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Abstract

In this paper we continue developing the concept of a strongly m-
convex function recently introduced. We also establish some properties
and show Fejér and Hermite-Hadamard types inequalities for these func-
tions inspired basically on the concepts of m-convex and strongly convex
functions and their corresponding inequalities.
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1 Introduction

We begin by recalling the concept of an m-convex function given in [2, 3, 7, 15]
and some other references as well as the concept of a strongly convex function
with modulus ¢ > 0 introduced by Polyak in [13].

Definition 1.1 A function f : [0,b] — R is called m-convez, 0 < m < 1,
if for any x,y € [0,b] and t € [0, 1] we have

[tz +m(l—t)y) <if(x) +m(l—1)f(y). (1)

Remark 1.2 It is important to point out that the above definition is equiv-
alent to f(mtx + (1 —t)y) < mtf(x)+ (1 —1t)f(y), with x,y and t as before.

Definition 1.3 Let I C R be an interval and ¢ be a positive number. A
function f : I — R is said to be strongly convexr with modulus c if

fltz+ (1 =t)y) < tf(x) + (1= 1)f(y) —ct(l —t)(z —y)*, (2)
with x,y € I and t € [0,1].

Since strong convexity is a strengthening of the notion of convexity, some
properties of strongly convex functions are just “stronger versions” of known
properties of convex functions. Strongly convex functions have been used for
proving the convergence of a gradient type algorithm for minimizing a func-
tion. They play an important role in optimization theory and mathematical
economics ([1, 9, 10, 14]).

In [8], the two given definitions were combined to generate the concept of a
strongly m-convex function, let I C R, ¢ be a positive number and m € [0, 1].
As it is customary, sometimes either m = 0 or m = 1 is discarded.

Definition 1.4 (/8]) A function f : I — R is called strongly m-convex with
modulus ¢ > 0 if

fltz +m(L—t)y) < tf(2) +m(l =) f(y) — emt(l —t)(z —y)*,  (3)
with x,y € I and t € [0,1].

Notice that for m = 1 the definition of strongly convex function is recasted, also
any strongly m-convex function is, in particular, m-convex. Unless otherwise
is stated c always will be a positive number.

In the forthcoming sections we shall state and prove some inequalities for
these type of functions based upon the corresponding inequalities for m-convex
and strongly convex functions.
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2 Main Results

In this section we exhibit and prove inequalities similar to those for m-convex
functions, most of them are inspired in [2, 3, 4, 5, 11]. Let us start with a
result which, although easy, it will be used later.

Lemma 2.1 [f0 < a <b< +oo and if f:[0,400) — R is an integrable
function on |a, b, then the following equalities hold

1 1 b
/Of(ta+(1—t)b)dt:/0 f(tb+(1—t)a)dt:bia/ F(s)ds.

Proof. The proof is immediate if for the first equality we consider the change
of variable u = 1 — ¢, and for the second equality we consider the change of
variable s = tb+ (1 — t)a.

The following theorem improves the approximation of the average integral
given in [2] for any strongly m-convex function.

Theorem 2.2 Let f : [0,+00) — R be a strongly m-convez function, 0 <
m < 1, with modulus ¢; for 0 < a < b < +o00 and f € L'([a,b]) the following
inequality holds

b . a /abf(s>d8 = min{%G(a’ b) — gm(ma —b)” %G(b, @) = = (mb—a)? |

m

where G(a,b) = f(a) +mf (%) and G(b,a) = f(b) +mf (%)
Proof. By hypothesis
fltz +m(1 —t)y) < tf(z) +m(l = 1) f(y) — emt(l - t)(z —y)*,

b
for arbitrary x,y € [0,+00) and 0 < ¢ < 1. If we choose x = a and y = — the
m

above inequality becomes

m m

f (ta+m(1 4)%) < tf(a) +m(l - b)f (3) —emt(1—1) (a— 3)2,

which turns, after reducing appropriately, into

flta+ (1 —t)b) <tf(a)+m(l—1t)f <ﬁ) — Y1 —t)ma— b2 (4)

m m

a
In the same token, for z = b and y = —, we get
m

a

Fth+ (1= t)a) <tf(b) +m(1 —t)f (—) — S =t (mb—a)%.  (5)

m m
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By integrating (4) and (5) on [0, 1] and using Lemma 2.1 we get

b—a/f %{()+mf<%)]—%(ma—b)2,

at the same time

L[ s < L[+ ms (5)] — poatmd—

and conclusion follows.

The forthcoming result [2, Theorem 3] runs in the same way for a strongly
m-convex function with modulus ¢. We state it, but the proof is omitted for
obvious reasons.

b—a

Theorem 2.3 Let f : [0,+00) — R be a strongly m-convez function, 0 <
m < 1, with modulus c. If 0 < a <b < oo and f is differentiable on (0, 4+00),
then one has the inequality

f(mb) b—af (mb) <

m 2

< (mb—a)f(a) - (ma — b)f(b)
2(b—a) '

Theorem 2.4 Let f : [0,+00) — R be a strongly m-convez function, 0 <
m < 1, with modulus c. Then for 0 < a <b < +oo and f € L'([a,b])

f <a_|2_b> < Q(bl—a) [/ab [f(s) +mf (%)] ds] —ﬁ(ma—b)(mb—a) (6)
and
i [ mr (S]] <5 [r@ s mr (2) s (2) @

+m?f (i)} — M(ma —b)2

12m?2

1
Proof. For t = 3 and by taking s instead y in Definition 1.4,
m

T+y 1 Y c 9
<z 7 — )2
f( 2 )_Q[f(x)_l_mf(m)] 4m(mx 2 ®)
By taking x = ta + (1 — t)b and y = (1 — t)a + tb for any ¢ € [0, 1], then

r+y=a+b,

Yy b

= =(1-1 t—

m ( ) *

m:c—y:(m—irl)(a—b)t—l—mb—a,
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and

/0 (max — y)*dt = (m ¥ 1>3(b —9) + (ma — b)(mb — a).

Integration of (8) on [0, 1] with respect to ¢ is performed for the above values
and the following inequality comes out

1(57) < o [ oo () ]

[ (b~ a)?
4m 3

+ (ma — b)(mb — a)]

e {/ 565+ mf (2] ] = 1zoma—B)oub — )

so (6) is deduced. For the inequality (7) we notice that

<

fta (1= 08 < e+ mi1 =0 (1) = =D gma - o,

m

mf (=024 e2) <ma-of (2) +uies () - X ma o

m

next by adding up these two inequalities

flta+(1—t)b)+mf <(1 — t)%ﬂ%) < tfla)+m(l—1t)f (%)

+m(1—t)f (%) +m?tf (%)

A=t

By integrating the last inequality on [0, 1] and using Lemma 2.1,

ﬁ / [7(6) s (2)]as < ﬂf(a) Fmf (%) rmf (2)
+m2f< b )] - M(ma—b)?

12m?2

This completes the proof.

Theorem 2.5 If f : [0,+00) — R is a strongly m-convez function, 0 <
m < 1, with modulus ¢; 0 < a < b < +oo and f € L'([ma,b]), then

1 b 1 mb (m+1)

f(s)ds+ (s)ds < 5 me

[F(@)+10)] - 5 =0

b—ma /,, mb—a J,
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Proof. By hypothesis and using a similar result from [2],

fta+m(1 —1)b) < tf(a)+m(1—1t)f(b) —met(l —t)(a— b)?
f(mtb+ (1 —t)a) < (1 —t)f(a) +mtf(b) — met(1 —t)(a — b)?
fb+m(l —t)a) < tf(b)+m(l —1t)f(a) —met(l —t)(a — b)?
f(mta+ (1 —t)b) < (1 —1t)f(b) + mtf(a) —mct(1l —t)(a — b)*

Adding up the above four inequalities,
f(ta+m(1—t)b)+f (mtb+(1—t)a)+ f (tb+m(1—t)a)+ f (mta+(1—t)b)

< (m+1)(f(a)+ £(b)) — 4mct(1 —t)(a — b)*.
Performing integration (on [0, 1]) in both sides of above expression, using

1 mb

/fta+m(1—t it — /fmtb+(1—t) Jdt F(s)ds

1
b—ma

/Of(tb+m(1—t)a)dt:/0 Fmta+ (1 — t)b)dt = f()

(which are obtained by using Lemma 2.1 appropriately) and

4mc/0 H(1 = t)(a — b)2dt = 2?C(a—b)
it follows
mb m me
e [ st [ s < TV 1) 0] - a0

a

Next two results are similar to others for m-convex functions given in [16].
First we recall a lemma shown in [6, Lemma 1].

Lemma 2.6 Let f : I C R — R be a differentiable function on the interior
of I; a,b€ I, a<b. If f' € L'[a,b] then the following equality holds

(r—a)f(a)+(b—x)f(b) 1 [°
b—a _b—al‘ﬂ$%

(z —a)? (b— =)

:7:zfluyﬂfmwu4MMH-b

for all x € [a, b].

/ 1(1—t) F(to+(1—t)b)dt,

—a
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Theorem 2.7 Let f : I C Ry — R be a differentiable function on the
interior of I; a,b € I, a <b. For f" being integrable on [a,b] and |f’| strongly
m-convex function with modulus ¢, m € (0,1] fized; the following inequality
holds for x € [a, b],

(2—a) f(a) + (b—2) f(b) — / £(s)ds

()

|f' ()] +2m | f’ (ﬁ)‘ |f(z)| +2m
< (z—a)? . m/L| 4 (g )2 :
~Tam | (@~ @)mz — @)} + [z~ b)(ma b)f] |

Proof. By Lemma 2.6,

(2—a) f(a)+(b—2) f(b) / £(s)ds

< (1—a)? /0 (1=1)| ' (ta+(1—t)a)|dt+(z—b)? /0 (1—t)| f/(tz+(1—t)b)|dt. (9)

The strong m-convexity of |f’| allows us

|f (tz + (1 = t)a)| < i f'(x)] +m(l —1)

O REET—

f (%)‘ — #(mx —b)>.

Multiplying these two foregoing inequalities by 1 — ¢ and integrating on [0, 1]
grants us

|f(tz + (L= 1)b)| < t|f"(x)| +m(1 1)

| a=oirtas o= e < Glr@l+ 3 |7 (5)] - amtme =
and

! / 1 / mi o b ¢ 2
[a-oirt+a-onie < glr@i+ | ()| - o ma =07,

respectively. Therefore the right hand side of (9) becomes less than or equal

to
), el C)

6

7@+ 2m
(+—a) ;
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c
12m

[[(z — a)(mx — a)]* + [(x — b)(mz — b)]*] .

a
If we set x = in the foregoing theorem the above inequality becomes

310 [ S (52l o ()]
_0(59;2;)2 [((m—2)a+mb)*+ ((m—2)b+ma)?].

Theorem 2.8 Let f : I C Ry — R be a differentiable function on the
interior of I; a,b € I, a <b and m € (0,1]. For f' being integrable on [a, ]
and | f'|? strongly m-convex function with modulus ¢, the following inequality
holds for all x € [a, b]

b
(—a) f(a)+ () f(b) / £(s)ds

)

T (\f’(:c)l" rm

q C

() =)’

~ 5 (ma— b)z)%],

(2= a)? (1 @) +m

(2

IN
RS
—_
¥~
S
N——
bS]

q

1 1
where p > 1 and — + — = 1.
p q

Proof. We use Lemma 2.6 one more time and, as done in the foregoing
theorem, we bound

b
(z — a)f(a) + (b— 2)f (D) — / F(s)ds

by (9). Now we use Holder inequality and strong m-convexity of |f’|? to get

(2—a) f(a)+(b—2) £ (b) / £(s)ds

< (z—a) (/01(1 —t)pdt)p (/01 |/ (te + (1 — t)a)\th)q
+ (z — b)? (/01(1 - t)pdt)% (/01 |f'(tx + (1 — t)b)|th)%



On inequalities of Fejér and Hermite-Hadamard types 785

s Bim(mx—bf)%].

b
If we pick x = %, the corresponding inequality now is

Mb—a —/bfsds
(i) () () [ (5 o
()=l Gl

Theorem 2.9 Let f : I C Ry — R be a differentiable function on the
interior of I; a,b € I, a < b and m € (0,1] fixed. For |f'|? being strongly
m-convex function with modulus ¢ and f’ integrable on [a,b], © € [a,b] and
q > 1, we have

(=@ +0-2)50) - [ s
<(3) () [ (L2 e

+ (a:—b)2<w+m f (%)

Q=

C12m

+m

—mb)?)

- R(mx — b)2> ] .
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Proof. By Holder inequality,

/0(1—t)|f’(tx+(1—t)a)|dt:/0 (1—t)1_f11{(1—t)f11|f’(tx+(1—t)a)@dt

< [/01(1—@@4 o [/01(1 )| f (e + (1 —t)a)\thr

_ (%)1_% Uolu C it + (1 —t)a)\thr.

Now we use Lemma 2.6 and the strong m-convexity of | f’|? to obtain

b
(z — a)f(a) + (b — 2) £ (b) — / £(s)ds

<t or (3) 7 ([ oo oma - o2l ()]
Cﬂi;”?mx_af]ﬁ)?+u-wf(%)ké(AIW1—wu%ww
()] -] )
- () (;) [(x_a)z (L ] (2)
(el () ]

o . . a+b .
As we notice in previous results, if x = 5 then the foregoing theorem
looks like

+m(1 —t)?

q—ﬁ(mx . a)2)%+(x )2

f(a) + £0) b
——7¢—w—@—1fmw

<()6) () ()
() el ()

+2m
Next results are inspired in [12].

q
+2m

3§%«m—2m+mwﬁ;

G

L 8i((m b+ ma)2> ;] .

m




On inequalities of Fejér and Hermite-Hadamard types 787

Theorem 2.10 Suppose f,g : [a,b] — [0,+00), 0 < a < b < oo, are
strongly mq-convex and strongly ms-convex functions, with modulus ¢, and co
respectively; my, my € (0,1]. If f, g € L'([a,b]), then the following inequality is
true,

[ @@

<5 [0 rmg ()| g o emr ()] = 4 | b -
+;—Z(m2b — a)z} :

Proof. By hypothesis,

Ftb+ (1 —t)a) < tf(b) +mi(l—b)f (i) —meit(1 — 1) (b - i)2,

my

g(tb+ (1 —t)a) < tg(b) +ma(l —t)g <i) — maest(1— 1) (b- i>2

mo

for all t € [0, 1]. Since f, g are non-negative,

[f(tb+ (1 = t)a)]'[g(tb + (1 — t)a)]'~"
< [tf(b) +mi(1 —t)f (amq) — eymat(1 — ) (mib — a)z}t it (b)

1—t
a (&) 2
+ mo(1—1t)g (E) — m_gt(l —t)(mgb — a) :
(10)
We now use the Cauchy Inequality on the right hand side of (10), which states
that if a,3 > 0, « + 8 = 1, then az + By > 2%y’ for every positive real

numbers z and y and get

[f b+ (1 = t)a)][g(tb + (1 — t)a)]' ™

< e ma(1 =01 () = b1 = )0mb - 0] 41 - 0 tg(0)
+ma(1—t)g (m%) . ;—Zt(l — ) (1mab — a)2]
= 2f(b) + myt(1 —t)f <mil) - %ﬁa — )(m1b — a)? + t(1 — t)g(b)

+ ma(1— t)%g (m%) . ;—Zm — 2 (1mgh — a)?
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for all t € [0, 1]. Conclusion follows by performing integration of last inequality
with respect to ¢ on [0, 1] and using the change x = tb + (1 — t)a, that is,

[ 1 1= 00 lgteb + (1 - )

< 5 [f0mag ()45 o0t (-2)] -5 | mb -

+ g(mgb — a)ﬂ :
)

If we choose m; = my = 1 in Theorem 2.10, it turns into

c1+cCo

12

() +9(a)] + = [g(b) + £ (a)] (b—a)?.

6

Wl =

I v
@ @) e <

Theorem 2.11 Suppose that f,g : [0,0] — R, b > 0, are strongly m;-
convex and strongly ms-convex functions, with modulus ¢; and co respectively;

my,mg € (0,1]. If f,g € L*([a,b]), then

9(b) / (@ — a)f(x)do + m@ / b a) ()i

(b—a)? (b—a)
il
fo) o (ml) " _ca(mad — a)?
+ = a)2/a (x —a)g(x)dr+my = a)? /a (b —x)g(x)dx ab — a)?
b C1\m10 —a 2 b
X / (x —a)(b—z)f(x)dr — ﬁ / (x —a)(b—z)g(x)dx

<

L[ @t s 000+ () g0

1

—
#2250 )+ () () b — o mab o

mo myq meo 30m1m2

e () o ()]

Proof. As we know,

my

Ftb+ (1 —t)a) < tf(b) +mi(l—t)f (i) —meit(1 — t) (b . —)2 ,

g(th+ (1 — t)a) < tg(b) + ma(1 — t)g (i) — maest(1 — 1) (b - i)z.

mo mo
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Elementary properties of real numbers show that if p,q,7,s € R, p < ¢ and
r < s then ps + gr < pr + ¢s. Therefore

tg(b) +ma(1—1t)g <7§2) —maeat(l =) (b - mizﬂ
+g(tb+(1 —t)a) |tf(0)+mi (1 —)f <mil> etttz <b ) mil)z]

< ftb+(1 —t)a)g(th+(1 —t)a)+ {tf(b)+m1(1 —t)f (i) —mycrt(l —t)

X <b - mil)zl tg(b) +ma(l —t)g <an) — maat(1 — ) (b - m%ﬂ

by a simple use of the mentioned property. Then

ftb+ (1 —t)a)

L (th+(1—)a)g(b)+ma(1—t) f (tb+(1—t)a)g (i) — 24 (1—1)(mab — a)?

mo mo

X f(tb+(1—t)a)+tf(b)g(tb+(1—t)a)+m1(1—t)f(i) g(tb+(1—t)a)

my

—%t(l — t)(mib — a)’g(tb + (1 — t)a)

< F(th+(1— )a)g(th+ (1 — t)a) +£f (b)a(b) +mat(1 ~ t)f(b)g< ’ ) _ Gy

(1) mab = ) £0) it (100 () o)+ mima(1 =027 ) o )
_ mﬂftu — )2 (mab — a)2f (7;‘1) —;—1115%1 — #)(mb — a)?g(b) — mﬂ?:l
x (1 — t)2(m1b — a)%g (m%) + %tm — 1)2(myb — a)%(mab — a)?.

Conclusion shows up by integration with respect to ¢ on [0, 1] and by using the
change x = tb + (1 — t)a.

Corollary 2.12 If f, g are as in Theorem 2.11 and my = my = 1, then
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the above inequality turns into

o) [ gl [
ks [ af@is 2% [0 a@+ G

x/a(x—a)g(z)da?jt%/a(b—:v)g(z)da:—b_a/a(x—a)(b—x)f(x)dx

Cl

/ (@ — a)(b— 2)g(x)dx

/f z)dr + = Mab)—i— N(ab)—i— C’(ab)

_b—a 6

with

M(a,b) = f(a)g(a) + f(b)g(b), N(a,b) = f(a)g(b) + f(b)g(a),

and
C1C2

AL~ )t — 3 [ealb— @) (F()+ F(8) + er(b— ) (g(a) +9(8)]

Corollary 2.13 If hypotheses of Theorem 2.11 hold and f, g are increasing
functions, then

2 [ aswars [(0-ns@ils L - g

+ /ab(b — x)g(x)dx} S /ab(x —a)(b— ) f(x)dz

C(a,b) =

/ (x —a)(b—x)g(z)dz

<

b—a /a f(x)g(x)dx + %M(a, b) + éN(a, b) + éc(a, b).

with M(a,b), N(a,b) and C(a,b) as before.

Corollary 2.14 If we choose m; = ms =1 and g(x) = 1 in Theorem 2.11,
then

(b_la)g Uab(:c—a)f(sc)dx+/ab(b—x)f(x>dx] + f(“);f@ -

/<x—a><b—x>f< D)z~ o~ o)’

C1C2

<o [ @ = )+ S - a2 -
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Theorem 2.15 Suppose that f,q : [a,b] = [0,400), 0 < a < b < oo, are
strongly mq-convex and strongly ms-convex functions, with modulus ¢, and co
respectively; my,ms € (0,1]. If f,g € L'([a,b]) and p > 1, then the next
inequality holds

bia/a [f(@+9($)+k(x—a)(b_x)]pdx
op—1

, a a\?
< 2 (o + g+ s () +mag (2],
where k = a (mlb_a)szﬁ <m2b—a)2
Comy b—a me \ b—a )

Proof. We begin by recalling that if r, s are non-negative real numbers and
p > 1, then (r+s)? < 2P~}(r? 4+ sP); on the other hand we know by hypothesis,

a

Ftb+ (1 —t)a) + micrt(l — ) (b - 1)2 <tF(B) +ma(l— ) f <—) ,

my my

g(tb+ (1 — t)a) + macot(1 — t) (b . i)2 < tg(b) + ma(1 — t)g (i) .

ma ma

Now by adding up the last two inequalities and using the above mentioned
property of nonnegative real numbers we come out with

Fltb+ (1 —t)a)+g(tb+ (1 — t)a)+micrt(l —t) <b - i) Fmgcst(1 — 1)

()]
<2t (170) + 90 + 1= 0 g () +mag (2]

The proof concludes by integrating the above inequality with respect to ¢t on
[0,1] and by using the change x = tb + (1 — t)a.

p

Corollary 2.16 Under the assumptions of Theorem 2.15 withmy; = mqg = 1
andp — 1,

b—a c1 + Co

5 (@) + f(0) +g(a) +9(b) — —

b
[ 1@+ g()ds < a2
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