof is completed.

Theorem 4.2 Let X : I×Ω → R be a mean-square differentiable stochastic
process on I such that X ′ is mean-square integrable where a, b ∈ I with a < b.
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If |X ′| is s-convex in the second sense on [a, b] for some fixed s ∈ (0, 1] and
|X ′(t, ·)| ≤ M,x ∈ [a, b], then the following inequality holds:
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
M

b− a

[

(t− a)2 + (b− t)2

s+ 1

]

, (a.e),

takes place t ∈ [a, b].

Proof.

By Lemma 4.1 and since |X ′| is s-convex, we have
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(t− a)2

b− a

∫ 1

0

y|X ′(yt+ (1− y)a, ·)|dy

+
(b− t)2

b− a

∫ 1

0

y|X ′(yt+ (1− y)b, ·)|dy

≤
(t− a)2

b− a

∫ 1

0

t[ys|X ′(t, ·)|+ (1− y)s|X ′(a, ·)|]dy

+
(b− t)2

b− a

∫ 1

0

y[ys|X ′(t, ·)|+ (1− y)s|X ′(b, ·)|]dy

=
(t− a)2

b− a
|X ′(t, ·)|

∫ 1

0

ys+1dy + |X ′(a, ·)|

∫ 1

0

y(1− y)sdy

+
(b− t)2

b− a
|X ′(t, ·)|

∫ 1

0

ys+1 + |X ′(b, ·)|

∫ 1

0

y(1− y)sdy

=
(t− a)2

b− a

(

|X ′(t, ·)|
1

s+ 2
+ |X ′(a, ·)|

1

(s+ 1)(s+ 2)

)

+
(b− t)2

b− a

(

|X ′(t, ·)|
1

s+ 2
+ |X ′(b, ·)|

1

(s+ 1)(s+ 2)

)

≤
M

b− a

[

(t− a)2 + (b− t)2

s+ 1

]

.

almost everywhere.

Theorem 4.3 Let X : I×Ω → R be a mean-square differentiable stochastic
process on I such that X ′ is a mean-square integrable where a, b ∈ I with a < b.

If |X ′|q is s-convex in the second sense on [a, b], for some fixed s ∈ (0, 1], p, q >

1,
1

p
+

1

q
= 1 and |X ′(t, ·)| ≤ M, t ∈ [a, b], then the following inequality holds

almost everywhere:
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
M

(1 + p)
1

p

(

2

s+ 1

)1/q [
(t− a)2 + (b− t)2

b− a

]

,
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for each t ∈ [a, b].

Proof.

Suppose p > 1 from Lemma 4.1 and using the Hölder inequality, we have
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(t− a)2

b− a

∫ 1

0

t|X ′(yt+ (1− y)a, ·)|dy +
(b− t)2

b− a

∫ 1

0

t|X ′(yt+ (1− y)b, ·)|dy

≤
(t− a)2

b− a

(∫ 1

0

ypdy

)

1

p

(∫ 1

0

|X ′(yt+ (1− y)a, ·)|qdy

)1/q

+
(b− t)2

b− a

(
∫ 1

0

ypdy

)
1

p

(
∫ 1

0

|X ′(yt+ (1− y)b, ·)|qdy

)1/q

, (a.e).

Since |X ′|q is s-convex in the second sense and |X ′(t, ·)| ≤ M, hence

∫ 1

0

|X ′(yt+ (1− y)a, ·)|qdy ≤

∫ 1

0

[ys|X ′(t, ·)|q + (1− y)s|X ′(a, ·)|q]dy

= |X ′(t, ·)|q
∫ 1

0

ysdy + |X ′(a, ·)|q
∫ 1

0

(1− y)sdy

=
|X ′(t, ·)|q + |X ′(a, ·)|q

s+ 1

≤
2M q

s+ 1
, (a.e).

and
∫ 1

0

|X ′(yt+ (1− y)b, ·)|qdy ≤

∫ 1

0

[ys|X ′(t, ·)|q + (1− y)s|X ′(b, ·)|q]dt

= |X ′(t, ·)|q
∫ 1

0

ysdy + |X ′(b, ·)|q
∫ 1

0

(1− y)sdy

=
|X ′(t, ·)|q + |X ′(b, ·)|q

s+ 1

≤
2M q

s+ 1
, (a.e).

Therefore,
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)

∣

∣

∣

∣

≤
M

(p+ 1)
1

p

(

2

s+ 1

)1/q [
(t− a)2 + (b− t)2

b− a

]

, (a.e),

where
1

p
+

1

q
= 1, which is required.

The previous theorem can be formulated in case thatX is convex as follows:
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Corollary 4.4 Let X : I×Ω → R be a mean-square differentiable stochas-
tic process on I such that X ′ is mean-square integrable where a, b ∈ I with
a < b. If |X ′|p/(p−1) is convex on [a, b], p > 1, and |X ′(y, ·)| ≤ M, y ∈ [a, b],
then:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
M

b− a

[

(t− a)2 + (b− t)2

(1 + p)
1

p

]

, (a.e),

for each t ∈ [a, b].

The corresponding version for powers of the absolute value of the first
derivative is incorporated in the following result:

Theorem 4.5 Let X : I×Ω → R be a mean-square differentiable stochastic
process on I such that X ′ is mean-square integrable where a, b ∈ I with a < b.

If |X ′|q is s-convex in the second sense on [a, b] for some fixed s ∈ (0, 1] and
q ≥ 1, and |X ′(t, ·)| ≤ M, t ∈ [a, b], then the following inequality holds almost
everywhere:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ M

(

2

s+ 1

)1/q [
(t− a)2 + (b− t)2

2(b− a)

]

, (22)

for each t ∈ [a, b].

Proof.

Suppose that q ≤ 1. By the Lemma 4.1 and using the power mean inequal-
ity:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(x− a)2

b− a

∫ 1

0

y|X ′(yt+ (1− y)a, ·)|dy +
(b− x)2

b− a

∫ 1

0

y|X ′(yt+ (1− y)b, ·)|dy

≤
(x− a)2

b− a

(
∫ 1

0

ydy

)1−1/q (∫ 1

0

y|X ′(yt+ (1 + y)a, ·)|qdy

)1/q

+
(b− x)2

b− a

(∫ 1

0

ydy

)1−1/q (∫ 1

0

y|X ′(yt+ (1 + y)a, ·)|qdy

)1/q

,

almost everywhere. Since |X ′|q is s-convex, we have
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∫ 1

0

y|X ′(yt+ (1 + y)a, ·)|qdy

≤

∫ 1

0

[ys+1|X ′(yt+ (1 + y)a, ·)|q + y(1− y)s|X ′(yt+ (1 + y)a, ·)|q]dy

=
|X ′(t, ·)|q + (s+ 1)|X ′(a, ·)|q

(s+ 1)(s+ 2)
≤

M q

s + 1
,

and

∫ 1

0

y|X ′(yt+ (1 + y)b, ·)|qdy ≤

∫ 1

0

[ys+1|X ′(t, ·)|q + y(1− y)s|X ′(a, ·)|q]dy

=
|X ′(t, ·)|q + (s+ 1)|X ′(a, ·)|q

(s+ 1)(s+ 2)
≤

M q

s+ 1
, (a.e).

Therefore,

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ M

(

2

s+ 1

)1/q [
(t− a)2 + (b− t)2

2(b− a)

]

(a.e.),

which is the desired result.
A midpoint type inequality for stochastic processes whose derivatives in

absolute value are s-convex in the second sense may be obtained from the
previous results as follows:

Corollary 4.6 If in (22) we choose t = a+b
2
, then:

∣

∣

∣

∣

X

(

a+ b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
M(b− a)

4

(

2

s+ 1

)1/q

, q ≥ 1, (a.e),

where s ∈ (0, 1] and |X ′|q is s-convex in the second sense on [a, b], q ≥ 1.

Now, we obtain a Ostrowski’s type inequality for the following result holds
for s-concave mapping.

Theorem 4.7 Let X : I×Ω → R be a mean-square differentiable stochastic
process on I such that X ′ is a mean-square integrable where a, b ∈ I with a < b.

If |X ′|q is s-concave on [a, b], p, q > 1, 1
p
+ 1

q
= 1, then the following inequality

holds almost everywhere:
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

(23)

≤
2(s−1)/q

(1 + p)1/p(b− a)

[

(t− a)2
∣

∣

∣

∣

X ′

(

t + a

2
, ·

)∣

∣

∣

∣

+ (b− t)2
∣

∣

∣

∣

X ′

(

b+ t

2
, ·

)∣

∣

∣

∣

]

,

for each t ∈ [a, b].
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Proof.

Suppose that q > 1. From Lemma 4.1 and using the Hlder inequality,

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(x− a)2

b− a

∫ 1

0

y|X ′(yt+ (1− y)a, ·)|dy

+
(b− x)2

b− a

∫ 1

0

y|X ′(yt+ (1− y)b, ·)|dy

≤
(x− a)2

b− a

(
∫ 1

0

ypdy

)1/p(∫ 1

0

|X ′(yt+ (1− y)a, ·)|qdy

)1/q

+
(b− x)2

b− a

(
∫ 1

0

ypdy

)1/p(∫ 1

0

|X ′(yt+ (1− y)a, ·)|qdy

)1/q

,

almost everywhere.
But since |X ′|q is concave, using the inequality (21), we have

∫ 1

0

|X ′(yt+ (1− y)a, ·)|qdy ≤ 2s−1

∣

∣

∣

∣

X ′

(

x+ a

2
, ·

)∣

∣

∣

∣

q

, (a.e),

and

∫ 1

0

|X ′(yt+ (1− y)a, ·)|qdy ≤ 2s−1

∣

∣

∣

∣

X ′

(

b+ x

2
, ·

)∣

∣

∣

∣

q

, (a.e).

Combining the above numbered inequalities,

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
2(s−1)/q

(1 + p)1/p(b− a)

[

(t− a)2
∣

∣

∣

∣

X ′

(

t+ a

2
, ·

)∣

∣

∣

∣

+ (b− t)2
∣

∣

∣

∣

X ′

(

b+ t

2
, ·

)∣

∣

∣

∣

]

, (a.e).

Therefore, we can deduce the following midpoint type inequality for stochas-
tic processes whose derivative in absolute value are s-concave in the second
sense:

Corollary 4.8 If in (23) we choose s = 1 and t = a+b
2
, then:

∣

∣

∣

∣

X

(

a+ b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
b− a

4(1 + p)1/p

[∣

∣

∣

∣

X ′

(

3a+ b

4

)∣

∣

∣

∣

+

∣

∣

∣

∣

X ′

(

a+ 3b

4

)∣

∣

∣

∣

]

(a.e),

where |X ′|q is concave on [a, b], p > 1.
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4.1 Results and discussion

In this section, the theorems and corollaries established represent different
refinements of the weighted difference in absolute value between the mean
integrals of the stochastic process X and its first derivative, considering the
s-convexity condition on first derivative of the process in absolute value. In
addition, the corresponding version for powers of the first derivative in ab-
solute value is incorporated implementing the Hölder inequality and the well
known power mean inequality. The inequalities in this section are a better-
ment of the error estimation on the orginal Ostriwski inequality (1) using the
aforementioned conditions.
The result developed in the before section is a generalization of the research
done in [4].

5 Ostrowski’s Type Inequalities for Quasi-Convex

Stochastic Process

In the following, some Ostrowski type inequalities for absolutely continuous
stochastic process whose first derivative satisfies certain convexity assumptions
are considered.

Theorem 5.1 Let X : I×Ω → R be a mean-square differentiable stochastic
process on I such that X ′ is mean-square integrable where a, b ∈ I with a <

b. If |X ′| is quasi-convex on [a, b], then the following inequality holds almost
everywhere:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(b− t)2

2(b− a)
max{|X ′(t, ·)|, |X ′(b, ·)|}

+
(t− a)2

2(b− a)
max{|X ′(t, ·)|, |X ′(a, ·)|},

for each t ∈ [a, b]

Proof.

By Lemma 3.1, since |X ′| is quasi-convex and considering β =
b− t

b− a
, we

have

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

∫ β

0

|y||X ′(ya+ (1− y)b, ·)|dy
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+(b− a)

∫ 1

β

|y − 1||X ′(ya+ (1− y)b, ·)|dy

≤ (b− a)

∫ β

0

ymax{|X ′(a, ·)|, |X ′(b, ·)|}dy

+(b− a)

∫ 1

β

(1− y)max{|X ′(a, ·)|, |X ′(b, ·)|}dy

=
1

2

(b− t)2

(b− a)
max{|X ′(a, ·)|, |X ′(b, ·)|}

+
1

2

(t− a)2

(b− a)
max{|X ′(a, ·)|, |X ′(b, ·)|}, (a.e).

Corollary 5.2 In Theorem (5.1) taking additionally that, if X ′ is bounded
on [a, b], i.e., there exist M > 0 such that |X ′(t, ·)| ≤ M, t ∈ [a, b], then
inequality (2) holds almost everywhere.

Corollary 5.3 In Theorem (5.1) assuming additionally that, if

1. X ′ is increasing, then
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)dy

∣

∣

∣

∣

≤
(b− t)2

2(b− a)
|X ′(b, ·)|+

(t− a)2

2(b− a)
|X ′(t, ·)|, (a.e).

(24)

2. X ′ is decreasing, then
∣

∣

∣

∣

X(t·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(b− t)2

2(b− a)
|X ′(t, ·)|+

(t− a)2

2(b− a)
|X ′(a, ·)|, (a.e).

(25)

Corollary 5.4 In Theorem (5.1), choose t = a+b
2
, then

∣

∣

∣

∣

X

(

a + b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(b− a)

8

[

max

{∣

∣

∣

∣

X ′

(

a + b

2
, ·

)∣

∣

∣

∣

, |X ′(b, ·)|

}

+max

{∣

∣

∣

∣

X ′

(

a+ b

2
, ·

)∣

∣

∣

∣

, |X ′(a, ·)|

}]

, (a.e).

Therefore,

1. If |X ′| is increasing, then
∣

∣

∣

∣

X

(

a+ b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)

∣

∣

∣

∣

≤
b− a

8

[

|X ′(b, ·)|+

∣

∣

∣

∣

X ′

(

a + b

2
, ·

)∣

∣

∣

∣

]

, (a.e).

(26)
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2. If |X ′| is decreasing, then

∣

∣

∣

∣

X

(

a+ b

2

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
b− a

8

[

|X ′(a, ·)|+

∣

∣

∣

∣

X ′

(

a+ b

2
, ·

)∣

∣

∣

∣

]

, (a.e).

(27)

The corresponding version for powers via quasi-convex stochastic processes
is incorporated in the following result:

Theorem 5.5 Let X : I×Ω → R be a mean-square differentiable stochastic
process, on I such that X ′ is mean-square integrable where a, b ∈ I with a < b.

If |X ′| is quasi-convex on [a, b], then:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)

∣

∣

∣

∣

≤

(

(b− t)p+1

(b− a)(p+ 1)

)
1

p

[max{|X ′(t, ·)|q, |X ′(b, ·)|q}]
1/q

+

(

(t− a)p+1

(b− a)(p+ 1)

)
1

p

[max{|X ′(t, ·)|q, |X ′(a, ·)|q}]
1/q

, (a.e),

for each t ∈ [a, b], where
1

p
+

1

q
= 1.

Proof.

Suppose that p > 1. From Lemma 3.1, using the Hölder inequality and

β =
b− t

b− a
,

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

∫ β

0

|y||X ′(ya+ (1− y)b, ·)|dy

+(b− a)

∫ 1

β

|y − 1||X ′(ya+ (1− y)b, ·)|dy

≤ (b− a)

(
∫ β

0

|y|pdy

)1/p(∫ β

0

|X ′(ya+ (1− y)b, ·)|qdy

)1/q

+(b− a)

(
∫ 1

β

(1− y)pdy

)1/p(∫ 1

β

|X ′(ya+ (1− y)b, ·)|qdy

)1/q

=
(b− a)

(p+ 1)
1

p

(

(b− t)p+1

(b− a)p(b− a)

)1/p

[max{|X ′(t, ·)|q, |X ′(b, ·)|q}]
1/q
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+(b− a)

(

1

p+ 1
γp+1

)1/p

[max{|X ′(t, ·)|q, |X ′(a, ·)|q}]
1/q

=
(b− t)

p+1

p

(p+ 1)
1

p (b− a)
1

p

[max{|X ′(t, ·)|q, |X ′(b, ·)|q}]
1/q

+
(t− a)

p+1

p

(p+ 1)
1

p (b− a)
1

p

[max{|X ′(t, ·)|q, |X ′(a, ·)|q}]
1/q

, (a.e).

This completes this proof.

Corollary 5.6 In Theorem (5.5), additionally, if

1. If |X ′| is increasing, then
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
1

(b− a)
1

p (p+ 1)
1

p

[

(b− t)
p+1

p |X ′(b, ·)|+ (t− a)
p+1

p |X ′(t, ·)|
]

, (a.e).

2. If |X ′| is decreasing, then
∣

∣

∣

∣

X ′(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
1

(b− a)
1

p (p+ 1)
1

p

[

(b− a)
p+1

p |X ′(t, ·)|+ (t− a)
p+1

p |X(a, ·)|
]

, (a.e).

Corollary 5.7 In Theorem (5.5), choose t =
a + b

2
, then we have

∣

∣

∣

∣

X

(

a + b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)

∣

∣

∣

∣

≤
(b− a)

21/p(p+ 1)1/p

[

max

{∣

∣

∣

∣

X ′

(

a + b

2
, ·

)∣

∣

∣

∣

q

, |X ′(b, ·)|q
}1/q

+max

{∣

∣

∣

∣

X ′

(

a+ b

2
, ·

)∣

∣

∣

∣

q

, |X ′(a, ·)|q
}1/q

]

, (a.e).

Therefore we have

1. If |X ′| is increasing, then
∣

∣

∣

∣

X

(

a+ b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

(28)

≤
(b− a)

21/p(p+ 1)1/p

[

|X ′(b, ·)|+

∣

∣

∣

∣

X ′

(

a + b

2
, ·

)∣

∣

∣

∣

]

, (a.e).
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2. If |X ′| is decreasing, then

∣

∣

∣

∣

X

(

a + b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

(29)

≤
(b− a)

21/p(p+ 1)1/p

[

|X ′(a, ·)|+

∣

∣

∣

∣

X ′

(

a + b

2
, ·

)∣

∣

∣

∣

]

, (a.e).

Theorem 5.8 Let X : I×Ω → R be a mean square differentiable stochastic
process on I such that X ′ is integrable, where a, b ∈ I with a < b. If |X ′|q is
quasi-convex on [a, b], q ≥ 1, and |X ′(x, ·)| ≤ M,x ∈ [a, b], then the following
inequality hold almost everywhere:
∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(t− a)2

2(b− a)
(max{|X ′(t, ·)|q, |X ′(a, ·)|q})1/q

+
(b− t)2

2(b− a)
(max{|X ′(t, ·)|q, |X ′(b, ·)|q})1/q.

for each t ∈ [a, b].

Proof.

Suppose that q ≥ 1. from Lemma 3.1, using the power mean inequality

and β =
b− t

b− a
, we have:

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤ (b− a)

∫ β

0

y|X ′(ya+ (1− y)b, ·)|dy

+(b− a)

∫ 1

β

|y − 1||X ′(ya+ (1− y)b, ·)|dy

≤ (b− a)

(
∫ β

0

ydy

)1−1/q (∫ β

0

y|X ′(ya+ (1− y)b, ·)|qdy

)1/q

+(b− a)

(
∫ 1

β

ydy

)1−1/q (∫ 1

β

y|X ′(ya+ (1− y)b, ·)|qdy

)1/q

, (a.e).

Since |X ′|q is quasi-convex,

∫ β

0

y|X(ya+ (1− y)b, ·)|qdy ≤

∫ β

0

ymax{|X ′(t, ·)|q, |X ′(b, ·)|q}dy

=
(b− t)2

2(b− a)2
max{|X ′(t, ·)|q, |X ′(b, ·)|q}, (a.e).
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and

∫ β

0

(1− y)|X(ya+ (1− y)b, ·)|qdy ≤

∫ β

0

(1− y)max{|X ′(a, ·)|q, |X ′(t, ·)|q}dy

=
(t− a)2

2(b− a)2
max{|X ′(a, ·)|q, |X ′(t, ·)|q}, (a.e).

Therefore, we have

∣

∣

∣

∣

X(t, ·)−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(t− a)2

2(b− a)
(max{|X ′(t, ·)|q, |X ′(a, ·)|q})1/q

+
(b− t)2

2(b− a)
(max{|X ′(t, ·)|q, |X ′(b, ·)|q})1/q, (a.e),

which is the desired result.

Corollary 5.9 In Theorem (5.8), and

1. |X ′| is increasing, then (24) holds almost everywhere.

2. |X ′| is decreasing, then (25) holds almost everywhere.

Corollary 5.10 In Theorem 5.8, choose t = a+b
2
, then

∣

∣

∣

∣

X

(

a + b

2
, ·

)

−
1

b− a

∫ b

a

X(u, ·)du

∣

∣

∣

∣

≤
(b− a)

8

[

(

max

{∣

∣

∣

∣

X ′

(

a+ b

2
, ·

)∣

∣

∣

∣

q

, |X ′(b, ·)|q
})1/q

+

(

max

{∣

∣

∣

∣

X ′

(

a+ b

2
, ·

)∣

∣

∣

∣

q

, |X ′(a, ·)|q
})1/q

]

, (a.e).

Therefore,

1. If |X ′| is increasing, then (26) holds, almost everywhere.

2. If |X ′| is decreasing, then (27) holds, almost everywhere.
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5.1 Results and discussion

The terms set out in the theorems and corollaries of this section, represent a
refined estimate of the error on the original Ostrowski’s inequality (1). The re-
sults presented represent a different and novel estimated when quasi-convexity
or bounded condition on the first derivative of the process is established. Fur-
ther, the corresponding version for powers of the first derivative in absolute
value where it is implemented the Hölder inequality. This result is enhanced
when the well known power mean inequality are implemented.
The estimates presented generalizes the results given in [3].

6 Conclusion

In this work we establish, for the first time, an Ostrowski’s integral inequality
to stochastic processes. Also, different Ostrowski’s type inequalities are given
through this paper, giving also an estimate of the weighted difference between
the mean-square integrals of a stochastic process X and its first derivative. The
error estimated involving the first, second and n-th derivatives are obtained.

Other refinements are established when the magnitude of the first derivative
is convex, concave, s-convex or quasi-convex, and their corresponding version
for powers of the first derivative in the absolute value. Additionally, we deduce
an Ostrowski’s type inequality for stochastic processes whose derivatives are
bounded.

Is important stand out that all the results obtained in this paper are the
counterpart for stochastic processes of theorems previously established for
functions and contributes to new error estimation applied to numerical analy-
sis of stochastic processes.
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