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Abstract
We provide several simple recursive formulae for the moment sequence of

infinite Bernoulli convolution. We relate moments of one infinite Bernoulli con-
volution with others having different but related parameters. We give examples
relating Euler numbers to the moments of infinite Bernoulli convolutions. One
of the examples provides moment interpretation of Pell numbers as well as new
identities satisfied by Pell and Lucas numbers.
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1 Introduction

The aim of this note is to add a few simple observations to the analysis of
the distribution of the so called fatigue symmetric walk (term appearing in
[12]). These observations are based on the reformulation of known results
scattered through the literature. We however pay more attention to the mo-
ment sequences and less to the properties of distributions that produce these
moment sequences. It seems that the main novelty of the paper lies in the
probabilistic interpretation of Pell and Lucas numbers and easy proofs of some
identities satisfied by these numbers. However in order to place these results
in the proper context we recall the definition and basic properties of infinite
Bernoulli convolutions. In deriving properties of these convolutions we recall
some known, important results.
The paper is organized as follows. After recalling the definition and basic

facts about the fatigue random walks we concentrate on the moment sequences
of infinite Bernoulli convolutions. We formulate a corollary of the results of
the paper expressed in terms of a moment sequence. This corollary formulated
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in terms of number sequences provides identities of Pell and Lucas numbers of
even order (Remark 8).

2 Infinite Bernoulli Convolutions

Let {Xn}n≥1 be the sequence of i.i.d. random variables such that P (X1 = 1)
= P (X1 = −1) = 1/2. Further let {cn}n≥1 be a sequence of reals such that∑

n≥1 c
2
n <∞. We define random variable:

S =
∑
n≥1

cnXn.

By Kolmogorov Three-Series theorem S exists and moreover it is square in-
tegrable. We have ES2 =

∑
n≥1 c

2
n. Obviously ES = 0. Let ϕ(t) denote

characteristic function of S. By the standard argument we have ϕ(t) =
E exp(it

∑
s≥1 cnXn) = E

∏
n≥1 exp(itcnXn) =

∏
n≥1(exp(itcn)/2+exp(−itcn)/2)

=
∏

n≥1 cos(tcn).
We will concentrate on the special form of the sequence cn, namely we will

assume that cn = λ−n for some λ > 1. The reason for this is simple. There are
practically no results in the literature for other than cn = λ−n sequences. The
problem of describing distributions appearing in ’fatigue random walk’is very
diffi cult although simply formulated.
It is known (see [13]) that for all λ, the distribution of S = S (λ) is con-

tinuous that is PS({x}) = 0 for all x ∈ R. Moreover it is also known (see
[16], [17]) that if for almost λ ∈ (1, 2] this distribution is absolutely continuous
and for almost all λ ∈ (1,

√
2] it has square integrable density. Garsia in [7,

Theorem 1.8] showed examples of such λ leading to an absolutely continuous
distribution. Namely such λ ∈ (1, 2) are the roots of monic polynomials P
with integer coeffi cients such that |P (0)| = 2 and λ

∏
|αi|>1 |αi| = 2, where

{αi} are the remaining roots of P .
There are known (see [4], [5]) countable many instances of λ ∈ (1, 2] where

this distribution is singular. We will denote by ϕλ the characteristic function
of S (λ) . Following [4] we know that the values λ such that ϕλ(t) does not tend
to zero as t → ∞ are the so called Pisot or PV- numbers. Recall that those
are sole roots of such monic irreducible polynomials P with integer coeffi cients
having the property that all other roots have absolute values less than 1.
Obviously we must then have P (0) = 1. For such λ′s the related distribution
is singular (by the Riemann—Lebesgue Lemma). Examples of such numbers are
the so called ’golden ratio’

(
1 +
√

5
)
/2 or the so called ’silver ratio’1 +

√
2.

Moreover following [14] one knows that PV numbers are the only numbers
λ ∈ (1, 2] for which ϕλ does not tend to zero. Of course singularity of the
distribution of S (λ) can occur for λ not being a PV number.
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For λ > 2 it is known that the distribution of S is singular [10].
To simplify notation we will write suppX, where X is a random variable

meaning suppPX , where PX denotes a distribution of X. Similarly X ∗ Y
denotes a random variable whose distribution is a convolution of distributions
of X and Y.
We have a simple Lemma.

Lemma 1 i) supp(S (λ)) ⊂
[
− 1
λ−1 ,

1
λ−1
]
.

In particular:
ia) if λ = 2 then S ∼ U([−1, 1]) and
ib) if λ = 3 then supp(S + 1/2) is equal to the Cantor set.
In general if λ is a positive integer then supp(S + 1/(λ− 1)) consist of all

numbers of the form
∑

j≥1 rjλ
−j where rj ∈ {0, 2}. Moreover the distribution

of (S(λ) + 1/(λ− 1)) is ’uniform’on this set.
ii) ∀k ≥ 1 :

ϕλ(λ
kt) = ϕλ(t)

k−1∏
j=0

cos
(
λjt
)
. (1)

iii) ∀k ≥ 1 : S (λ) ∼
∑k

i=1 λ
i−1Si(λ

k), where Si (τ) ( i = 1, . . . , k) are
i.i.d. random variables each having distribution S (τ) . Consequently ϕλ(t) =∏k

j=1 ϕλk
(
λj−1t

)
.

iv) Let us denote mn(λ) = ES(λ)n. Then ∀n ≥ 1 : m2n−1(λ) = 0 and

m2n(λ) =
1

λ2kn − 1

n−1∑
j=0

(
2n

2j

)
m2j(λ)W

(k)
2(n−j)(λ),

with m0 = 1, where W (1)
n = 1, W

(k)
n (λ) = dn

dtn
(
∏k

j=1 cosh(λj−1t))
∣∣∣
t=0

= 1
2k−1

∑1
i1=0,...,ik−1=0

(1 +
∑k

j=1(2ij − 1)λj)2n.
In particular we have:

m2n(λ) =
1

λ2n − 1

n−1∑
j=0

m2j(λ)

(
2n

2j

)
, (2)

m2n (λ) =
1

λ4n − 1

n−1∑
j=0

(
2n

2j

)
m2j(λ)

2(n−j)∑
l=0

(
2(n− j)

2l

)
λ2l. (3)

v) ∀k ≥ 1 : m2k(λ)= −1
λ2k−1

∑k−1
j=0

(
2k
2j

)
λ2jE2(k−j)m2j(λ), where Ek denotes

k−th Euler number.

Proof. i) First of all notice that 1
λ−1 =

∑
n≥1 1/λn, hence S + 1

λ−1 =∑
n≥1

1
λn

(Xn + 1). Now since P (Xn + 1 = 0) = P (Xn + 1 = 2) = 1/2 we
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see that supp(S + 1
λ−1) ⊂ [0, 2

λ−1 ]. Notice also that if λ = 2 then S + 1 =

2
∑

n≥1
1
2n
Yn, where P (Yn = 0) = P (Yn = 1) = 1/2. In other words (S + 1)/2

is a number chosen from [0, 1] with ’equal chances’that is (S+1)/2 has uniform
distribution on [0, 1].
When λ = 3 we see that S + 1/2 is a number that can be written with

the help of ’0’ and ’2’ in ternary expansion. In other words S + 1/2 is number
drawn from the Cantor set with equal chances. For λ an integer we argue in
the similar way.
ii) We have ϕS(λkt) =

∏
n≥1 cos(λkt 1

λn
) = ϕS (t)

∏k−1
j=0 cos

(
λjt
)
.

iii) Fix integer k. Notice that we have:

S (λ) =
∑
n≥1

λ−nXn =∑
j≥1

λ−kjXkj +
∑
j≥1

λ−kj+1Xkj−1 + . . .+
∑
j≥1

λ−kj+k−1Xkj−k+1 =

k∑
m=1

λm−1
∑
j≥1

(
λk
)−j

Xkj−m+1.

Now since by assumption all Xi are i.i.d. we deduce that Si(λ
k) are i.i.d.

random variables with distribution defined by ϕλk(t). Hence we have ϕλ(t) =∏k
j=1 ϕλk(λ

j−1t).
iv) First of all we notice that ϕS(t) is an even function hence all derivatives

of odd order at zero are equal to 0. Secondly let ψλ(t) denote the moment
generating function of S(λ). It is easy to notice that ψλ(s) = ϕS(λ)(−is). Let
us denote m2n (λ) = ψ

(2n)
λ (0). Basing on the elementary formula

cosh(α) cosh(β) =
1

2
(cosh(α + β) + cosh (α− β)),

we can easily obtain by induction the following identity:

k−1∏
j=0

cosh(λjt) =
1

2k−1

1∑
i1=0,...,ik−1=0

cosh(t(1 +
k∑
j=1

(2ij − 1)λj)).

Since (coshαt)(2n)
∣∣
t=0

= α2n, we have(
k−1∏
j=0

cosh(λjt)

)(2n)∣∣∣∣∣∣
t=0

=

1

2k−1

1∑
i1=0,...,ik−1=0

(
cosh

(
t

(
1 +

k∑
j=1

(2ij − 1)λj

)))(2n)∣∣∣∣∣∣
t=0

= W
(k)
2n (λ) .
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Now using Leibnitz formula for differentiation applied to (1) we get

f (2n)(λkt)λ2kn =

2n∑
j=0

(
2n

j

)
(

k−1∏
i=0

coshλit)(j)f (2n−j) (t) .

Setting t = 0 and using the fact that all derivatives of both f and cosh t of
odd order at zero are zeros we get the desired formula.
v) We use the result of [18] that states that for each N, the inverse of the

lower triangular matrix of degree N × N with (i, j) entry
(
2i
2j

)
is the lower

triangular matrix with (i, j)th entry equal to
(
2i
2j

)
E2(i−j).

Remark 1 Formula (2) is known in a slightly different form. It appeared in
[8], [6] and [1].

Remark 2 Notice that polynomials
{
W

(k)
n (λ)

}
k,n≥1

satisfy the following re-

cursive relationship for k > 1 :

W (k)
n (λ) =

n∑
j=0

(
2n

2j

)
λ2jW

(k−1)
j (λ) ,

with W (1)
n (λ) = 1. Hence its generating functions Θk(t, λ) satisfy the following

relationship
Θk(t, λ) = Θk−1(λt, λ) cosh t,

where we have have denoted: Θk(t, λ) =
∑

n≥0
t2n

(2n)!
W

(k)
n (λ).

Remark 3 Notice that the above mentioned lemma provides an example of two
singular distributions whose convolution is a uniform distribution. Namely we
have S(4) ∗ 2S(4) = S(2). Similarly we have S(2) = S (8) ∗ 2S(8) ∗ 4S(8) or
S(2) = S(2k)∗. . .∗2k−1S(2k). The first example was already noticed by Kersher
and Wintner in [10, equation 22a].

Remark 4 We can deduce even more from these examples, namely, following
the result of Kersher [9, p. 451], that characteristic functions ϕn(t) of S (n)
(where n is an integer > 2) do not tend to zero as t→∞. Thus since we have
ϕ4(t)ϕ4(2t) = sin t/t and ϕ8(t)ϕ8(2t)ϕ8(4t) = sin t/t we deduce that if tk →∞
is a sequence such that |ϕ4(tk)| > ε > 0 for suitable ε then ϕ4(2tk) → 0.
Similarly if tk → ∞ such that |ϕ8(tk)| > ε > 0 then ϕ8(2tk)ϕ8(4tk) → 0.
Similar observations can be made can be made in more general situation. It
is known from the papers of Erd̋os [4], [5] the situation that |ϕλ(tk)| > ε > 0
for some sequence tk → ∞ occurs when λ is a Pisot number (briefly PV-
number). On the other hand as it is known roots of Pisot numbers are not
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Pisot, hence using the above mentioned result of Salem that |ϕλ1/k(t)| → 0 as
t → ∞, where λ is some PV number and k > 1 any integer. But we have
ϕλ1/k(tn) =

∏k
j=1 ϕλ

(
λ(j−1)/ktn

)
→ 0, where tn → ∞ is such a sequence that

|ϕλ(tn)| > ε > 0.

Remark 5 One knows that if λ = q/p where p and q are relatively prime
integers and p > 1 then ϕλ(t) = O((log |t|)−γ) where γ = γ (p, q) > 0 as
t→∞ (see [9, equation (3)]). Besides we know that the distribution of S (λ)
is singular. Hence from our considerations it follows that if λ = (q/p)1/k for
some integer k, then ϕλ(t) = O((log |t|)−kγ). Is it also singular?

3 Moment sequences

To give a connection of certain moment sequences with some known integer
sequences let us remark that some moment sequences satisfy the following
identities:

Remark 6 i)

9nm2n(3) =
n∑
j=0

(
2n

2j

)
m2j(3),

81nm2n(3) =
n∑
j=0

(
2n

2j

)
m2j(3)(24(n−j)−1 + 22(n−j)−1).

ii)

5nm2n

(√
5
)

=

n∑
j=0

(
2n

2j

)
m2j(
√

5),

25nm2n

(√
5
)

=

n∑
j=0

(
2n

2j

)
m2j(
√

5)4n−jL2(n−j)/2,

where Ln denotes n−th Lucas number, defined below.

Proof. i) The first assertion is a direct application of (2) while in proving
the second one we use (3) and the fact that

∑n
j=0

(
2n
2j

)
9j = 4n(4n + 1)/2 which

is elementary to prove by generating function method and which is known
(see [21] seq. no. A026244). ii) Again the first statement follows (2) while
the second follows (3) and the fact that

∑n
j=0

(
2n
2j

)
5j = 4nTn(3/2), where Tn

denotes the Chebyshev polynomial of the first kind. (This identity is also
elementary to prove by generating function method and which is known (see
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[21] seq. no. A099140). Further we use the fact that Tn(3/2) = L2n/2. ([21],
seq. no. A005248).
We also have the following Lemma.

Lemma 2 ∀n ≥ 1, k ≥ 2 :

m2n(λ) =

n∑
i1,...,ik=0

(2n)!

(2i1)! . . . (2ik)!
λ2(i2+2i3...(k−1)ik)

k∏
j=1

m2ij(λ
k). (4)

In particular:

m2n(λ) =
n∑
j=0

(
2n

2j

)
λ2jm2j(λ

2)m2n−2j(λ
2), (5)

m2n(λ) =
∑
i,j=0
i+j≤n

(2n)!

(2i)!(2j)!(2(n− i− j))! × (6)

λ2iλ4jm2j(λ
3)m2i(λ

3)m2n−2i−2j(λ
3).

Proof. (4) follows directly Lemma 1, iii).
As a corollary we get the following four observations:

Corollary 3 We have:
i) ∀n ≥ 1 : 4n =

∑n
j=0

(
2n+1
2j+1

)
and 1 =

∑n
j=0

(
2n+1
2j+1

)
4jE2(n−j).

ii) S
(√

2
)
has density

g(x) =


√

2/4 if |x| ≤
√

2− 1,√
2(
√

2 + 1− |x|)/8 if
√

2− 1 ≤ |x| ≤
√

2 + 1,

0 if |x| > 1 +
√

2.

iii) Let us denote δn = (
√

2 + 1)n, then

m2n(
√

2) =
(
δ2n+2 − δ−12n+2

)
/(4
√

2(n+ 1)(2n+ 1)).

Proof. Since for λ = 2, the random variable S is distributed as U [−1, 1] and
its moments are equal to ES2n = 1

2n+1
. Now we use Lemma 1 iii) and iv).

ii) From the proof of Lemma 2 it follows that S
(√

2
)
∼ S (2) +

√
2S (2) .

Now keeping in mind that S (2) ∼ U(−1, 1) we deduce that g(x) =
√
2
8

∫ 1
−1 h(x−

t)dt, where h (x) =

{ √
2
4

if |x| ≤
√

2,
0 if otherwise.

. iii) By straightforward calcula-

tions we getm2n(
√

2) = 2
∫ √2+1
0

x2ng(x)dx =
√
2
2

∫ √2−1
0

x2ndx+
√
2
4

∫ √2+1√
2−1 x

2n(
√

2+
1− x)dx.
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Remark 7 Let us apply formulae: (5), (2), (3) and observe by direct calcu-
lation that 2

∑n
j=0

(
2n
2j

)
2j = (1 +

√
2)2n + (1 −

√
2)2n. We get the following

identities: ∀n ≥ 1 :

m2n(
√

2) =
n∑
j=0

(
2n

2j

)
2j

(2n− 2j + 1)(2j + 1)

=
1

2n − 1

n−1∑
j=0

(
2n

2j

)
m2j(
√

2)

=
1

4n − 1

n−1∑
j=0

(
2n

2j

)
m2j(
√

2)τ 2(n−j),

where τn = (1 + (−1)n)(δn + δ−1n )/4.

Now let us recall the definition of the so called Pell and Pell—Lucas numbers.
Using sequence δn the Pell numbers {Pn} and the Pell—Lucas numbers {Qn}
are defined

Pn = (δn + (−1)n+1δ−1n )/(2
√

2), (7)

Qn = δn + (−1)n δ−1n , (8)

where δn is defined in 3,iii).
Using these definitions we can rephrase the assertions of Corollary 3 and

Remark 7 adding to recently discovered ([15], [2]) new identities satisfied by the
Pell and the Pell-Lucas numbers and of course a probabilistic interpretation of
Pell numbers.

Remark 8 i) m2n(
√

2) = P2n+2
(2n+2)(2n+1)

, τ 2n = Q2n/2.

ii) ∀n ≥ 1 :

P2n+2 =

n∑
j=0

(
2n+ 2

2j + 1

)
2j, (9)

Q2n = 2

n∑
j=0

(
2n

2j

)
2j, (10)

2n−1P2n =
n∑
j=0

(
2n

2j

)
P2j, (11)

22n−1P2n =

n∑
j=0

(
2n

2j

)
P2jQ2(n−j), (12)

n∑
j=0

(
2n

2j

)
(1 +

√
2)2j = 2n−1 + 2n−2Q2n + 2n−1

√
2P2n. (13)
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Proof. Only the last statement requires justification. First we find that∑n
j=0

(
2n
2j

)
Q2j = 2n(1 +Q2n/2) using (10). Then we use (7), (8) and (11).
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