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Abstract

In this study, we define Jacobsthal and the Jacobsthal-Lucas sede-
nions and obtain a large variety of interesting identities for these num-
bers.
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1 Introduction

A great deal of attention is being paid to Jacobsthal and Jacobsthal-Lucas
numbers because their interesting properties. Jacobsthal and Jacobsthal-Lucas
numbers appear respectively as the integer sequences A001045 and A014551
from [8]. The classic Jacobsthal numbers in [5] are defined, for all nonnegative

integers, by

Jp = Jn1+2Jp—0, Jo=0, Jy =1 (1)
The classic Jacobsthal-Lucas numbers in [5] are defined, for all nonnegative
integers, by

Jn=1Jn-1+ 2Jn-2, Jo=2, 1 =1 (2>
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The well-known division algebras arise from the quaternion and octonion al-
gebras of dimension 4 and 8 (see [7]).

Szynal-Liana and Wloch [9] introduced the Jacobsthal quaternions and the
Jacobsthal-Lucas quaternions and obtained some of their properties. Cerda-
Morales [4] studied the third order Jacobsthal quaternions and the third order
Jacobsthal-Lucas quaternions. Cimen and Ipek [3] defined the Jacobsthal oc-
tonions and the Jacobsthal-Lucas octonions and presented some of their prop-
erties.

Sedenion algebra is a 16-dimensional CayleyDickson algebra and this algebra
is presented in [6].

In this study, we define Jacobsthal and the Jacobsthal-Lucas sedenions and
obtain a large variety of interesting properties for these numbers.

2 Main Results

Now, we define the nth Jacobsthal sedenion and Jacobsthal-Lucas sedenion
numbers, respectively, by the following recurrence relations:

15
SJn = Z Jn+iei7 (3)
s=0
and
15
Sn = Zjn+iei7 (4)
s=0

where J,, and j, are the n th Jacobsthal number and Jacobsthal-Lucas num-
ber, respectively. By setting ¢ = e;, where ¢ = 0,1,---,15, the following
multiplication table is given (see [1] and [2]).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 -0 3 -2 5 —4 -7 6 9 -8 11 10 -13 12 15 —14

2 2 -3 -0 1 6 7 —4 -5 10 11 -8 -9 -14 -15 12 13

3 3 2 -1 -0 7 —6 5 —4 1 -10 9 -8 —15 14 13 12

4 4 -5 —6 -7 -0 1 2 3 12 13 14 15 -8 -9 -10 -11

5 5 4 -7 6 -1 -0 -3 2 13 12 15 -14 9 -8 11 -10

6 6 7 4 -5 -2 3 -0 -1 14 -15 -12 13 10 -11 -8 9

7 7 —6 5 4 -3 -2 1 -0 15 14 -13 -12 11 10 -9 -8

8 8 -9 -10 -1 -12 -13 -14 =15 -0 1 2 3 4 5 6 7

9 9 8 11 10 -13 12 15 -14 -1 -0 -3 2 -5 4 7 —6

10 | 10 11 8 -9 -14 -15 12 13 -2 3 -0 -1 —6 -7 4 5
11 | 11 -10 9 8 —15 14 -13 12 -3 -2 1 -0 -7 6 -5 4
12 | 12 13 14 15 8 -9 -10 -11 -4 5 6 7 -0 -1 -2 -3
13 | 13 —12 15 —14 9 8 1 -10 =5 —4 7 —6 1 -0 3 -2
14 | 14 -15 —12 13 10 -—11 8 9 -6 -7 —4 5 2 -3 -0 1
15 | 15 14 =13 -12 11 10 -9 8 =T 6 -5 —4 3 2 -1 -0
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The conjugate of S.J,, and Sj, are defined by
S—Jn = Jneo — Jnr1€1 — Jnree2 — Jnyszes — ... — Jnpisens, (5)

and
SJn = Jn€0 = Jn41€1 = Jn+2€2 — Jn43€3... — Jnt15€15. (6)

The following identities are easy consequences from (3), (4), (5) and (6).
Theorem 2.1. Forn > 1, we have the following identities:
1. SJps1 = 8T, +25J,_1,
2. SJ, + ST, = 2J,e0,
8. SJ2+ S8J,.SJ, = 2J,.5 T,
4. STy + Sjn =25Tn41,
5. 38T, + 87, = 2 (eg + 2e1 + 2%e5 + ... + 2Vey;5),
6. Sjnt1+2Sjn—1=95],.

Now, we will state the Binet’s formulas for the Jacobsthal and Jacobsthal-
Lucas sedenions. Noting that J, = § (2" — (—1)"), above (3) becomes

= —A-— B
SJn = FA—Z-B. (7)

and then by using j, = 2" + (—1)", above (4) yields

Sjn = 2"A+(=1)"B, (8)
where A =317 2%, and B = Y17 (—1)%,. The formulas in (7) and (8) are
called as Binet’s forlmulas for the Jacobsthal and Jacobsthal-Lucas sedenions,
respectively.

Theorem 2.2. Forn > 1,r > 1, we have the following identities:

SJn-i—l + SJn =2" (60 + 261 + 2262 + 2363 + ...+ 215615) s (9)

1
Shhir = STy = 3 [27 (€0 + 261 + 2%e5 + ... + 2¢y5) (10)
+ 2 (_1>n (60 —e;1+ey—e3+...— 615)] s
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on—r 22r 1
STnir + ST, = % (eo +2e1 + 2% + ... + 215615) (11)

2 _1 n—r+1
+%(60—61+€2_63+64_"‘_615)’

2n+7’ _ 2n—7’
STpsr — STy = (f) (€0 + 2e1 + 2% + ... + 2%%€15) . (12)

Proof. If we consider (3) and (4), we have
STp1+ 8T = (w1 + o) eo + (Jnio + Jns1) €1 + oo + (Jns16 + Jntis) €1s.
With jui1 + Jn = 3 (Jua1 + Jn) = 3.2", we calculate the above sum as
STps1+SJ, = 2" (eo + 261 + ... +2%¢y5) .
If we again consider the definitions in equations (3)and (4), we get
STnit — STn = (Juss — ) €0+ (Jurs — Jnsr) €1 4+ oo+ (Jns1s — Jnsrs) €1s.

Since jni1 — jn = 3 (Jug1 — Jn) + 4 (=1 = 27 4 2(=1)"" | we can write
this as

1 n
SJn+1—SJn = g [2” (60 + 261 + ...+ 215615) + 2 (—].) (60 — €1 + €y — €3 + ... — 615)] .

Similarly, the identities (9) and (10) can be easily obtained by direct calcula-
tions.

Theorem 2.3. Forn > 1,7 > 1, we have the following identities:

Sjn+1 + Sjn =3.2" (60 + 261 + 2262 + 2363 + ...+ 215615) s (13)

Sjn+1 — Sjn = 2" (60 + 261 + 2262 + ...+ 215615) (14)
+2 (_1)n+1 (60 —e1+ey—e3+ ... — 615) s

Sinir + Sjn-r = 2" (27 +1) (€0 + 21 + 2’2 + ... +2%¢15)  (15)
—2 (_1)n—r (60 — €1 + €y — ... — 615) ,

Sjn—',—r - Sjn—r = (2n+7’ - 2n—r) (60 + 261 + 2262 + ...+ 215615) s (16)

Proof. The proof of the identities (13) — (16) of this theorem are similar to
the proofs of the identities of Theorem 3, respectively, and are omitted here.
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Theorem 2.4 (Cassini’s identities). For Jacobsthal sedenions and Jacobsthal-
Lucas sedenions the following identities are hold:

om (—1)" BA
SJpi1.8Jp_ — SJ* = % {AB + 7} : (17)
o (—-1)" [AB
SJn1.8Jpi1 — ST = (3 ) { 5 +BA], (18)
Sjns1.8Gn_1 — Sj2 =271 (=1)"T [6AB + 3BA], (19)
and
Sjn-1.8ns1 — Sj2 =271 (=1)"*' [3AB + 6BA], (20)

where A =31 2%, and B = 32 (—1)%,.

Proof. Using the Binet’s formula in equation (17), we get

2n+1 (_l)n-l-l 2n—1 (_l)n—l

J— 2: J— J—
SJpi1.STuy — SJ2 < —A : B)( —A : B)
1)

- (%HA— (_3) 3)2.

o (—1)" BA
SJni1.S T — SJ% = % {AB + 7} .

If necessary calculations are made, we obtain

In a similar way, using the Binet’s formula in equation (18), we obtain

2n—1 (_1)n—1 2n+1 (_1)n+1
_1. - SJ? = A— B A— B
St -5k = (Zan CUTg) (2 20 )
2n (=1 )\’
—| =—A-— B
(54-552)
o (—1)" [AB
. [2 +BA}

which is desired. Repeating same steps as in the proofs of (17) and (18) , the
proofs of (19) and (20) can be given.

Theorem 2.5 (Catalan’s identities). For every nonnegative integer numbers
n and r such that r < n, we get

2 (<1)"

STpsr STy — SJ? = 5

(-1)"=2")[AB(-1)"—BA(2)™"], (21)
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2" (-1)"
9

Sntr-Sin—y — Sjn=2"(=1)" [AB (2" (-1)" = 1) + BA (27" (-1)" = 1)],
(23)

SJppSTpir — SJ2 = (2" = (-1)") [AB(2)" = BA(-1)""], (22)

and

Sn—r-Sintr — Sjn =2"(=1)"[AB (27" (=1)" = 1) + BA (2" (-1)7" = 1)],
(24)
where A =310 2%, and B =Y (=1)%..

L

B 2 )n—l—r on-—r _(_1)n—r
STy STpy —SJ? = < g ; B)( A .—B
n n 2
_<2_ a- Y B)

3 3
2" (=1)"

= —5 (=) =2) [AB(-1)"— BA(2)™"].

Proof. Using the Binet’s formula in equation (21), we get
DA —1

In a similar way, using the Binet’s formula in equation (22), we obtain

on-—r (_l)n—r 2n+7“ (_l)n—l—r
- —SJ: = A-— B A-— B
S -5t = (Zrtan U7 g) (2, 1
2n (=1 )\’
—(Z=Aa- B
(74-5")
2" (=1)"

= —5 @ = (=1 [AB(2)™" — BA(-1)""].

The proofs of the identities (23) and (24) of this theorem are similar to the
proofs of the identities (21) and (22) of theorem, respectively, and are omitted
here.

Theorem 2.6 (d’Ocagne’s identity). Suppose that n is a nonnegative inte-
ger number and m any natural number. If m > n then:

ST oS Tnsr — STpir ST, = % 2" (—1)" AB — 2" (~1)" BA]  (25)

and
SjmSinet — Simi1Sin = 3[~2™ (~1)* AB + 2" (—1)™ BA]  (26)
where A =312 2%, and B = Y1 (—1)%,.
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Proof. Using the Binet’s formula in equation (25), we have

m —1)ym n+1 _1\n+1
SIS — STpirSy = (%A—( ?1} B) (23 AL 1?3 B)

(Za ) (2 )

If necessary calculations are made, we obtain

1
S-S Ins1 = Sir STy = < 27 (<) AB = 2" (—1)" BA].

In a similar way, using the Binet’s formula in equation (26), we obtain
SJm-SIns1 — Sime1SGn = 3[—2™ (=1)" AB + 2" (—1)" BA].

Theorem 2.7. For ordinary generating function of SJ, defined by (3), we
have

- SJ() + (SJl - SJ())LL’

1 —a2 — 222

F(x) (27)
Proof. Since generating function for Jacobsthal sedenions is
F(x) = SJoa® + STz + Shx® 4+ ... + STa™ + ...
we see conclude that (27) by F(z) — 2 F(z) — 22° F(x).

Theorem 2.8. The norms of nth Jacobsthal and Jacobsthal-Lucas sedenions

are
N(SJ,) = é [43.692 (32.767.0000 (2°") + (2") (—1)") + 16] (28)
and
N(Sj,) = 43.692 [32.767.0000 (2*") — (2") (—=1)"] 4+ 16 (29)
respectively.

Proof. The norm of nth Jacobsthal sedenion is

N(SJ,) = 87,8y = ST, Sdn = J2+ T2+ o+ T2 s

Making necessary calculations and using the equality J, = 3 (2" — (=1)"), we
obtain (28) and (29).
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