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Abstract

In this paper, we present an important new results for study of oid-

semigroup and universal semigroup “at infinity”. Principal results are

theorem 3.4 and theorem 4.4.
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1 Introduction

Let S be a semigroup and topological space. S is called topological semigroup if

the multiplication (s, t) → st : S×S → S is jointly continuous. Civin and Yood

[5] shows that the Stone-Cech compactification of a discrete semigroup S could
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be given a semigroup structure. Indeed the operation on S extends uniquely

to βS, so that S contained in it’s topological center. Pym [4] introduced the

concept of an oid. Oids are important because nearly all semigroups contains

them and all oids are oid-isomorphic [6]. Through out this paper we will let T

be a commutative oid with a discrete topology. Then the compact space βT

produces a compact right topological semigroup T∞. Our aim of the present

paper is to introduce oid-semigroup and universal semigroup at infinity.

2 Definitions and preliminaries

Definition 2.1. Let x = (x(n))n∈N be any sequence consisting of 1s and

∞s. We define supp(x(n))n∈N = {n ∈ N : x(n) = ∞} and write

T = {(x(n))n∈N : supp(x(n))n∈N is finite and non-empty}.

A commutative standard oid is the set T together with the product xy defined

in T if and only if (supp x) ∩ (supp y) = ∅ to be (x(n)y(n)) where x(n)y(n) is

ordinary multiplication (1 · 1 = 1, 1 · ∞ = ∞ · 1 = ∞).

Any commutative standard oid T can be considered as
∞⊕

n=1

{1,∞}\{(1, 1, . . . , 1)}

so that T is a countable set. Obviously supp(xy) = (supp x) ∪ (supp y) when-

ever xy is defined in T . A more detailed analysis of oids can be found in

[4]. For x, y ∈ T , supp x < supp y means that n < m if n ∈ supp x and

m ∈ supp y, and supp xα → ∞ for some net (xα) in T will means that for ar-

bitrary k ∈ N eventually min(supp xα) > k. Then for a fixed t ∈ T , eventually

supp t < supp y and so eventually txα is defined in T .

Remark 2.2. Write un = (1, 1, . . . ,∞, 1, 1, . . .) (with ∞ in the nth place).

Put U = {un : n ∈ N}. Then U is countable subset of T . Moreover, any

x ∈ T can be written uniquely as a finite product x = ui1ui2 . . . uik with

i1 < i2 < . . . < ik, supp x = {i1, . . . , ik}.
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The compact space βT produces a compact right topological semigroup at

infinity T∞ defined by

T∞ = {µ ∈ βT : µ = lim
α
xα with supp xα → ∞}

with the multiplication µν = lim
α

lim
β
xαyβ if µ = lim

α
xα, ν = lim

β
yβ.

Infact, the product (µ, ν) → µν : βT × T∞ → T∞ is defined and is right

continuous, and left continuity holds when µ = t ∈ T .

Let ν ∈ T∞. The left operator determined by ν is the mapping Lν : B(T ) → B(T )

defined by Lνf(t) = lim
β
f(yβt) (t ∈ T, f ∈ B(T )) with yβ → ν, supp yβ → ∞.

Since T is commutative then Lνf(t) = (Ltf)
β(ν). If µ ∈ T∞, then Lµν = Lµ ◦ Lν ,

so that (µ, ν) → µν : T∞ × T∞ → T∞ is a binary operation on T∞ relative to

which T∞ is a compact right topological semigroups.

Definition 2.3. (a) The cardinal function is the map c : T → N given by

c(x) = card(supp x). If (supp x) ∩ (supp y) = ∅ then xy is defined, c(xy) =

c(x) + c(y). It follows that c extends to homomorphism cβ from T∞ into the

one-point compactification N ∪ {∞}.

Notation: We denoted 1
c(x)

by k(x), for x ∈ T . If A ⊆ T then 1A denoted

the indicator function of A. That is the function whose value 1 on A and 0 on

T\A.

(b) Let z : T → Z+. For x ∈ T , z(x) be the largest number of consecutive

1’s between min(supp x) and max(supp x), then the function k defined on T by

k(x) = 1
z(x)+1

is bounded, so extends to a unique continuous function kβ from

βT into Z+ ∪ {∞}.

(c) Let T be a standard oid, and let x = ui1ui2 . . . uik . We define ℓ : T → N

by ℓ(x) = ik − i1 + 1, (x ∈ T ). Then obvious that, there is a unique function

ℓβ : βT → N ∪ {∞}, and put r(x) = 1
ℓ(x)

, (x ∈ T ).
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3 Oid-semigroup

Definition 3.1. Let T ′ be any set with an operation “0” defined on T ′ and

let T be a standard oid. We say that ϕ : T → T ′ is an oid-map if for any

x, y ∈ T which xy is defined in T , then ϕ(xy) = ϕ(x) ◦ ϕ(y).

For example let T be a standard oid and let N be additive semigroup of

positive integers. Then x = ui1ui2 . . . uik , i1 < i2 < . . . < ik. Define ϕ : T → N

by ϕ(x) = 2i1 + 2i2 + . . .+ 2ik . Then it is easily seen that ϕ is an oid-map.

Definition 3.2. Suppose that there is on T a multiplication m : T ×T → T

which makes (T,m) a commutative semigroup, and which has the property that

the identity map from an oid T onto (T,m) is an oid map. Then we say (T,m)

is a commutative oid-semigroup “at infinity”.

Suppose T ba a commutative oid-map, and f ∈ C(T ), s ∈ T . The left

(right) translate lsf(rsf) of f by s is defined by lsf(t) = f(st) (rsf(t) = f(ts))

∀ t ∈ T . A subspace X of C(T ) is called left (right) translation invariant if

lsf ∈ X , (rsf ∈ X), ∀ f ∈ X , s ∈ T . As T is a commutative, it follows

that lsf = rsf for all s ∈ T . Left (right) translation invariant subspace are

discussed in [1].

We recall that a function f ∈ C(T ) is said to be almost periodic if the set

{rsf, s ∈ T} of right translation of f is relatively norm compact in C(T ) [2].

The set of all almost periodic functions on T is denoted by AP(T ).

Lemma 3.3. Let T be a commutative oid-semigroup and let f ∈ AP(T ).

Then Lνf ∈ n− cl{rsf, s ∈ T} for all ν ∈ βT .

Proof. By definition when T is a semigroup, Lνf(t) = lim
α
f(txα) where xα → ν

in βT and t ∈ T . Since f(txα) = rxαf(t) and (rxαf) is a net in {rsf, s ∈ T}

which is relatively norm compact in C(T ), then there exists a subnet (xαβ
) of
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(xα) and g ∈ C(T ) such that ‖rxαβ
f − g‖ → 0, i.e., |rxαβ

f(t) − g(t)| → 0 for

all t ∈ T . It follows that

Lνf(t) = lim
α
rxαf(t) = lim

β
rxαβ

f(t) = g(t)

for all t ∈ T . Thus Lνf = g ∈ n− cl{rsf, s ∈ T}, as required.

The next theorem get us the eqivalent condition for AP(T ) when T is

oid-semigroup.

Theorem 3.4. Let T and βT be semigroups and f ∈ C(T ). Then f ∈ AP(T )

if and only if (µ, ν) → fβ(µν) : βT × βT → C is jointly continuous.

Proof. Necessity: Suppose f ∈ AP(T ), let (µα), (να) be nets in βT with

µα → µ and να → ν in βT . Then for each α, Lναf ∈ n−cl{rsf : s ∈ T}. Since

n−cl{rsf : s ∈ T} is norm compact in C(T ), it follows that there exists a sub-

net (ναδ
) of (να) and g ∈ C(T ) such that ‖Lναδ

f−g‖ → 0. Now by a similar ar-

gument, we have that fβ(µανα) → fβ(µν) i.e., (µ, ν) → fβ(µν) : βT×βT → C

is jointly continuous, as desired.

Sufficiency: Suppose f ∈ C(T ) and ϕ : (µ, ν) → fβ(µν) : βT × βT → C is

jointly continuous. Then ϕ(0, T ) ⊆ ϕ(0, βT ), and for all µ ∈ βT , t ∈ T we

have

ϕ(µ, t) = fβ(µt) = fβ(tµ) = (ltf)
β(µ).

Therefore ϕ(0, T ) = {ϕ(0, t) : t ∈ T} = {(ltf)
β : t ∈ T}. Now it is easy

to check that the function ϕ satisfies all suitable conditions. It follows that

ν → ϕ(0, ν) : βT → C(βT ) is norm continuous. This proves ϕ(0, βT ) is norm

compact in C(βT ), and therefore n − clϕ(0, T ) is norm compact in C(βT ).

Since C(T ) and C(βT ) are isometrically isomorphic Banach spaces and T is a

commutative semigroup, it follows that n − cl{rtf : t ∈ T} is norm compact

in C(T ). Thus f ∈ AP(T ) and the result now follows.

The next theorem is a key result in the theory of oid-semigroup T .
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Theorem 3.5. Let T be an oid-semigroup and f ∈ C(T ), t ∈ T . Then ltf

is jointly continuous on βT × T∞.

Proof. It is enough to show that (µ, ν) → (ltf)
β(µν) : βT × T∞ → C is

continuous. Since left continuity holds at each point of T by definition 3.2,

then map µ → tµ is continuous from βT into βT . Therefore the composite

map (µ, ν) → (tµ, ν) → fβ(tµν) = (ltf)
β(µν) is continuous from βT × T∞ to

C.

Remark 3.6. Let T be a commutative oid-semigroup (Definition 3.2). Then

the product µν = µ ◦ Lν can be defined whenever µ, ν ∈ βT . The product

µν ∈ βT and the formula µν = µ ◦ Lν is a binary operation on βT relative to

which βT is compact right topological semigroup and left continuity holds when

µ ∈ T . Moreover, tν = νt for t ∈ T , ν ∈ βT . Therefore βT contains T∞ as a

subsemigroup.

4 Universal semigroups “at infinity”

In this section we prove that associated with each commutative standard oid

T , there is a commutative semigroup, called the universal semigroup of the oid

T by starting with the countable subset U of the oid T and producing a unique

algebraic isomorphism between the universal semigroup of the oid and the free

abelian semigroup generated by U which has a universal mapping property

relative to U . We first give the definition of universal semigroup.

Definition 4.1. Let T be a commutative standard oid. Then a universal

semigroup of T is a pair (ϕ, kT ) such that kT is a commutative semigroup,

ϕ : T → kT is an oid-map (Definition 3.1) and if ψ : T → S is an oid-map

of T into a commutative semigroup S, then there exists a unique algebraic
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homomorphism ψk : kT → S such that the diagram

T

ψ
  
B

B

B

B

B

B

B

B

ϕ
// kT

ψk

��

S

commutes.

Write Fui = {1, ui, u
2
i , u

3
i , . . .} for each ui ∈ U . Then

∞⊕

i=1

Fui\{(1, 1, . . . , 1, . . .)}

is called the free abelian semigroup generated by U and will be denoted by

FU . We usually write

(un1

1 , u
n2

2 , . . . , u
nr

r , . . .) = uα1

i1
uα2

i2
. . . uαk

ik

where i1 < i2 < . . . < ik and α1, α2, . . . , αk 6= 0, α1 = ni1 , . . . , αk = nik .

Lemma 4.2. Let T be a standard oid, define θ : T → FU by

θ(ui1ui2 . . . uik) = ui1ui2 . . . uik

where i1 < i2 < . . . < ik. Then θ is an injective oid-map.

Proof. Straightforward.

Lemma 4.3. Let S be any commutative semigroup. If ϕ0 : T → S is any

oid-map of an oid T into S than ϕ0 can be extended in one and only one way

to a homomorphism ϕ of FU into S.

Proof. Define ϕ : FU → S by

ϕ(uα1

i1
uα2

i2
. . . uαk

ik
) = ϕ0(ui1)

α1ϕ0(ui2)
α2 . . . ϕ0(uik)

αk .

Since S is commutative, it is straightforward to prove that ϕ is a homomor-

phism. Now, let x = ui1ui2 . . . uik ∈ T , i1 < i2 < . . . < ik and let ϕ0 : T → S

be an oid-map. Then

ϕ0(x) = ϕ0(ui1ui2 . . . uik) = ϕ0(ui1)ϕ0(ui2) . . . ϕ0(uik) = ϕ(ui1ui2 . . . uik) = ϕ(x).
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Which implies that ϕ|T = ϕ0. Moreover, ϕ is unique, for if ψ : FU → S is to

have the required properties then

ψ(uα1

i1
uα2

i2
. . . uαk

ik
) = ψ(ui1)

α1ψ(ui2)
α2 . . . ψ(uik)

αk

= ϕ0(ui1)
α1ϕ0(ui2)

α2 . . . ϕ0(uik)
αk

= ϕ(uα1

i1
uα2

i2
. . . uαk

ik
)

and we have that ψ = ϕ, as desired.

This lemma shows that FU is a universal semigroup for T . We prove next

that every universal semigroup is isomorphic to FU .

Theorem 4.4. Let (ϕ, kT ) be a universal semigroup of an oid T and let

FU be the free abelian semigroup on U . Then kT is algebraically isomorphic

to FU .

Proof. By lemma 4.2, θ : T → FU is an injective oid-map. Since (ϕ, kT ) is a

universal semigroup of the oid T and FU is commutative, there exists a unique

homomorphism ψ : kT → FU such that the diagram

T

θ
  
A

A

A

A

A

A

A

A

ϕ
// kT

ψ

��

FU

commutes.

Now ϕ : T → kT is an oid-map, kT is a commutative semigroup, by lemma

4.3 there exists a unique homomorphism ψ′ : FU → kT such that ψ′θ = ϕ. In

view of the commuting diagrams:

T

ϕ
  B

B

B

B

B

B

B

B

ϕ
// kT

id
��

kT

T

θ
  
@

@

@

@

@

@

@

@

θ
// FU

id
��

FU

and the uniqueness of ψ′ ◦ψ, we see that ψ′ ◦ψ = id and similarly ψ ◦ψ′ = id.

We conclude that ψ is an isomorphism and the result follows.
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Remark 4.5. Let T be a standard oid. Suppose in addition that T is a com-

mutative oid-semigroup so that if the oid product xy of two elements x, y ∈ T

is defined, then it is the same as the semigroup product. Since id : T → T is

an oid-map then the diagram

T

id
  B

B

B

B

B

B

B

B

ϕ
// kT

θ
��

T

commutes.

Clearly, θ is a surmorphism. We denote by R(θ) the relation

{(x, y) ∈ kT × kT : θ(x) = θ(y)}.

Then R(θ) is a congruence on kT . Moreover, kT
R(θ)

is a quotient semigroup

and so by the first isomorphism theorem ([3], chapter 1, Theorem 1.49), the

semigroup T is isomorphic to kT
R(θ)

.

Any time a topology is used on kT without explicitly being described, it is

assumed to be the discrete topology.
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