On oid-semigroups and universal semigroups "at infinity"

A. M. Aminpour

Department of Mathematical sciences and computer, Shahid Chamran University, Ahvaz, Iran

Mehrdad Seilani

Iranian Academic center for education culture and research Seilanimaths11@yahoo.com

Abstract

In this paper, we present an important new results for study of oidsemigroup and universal semigroup "at infinity". Principal results are theorem 3.4 and theorem 4.4.

Mathematics Subject Classification: 2010, 54D35

Keywords: Oid-map, Oid-semigroup, Universal semigroup, Almost periodic

1 Introduction

Let S be a semigroup and topological space. S is called topological semigroup if the multiplication $(s,t) \rightarrow st : S \times S \rightarrow S$ is jointly continuous. Civin and Yood [5] shows that the Stone-Cech compactification of a discrete semigroup S could be given a semigroup structure. Indeed the operation on S extends uniquely to βS , so that S contained in it's topological center. Pym [4] introduced the concept of an oid. Oids are important because nearly all semigroups contains them and all oids are oid-isomorphic [6]. Through out this paper we will let Tbe a commutative oid with a discrete topology. Then the compact space βT produces a compact right topological semigroup T^{∞} . Our aim of the present paper is to introduce oid-semigroup and universal semigroup at infinity.

2 Definitions and preliminaries

Definition 2.1. Let $x = (x(n))_{n \in \mathbb{N}}$ be any sequence consisting of 1s and ∞s . We define $\operatorname{supp}(x(n))_{n \in \mathbb{N}} = \{n \in \mathbb{N} : x(n) = \infty\}$ and write

 $T = \{(x(n))_{n \in \mathbb{N}} : \text{ supp}(x(n))_{n \in \mathbb{N}} \text{ is finite and non-empty}\}.$

A commutative standard oid is the set T together with the product xy defined in T if and only if $(\operatorname{supp} x) \cap (\operatorname{supp} y) = \emptyset$ to be (x(n)y(n)) where x(n)y(n) is ordinary multiplication $(1 \cdot 1 = 1, 1 \cdot \infty = \infty \cdot 1 = \infty)$.

Any commutative standard oid T can be considered as $\bigoplus_{n=1}^{\infty} \{1, \infty\} \setminus \{(1, 1, \dots, 1)\}$ so that T is a countable set. Obviously $\operatorname{supp}(xy) = (\operatorname{supp} x) \cup (\operatorname{supp} y)$ whenever xy is defined in T. A more detailed analysis of oids can be found in [4]. For $x, y \in T$, $\operatorname{supp} x < \operatorname{supp} y$ means that n < m if $n \in \operatorname{supp} x$ and $m \in \operatorname{supp} y$, and $\operatorname{supp} x_{\alpha} \to \infty$ for some net (x_{α}) in T will means that for arbitrary $k \in \mathbb{N}$ eventually $\min(\operatorname{supp} x_{\alpha}) > k$. Then for a fixed $t \in T$, eventually $\operatorname{supp} t < \operatorname{supp} y$ and so eventually tx_{α} is defined in T.

Remark 2.2. Write $u_n = (1, 1, ..., \infty, 1, 1, ...)$ (with ∞ in the nth place). Put $U = \{u_n : n \in \mathbb{N}\}$. Then U is countable subset of T. Moreover, any $x \in T$ can be written uniquely as a finite product $x = u_{i_1}u_{i_2}...u_{i_k}$ with $i_1 < i_2 < ... < i_k$, supp $x = \{i_1, ..., i_k\}$. The compact space βT produces a compact right topological semigroup at infinity T^{∞} defined by

$$T^{\infty} = \{ \mu \in \beta T : \ \mu = \lim_{\alpha} x_{\alpha} \text{ with } \operatorname{supp} x_{\alpha} \to \infty \}$$

with the multiplication $\mu\nu = \lim_{\alpha} \lim_{\beta} x_{\alpha}y_{\beta}$ if $\mu = \lim_{\alpha} x_{\alpha}, \nu = \lim_{\beta} y_{\beta}$. Infact, the product $(\mu, \nu) \to \mu\nu : \beta T \times T^{\infty} \to T^{\infty}$ is defined and is right continuous, and left continuity holds when $\mu = t \in T$. Let $\nu \in T^{\infty}$. The left operator determined by ν is the mapping $L_{\nu} : B(T) \to B(T)$ defined by $L_{\nu}f(t) = \lim_{\beta} f(y_{\beta}t)$ $(t \in T, f \in B(T))$ with $y_{\beta} \to \nu$, $\sup y_{\beta} \to \infty$. Since T is commutative then $L_{\nu}f(t) = (L_t f)^{\beta}(\nu)$. If $\mu \in T^{\infty}$, then $L_{\mu\nu} = L_{\mu} \circ L_{\nu}$, so that $(\mu, \nu) \to \mu\nu : T^{\infty} \times T^{\infty} \to T^{\infty}$ is a binary operation on T^{∞} relative to which T^{∞} is a compact right topological semigroups.

Definition 2.3. (a) The cardinal function is the map $c : T \to \mathbb{N}$ given by $c(x) = \operatorname{card}(\operatorname{supp} x)$. If $(\operatorname{supp} x) \cap (\operatorname{supp} y) = \emptyset$ then xy is defined, c(xy) = c(x) + c(y). It follows that c extends to homomorphism c^{β} from T^{∞} into the one-point compactification $\mathbb{N} \cup \{\infty\}$.

Notation: We denoted $\frac{1}{c(x)}$ by k(x), for $x \in T$. If $A \subseteq T$ then 1_A denoted the indicator function of A. That is the function whose value 1 on A and 0 on $T \setminus A$.

(b) Let $z : T \to \mathbb{Z}^+$. For $x \in T$, z(x) be the largest number of consecutive 1's between min(supp x) and max(supp x), then the function k defined on T by $k(x) = \frac{1}{z(x)+1}$ is bounded, so extends to a unique continuous function k^{β} from βT into $\mathbb{Z}^+ \cup \{\infty\}$.

(c) Let T be a standard oid, and let $x = u_{i_1}u_{i_2}\ldots u_{i_k}$. We define $\ell: T \to \mathbb{N}$ by $\ell(x) = i_k - i_1 + 1$, $(x \in T)$. Then obvious that, there is a unique function $\ell^{\beta}: \beta T \to \mathbb{N} \cup \{\infty\}$, and put $r(x) = \frac{1}{\ell(x)}$, $(x \in T)$.

3 Oid-semigroup

Definition 3.1. Let T' be any set with an operation "0" defined on T' and let T be a standard oid. We say that $\varphi : T \to T'$ is an oid-map if for any $x, y \in T$ which xy is defined in T, then $\varphi(xy) = \varphi(x) \circ \varphi(y)$.

For example let T be a standard oid and let \mathbb{N} be additive semigroup of positive integers. Then $x = u_{i_1}u_{i_2}\ldots u_{i_k}$, $i_1 < i_2 < \ldots < i_k$. Define $\varphi: T \to \mathbb{N}$ by $\varphi(x) = 2^{i_1} + 2^{i_2} + \ldots + 2^{i_k}$. Then it is easily seen that φ is an oid-map.

Definition 3.2. Suppose that there is on T a multiplication $m: T \times T \to T$ which makes (T,m) a commutative semigroup, and which has the property that the identity map from an oid T onto (T,m) is an oid map. Then we say (T,m)is a commutative oid-semigroup "at infinity".

Suppose T ba a commutative oid-map, and $f \in C(T)$, $s \in T$. The left (right) translate $l_s f(r_s f)$ of f by s is defined by $l_s f(t) = f(st)$ ($r_s f(t) = f(ts)$) $\forall t \in T$. A subspace X of C(T) is called left (right) translation invariant if $l_s f \in X$, ($r_s f \in X$), $\forall f \in X$, $s \in T$. As T is a commutative, it follows that $l_s f = r_s f$ for all $s \in T$. Left (right) translation invariant subspace are discussed in [1].

We recall that a function $f \in C(T)$ is said to be almost periodic if the set $\{r_s f, s \in T\}$ of right translation of f is relatively norm compact in C(T) [2]. The set of all almost periodic functions on T is denoted by AP(T).

Lemma 3.3. Let T be a commutative oid-semigroup and let $f \in AP(T)$. Then $L_{\nu}f \in n - cl\{r_s f, s \in T\}$ for all $\nu \in \beta T$.

Proof. By definition when T is a semigroup, $L_{\nu}f(t) = \lim_{\alpha} f(tx_{\alpha})$ where $x_{\alpha} \to \nu$ in βT and $t \in T$. Since $f(tx_{\alpha}) = r_{x_{\alpha}}f(t)$ and $(r_{x_{\alpha}}f)$ is a net in $\{r_s f, s \in T\}$ which is relatively norm compact in C(T), then there exists a subnet $(x_{\alpha_{\beta}})$ of (x_{α}) and $g \in C(T)$ such that $||r_{x_{\alpha_{\beta}}}f - g|| \to 0$, i.e., $|r_{x_{\alpha_{\beta}}}f(t) - g(t)| \to 0$ for all $t \in T$. It follows that

$$L_{\nu}f(t) = \lim_{\alpha} r_{x_{\alpha}}f(t) = \lim_{\beta} r_{x_{\alpha\beta}}f(t) = g(t)$$

for all $t \in T$. Thus $L_{\nu}f = g \in n - \operatorname{cl}\{r_s f, s \in T\}$, as required.

The next theorem get us the equivalent condition for AP(T) when T is oid-semigroup.

Theorem 3.4. Let T and βT be semigroups and $f \in C(T)$. Then $f \in AP(T)$ if and only if $(\mu, \nu) \to f^{\beta}(\mu\nu) : \beta T \times \beta T \to \mathbb{C}$ is jointly continuous.

Proof. Necessity: Suppose $f \in AP(T)$, let $(\mu_{\alpha}), (\nu_{\alpha})$ be nets in βT with $\mu_{\alpha} \to \mu$ and $\nu_{\alpha} \to \nu$ in βT . Then for each α , $L_{\nu_{\alpha}}f \in n-\operatorname{cl}\{r_sf:s \in T\}$. Since $n-\operatorname{cl}\{r_sf:s \in T\}$ is norm compact in C(T), it follows that there exists a subnet $(\nu_{\alpha_{\delta}})$ of (ν_{α}) and $g \in C(T)$ such that $||L_{\nu_{\alpha_{\delta}}}f-g|| \to 0$. Now by a similar argument, we have that $f^{\beta}(\mu_{\alpha}\nu_{\alpha}) \to f^{\beta}(\mu\nu)$ i.e., $(\mu,\nu) \to f^{\beta}(\mu\nu): \beta T \times \beta T \to \mathbb{C}$ is jointly continuous, as desired.

Sufficiency: Suppose $f \in C(T)$ and $\varphi : (\mu, \nu) \to f^{\beta}(\mu\nu) : \beta T \times \beta T \to \mathbb{C}$ is jointly continuous. Then $\varphi(0,T) \subseteq \varphi(0,\beta T)$, and for all $\mu \in \beta T$, $t \in T$ we have

$$\varphi(\mu, t) = f^{\beta}(\mu t) = f^{\beta}(t\mu) = (l_t f)^{\beta}(\mu).$$

Therefore $\varphi(0,T) = \{\varphi(0,t) : t \in T\} = \{(l_t f)^\beta : t \in T\}$. Now it is easy to check that the function φ satisfies all suitable conditions. It follows that $\nu \to \varphi(0,\nu) : \beta T \to C(\beta T)$ is norm continuous. This proves $\varphi(0,\beta T)$ is norm compact in $C(\beta T)$, and therefore $n - \operatorname{cl} \varphi(0,T)$ is norm compact in $C(\beta T)$. Since C(T) and $C(\beta T)$ are isometrically isomorphic Banach spaces and T is a commutative semigroup, it follows that $n - \operatorname{cl} \{r_t f : t \in T\}$ is norm compact in C(T). Thus $f \in \operatorname{AP}(T)$ and the result now follows.

The next theorem is a key result in the theory of oid-semigroup T.

Theorem 3.5. Let T be an oid-semigroup and $f \in C(T)$, $t \in T$. Then $l_t f$ is jointly continuous on $\beta T \times T^{\infty}$.

Proof. It is enough to show that $(\mu, \nu) \to (l_t f)^{\beta}(\mu \nu) : \beta T \times T^{\infty} \to \mathbb{C}$ is continuous. Since left continuity holds at each point of T by definition 3.2, then map $\mu \to t\mu$ is continuous from βT into βT . Therefore the composite map $(\mu, \nu) \to (t\mu, \nu) \to f^{\beta}(t\mu\nu) = (l_t f)^{\beta}(\mu\nu)$ is continuous from $\beta T \times T^{\infty}$ to \mathbb{C} .

Remark 3.6. Let T be a commutative oid-semigroup (Definition 3.2). Then the product $\mu\nu = \mu \circ L_{\nu}$ can be defined whenever $\mu, \nu \in \beta T$. The product $\mu\nu \in \beta T$ and the formula $\mu\nu = \mu \circ L_{\nu}$ is a binary operation on βT relative to which βT is compact right topological semigroup and left continuity holds when $\mu \in T$. Moreover, $t\nu = \nu t$ for $t \in T$, $\nu \in \beta T$. Therefore βT contains T^{∞} as a subsemigroup.

4 Universal semigroups "at infinity"

In this section we prove that associated with each commutative standard oid T, there is a commutative semigroup, called the universal semigroup of the oid T by starting with the countable subset U of the oid T and producing a unique algebraic isomorphism between the universal semigroup of the oid and the free abelian semigroup generated by U which has a universal mapping property relative to U. We first give the definition of universal semigroup.

Definition 4.1. Let T be a commutative standard oid. Then a universal semigroup of T is a pair (φ, kT) such that kT is a commutative semigroup, $\varphi: T \to kT$ is an oid-map (Definition 3.1) and if $\psi: T \to S$ is an oid-map of T into a commutative semigroup S, then there exists a unique algebraic

homomorphism $\psi^k : kT \to S$ such that the diagram

commutes.

Write $F_{u_i} = \{1, u_i, u_i^2, u_i^3, \ldots\}$ for each $u_i \in U$. Then $\bigoplus_{i=1}^{\infty} F_{u_i} \setminus \{(1, 1, \ldots, 1, \ldots)\}$ is called the free abelian semigroup generated by U and will be denoted by F_U . We usually write

$$(u_1^{n_1}, u_2^{n_2}, \dots, u_r^{n_r}, \dots) = u_{i_1}^{\alpha_1} u_{i_2}^{\alpha_2} \dots u_{i_k}^{\alpha_k}$$

where $i_1 < i_2 < \ldots < i_k$ and $\alpha_1, \alpha_2, \ldots, \alpha_k \neq 0$, $\alpha_1 = n_{i_1}, \ldots, \alpha_k = n_{i_k}$.

Lemma 4.2. Let T be a standard oid, define $\theta: T \to F_U$ by

$$\theta(u_{i_1}u_{i_2}\ldots u_{i_k})=u_{i_1}u_{i_2}\ldots u_{i_k}$$

where $i_1 < i_2 < \ldots < i_k$. Then θ is an injective oid-map.

Proof. Straightforward.

Lemma 4.3. Let S be any commutative semigroup. If $\varphi_0 : T \to S$ is any oid-map of an oid T into S than φ_0 can be extended in one and only one way to a homomorphism φ of F_U into S.

Proof. Define $\varphi: F_U \to S$ by

$$\varphi(u_{i_1}^{\alpha_1}u_{i_2}^{\alpha_2}\ldots u_{i_k}^{\alpha_k})=\varphi_0(u_{i_1})^{\alpha_1}\varphi_0(u_{i_2})^{\alpha_2}\ldots\varphi_0(u_{i_k})^{\alpha_k}.$$

Since S is commutative, it is straightforward to prove that φ is a homomorphism. Now, let $x = u_{i_1}u_{i_2}\ldots u_{i_k} \in T$, $i_1 < i_2 < \ldots < i_k$ and let $\varphi_0 : T \to S$ be an oid-map. Then

$$\varphi_0(x) = \varphi_0(u_{i_1}u_{i_2}\dots u_{i_k}) = \varphi_0(u_{i_1})\varphi_0(u_{i_2})\dots \varphi_0(u_{i_k}) = \varphi(u_{i_1}u_{i_2}\dots u_{i_k}) = \varphi(x)$$

Which implies that $\varphi|_T = \varphi_0$. Moreover, φ is unique, for if $\psi : F_U \to S$ is to have the required properties then

$$\psi(u_{i_1}^{\alpha_1}u_{i_2}^{\alpha_2}\dots u_{i_k}^{\alpha_k}) = \psi(u_{i_1})^{\alpha_1}\psi(u_{i_2})^{\alpha_2}\dots\psi(u_{i_k})^{\alpha_k}$$
$$= \varphi_0(u_{i_1})^{\alpha_1}\varphi_0(u_{i_2})^{\alpha_2}\dots\varphi_0(u_{i_k})^{\alpha_k}$$
$$= \varphi(u_{i_1}^{\alpha_1}u_{i_2}^{\alpha_2}\dots u_{i_k}^{\alpha_k})$$

and we have that $\psi = \varphi$, as desired.

This lemma shows that F_U is a universal semigroup for T. We prove next that every universal semigroup is isomorphic to F_U .

Theorem 4.4. Let (φ, kT) be a universal semigroup of an oid T and let F_U be the free abelian semigroup on U. Then kT is algebraically isomorphic to F_U .

Proof. By lemma 4.2, $\theta: T \to F_U$ is an injective oid-map. Since (φ, kT) is a universal semigroup of the oid T and F_U is commutative, there exists a unique homomorphism $\psi: kT \to F_U$ such that the diagram

commutes.

Now $\varphi : T \to kT$ is an oid-map, kT is a commutative semigroup, by lemma 4.3 there exists a unique homomorphism $\psi' : F_U \to kT$ such that $\psi'\theta = \varphi$. In view of the commuting diagrams:

and the uniqueness of $\psi' \circ \psi$, we see that $\psi' \circ \psi = \text{id}$ and similarly $\psi \circ \psi' = \text{id}$. We conclude that ψ is an isomorphism and the result follows.

Remark 4.5. Let T be a standard oid. Suppose in addition that T is a commutative oid-semigroup so that if the oid product xy of two elements $x, y \in T$ is defined, then it is the same as the semigroup product. Since $id : T \to T$ is an oid-map then the diagram

commutes.

Clearly, θ is a surmorphism. We denote by $R(\theta)$ the relation

$$\{(x,y)\in kT\times kT: \theta(x)=\theta(y)\}.$$

Then $R(\theta)$ is a congruence on kT. Moreover, $\frac{kT}{R(\theta)}$ is a quotient semigroup and so by the first isomorphism theorem ([3], chapter 1, Theorem 1.49), the semigroup T is isomorphic to $\frac{kT}{R(\theta)}$.

Any time a topology is used on kT without explicitly being described, it is assumed to be the discrete topology.

References

- J. F. Berglund, H. D. Junghenn and P. Milnes, "Compact right topological semigroups and generalization of almost periodicity", Lecture Notes in Math. Vol. 663, Springer-Verlag, Berlin, (1978).
- [2] J. F. Berglund, H. D. Junghenn and P. Milnes, "Analysis on semigroups", Wiley, New York, (1989).
- [3] J. H. Carruth, J. A. Hildebrant and R. J. Koch, "The theory of topological semigroups", Marcel Dekker, New York, (1983).
- [4] J. S. Pym, "Semigroup structure in Stone-Cech compactification". J. London. Math. Soc. (2) 36 (1987), 421–428.

- [5] P. Civin and B. Yood, "The second conjugate space of a Banach algebra as an algebra", Pacific J. Math. 11 (1961), 847–870.
- [6] T. Papazyan, "Oids, finite sums and the structure of the Stone-Cech compactification of a discrete semigroups", Semigroup Forum 42 (3) (1991), 265–277.

Received: March, 2014