On inequalities among some cardinal invariants

Joanna Jureczko
Cardinal Stefan Wyszynski University
Faculty of Mathematics and Natural Sciences, College of Sciences
Dewajtis Street, No. 5
01-815 Warsaw, Poland
Email address: j.jureczko@uksw.edu.pl

Abstract

The strong sequences method was introduced by B. A. Efimov, as a useful method for proving famous theorems in dyadic spaces: Marczewski theorem on cellularity, Shanin theorem on a calibre and EseninVolpin theorem. In this paper there will be considered strong sequences on a set with arbitrary relation as generalization of a partially ordered set. In this paper there will be introduced a new cardinal invariant s length of the strong sequence and investigated relations among s and other well known invariants like: saturation, boundeness, density, calibre.

Mathematics Subject Classification: 04A20, 05A18, 54A25
Keywords: strong sequences, calibres, precalibres, saturation, density, boundeness, partially ordered set, relation

1 Introduction

The strong sequences method was introduced by B. A. Efimov, as a useful method for proving famous theorems in dyadic spaces: Marczewski theorem on cellularity, Shanin theorem on a calibre and Esenin-Volpin theorem. Let us remind his main results.

Let T be an infinite set. Denote the Cantor cube by

$$
D^{T}=\{p: p: T \rightarrow\{0,1\}\} .
$$

For $s \subset T, i: s \rightarrow\{0,1\}$ it will be used the following notation

$$
H_{s}^{i}=\left\{p \in D^{T}: p \mid s=i\right\} .
$$

Efimov defined strong sequences in the subbase $\left\{H_{\{\alpha\}}^{i}: \alpha \in T\right\}$ of the Cantor cube as a sequence of so called connected pairs.

A pair $\left(H_{s}^{i}, H_{v}^{i}\right)$ where $\operatorname{card}(s)<\omega$ will be called the connected pair if $H_{s}^{i} \cap H_{v}^{i} \neq \emptyset$

A sequence $\left(H_{s_{\alpha}}^{i_{\alpha}}, H_{v_{\alpha}}^{i_{\alpha}}\right)$ consisting of connected pairs is called a strong sequence if $H_{s_{\alpha}}^{i_{\alpha}} \cap H_{v_{\beta}}^{i_{\beta}}=\emptyset$ whenever $\alpha>\beta$.
and he proved the following
Theorem 1.1 (Efimov) [3] Let κ be a regular, uncountable cardinal number. In the space D^{T} there is not a strong sequence

$$
\left(\left\{H_{\{\alpha\}}^{i}: \alpha \in v_{\xi}\right\},\left\{H_{\{\beta\}}^{i}: \beta \in w_{\xi}\right\}\right) ; \quad \xi<\kappa
$$

such that $\left|w_{\xi}\right|<\kappa$ and $\left|v_{\xi}\right|<\omega$ for each $\xi<\kappa$.
In paper [12] this method was introduced as follows:
Let X be a set, and $B \subset P(X)$ be a family of non-empty subsets of X closed with respect to the finite intersections. Let S be a finite subfamily contained B. A pair (S, H), where $H \subseteq B$, will be called connected if $S \cup H$ is centered. A sequence $\left(S_{\phi}, H_{\phi}\right) ; \phi<\alpha$ consisting of connected pairs is called a strong sequence if $S_{\lambda} \cup H_{\phi}$ is not centered whenever $\lambda>\phi$
and was proved the following
Theorem 1.2 ([12]) If for $B \subset P(X)$ there exists a strong sequence $\left(S_{\phi}, H_{\phi}\right) ; \phi<$ $\left(\kappa^{\lambda}\right)^{+}$such that $\left|H_{\phi}\right| \leq \kappa$ for each $\phi<\left(\kappa^{\lambda}\right)^{+}$then the family B contains a subfamily of cardinality λ^{+}consisting of pairwise disjoint sets.

In papers [11] and [12] Turzański investigated implications of this method with well known theorems (i. e. Kurepa theorem [6], Marczewski theorem [7] on cellurality of dyadic spaces, Shanin theorem [10] on a calibre of dyadic spaces, Erdös-Rado theorem and the like.

2 Notation and terminology

In this paper the following notation is used. For given X denote its cardinality by $|X|$. If κ is a cardinal then $[X]^{\kappa}=\{A \subset X:|A|=\kappa\}$. The smallest cardinal number greater than κ is its successor κ^{+}. Infinite ordinals are usually denoted by Greek letters. Let us remind that an ordinal number α is the set of all smaller ordinals $\alpha=\{\beta: \beta<\alpha\}$ and we sometimes identify α with the
ordered set (α, \leq), defined on α by a natural order. The remaining notations are standard. We will assume AC where will be required.

Let (X, r) be a set with relation r . Let $a, b \in X$. (We sometimes will write X instead of (X, r) in situations when it the relation is obvious).

We say that elements a and b are comparable if $(a, b) \in r$ or $(b, a) \in r$.
We say that elements a and b are compatible if there exists c such that

$$
(a, c) \in r \text { and }(b, c) \in r .
$$

(We say then, that a, b have a bound).
We say that $\mathcal{L} \subset X$ is a chain if any $a, b \in \mathcal{L}$ are comparable.
We say that a chain $\mathcal{L} \subset X$ is a maximal chain iff for all $x \in X \backslash \mathcal{L}$ there is $(x, a) \notin r$ and $(a, x) \notin r$ for all $a \in \mathcal{L}$.

We say that a set $\mathcal{A} \subset X$ is an antichain if any two distinct elements $a, b \in \mathcal{A}$ are incomparable.

We say that an antichain $\mathcal{A} \subset X$ is a maximal antichain iff each $x \in X \backslash \mathcal{A}$ is comparable with some $a \in \mathcal{A}$.

If each of two elements in a set $A \subset X$ are compatible, then A is a directed set. A set A is κ-directed if every subset of A of cardinality less than κ has a bound, i.e. for each $B \subset A$ with $|B|<\kappa$ there exists $a \in A$ such that $(b, a) \in r$ for all $b \in B$.

Now the following definition of strong sequences will be introduced (compare [11])

Definition 2.1 Let (X, r) be a set with relation r.
A sequence $\left(S_{\phi}, H_{\phi}\right) ; \phi<\alpha$ where $S_{\phi}, H_{\phi} \subset X$ and S_{ϕ} is finite is called a strong sequence if
$1^{o} S_{\phi} \cup H_{\phi}$ is ω-directed
$2^{o} S_{\beta} \cup H_{\phi}$ is not ω-directed for $\beta>\phi$.
Let us consider the following notation:
$\hat{s}(X)=\sup \{\kappa$: there exists a strong sequence on X of the length $\kappa\}$.
Let us consider the following definitions of a calibre and a precalibre.
Definition 2.2 A cardinal κ is a calibre for X if κ is infinite and every set $A \in[X]^{\kappa}$ has a chain of length κ.

Definition 2.3 A cardinal κ is a precalibre for X if κ is infinite and every set $A \in[X]^{\kappa}$ has an ω-directed subset of cardinality κ.

Comparing two above definitions and knowing that each chain is an ω directed set we can conclude that each calibre is a precalibre. Let us notice that the inverse is not true.

Sierpiński poset (see [9], [8]) is an example of a uncountable poset with no uncountable chains nor uncountable antichains. Let us remind it.

Example 2.4 Let $P=(\boldsymbol{R}, r)$. Let \leq be the natural ordering on \boldsymbol{R} and let \geq be inverse order \leq^{*}. Let \geq_{w} be any well order on \boldsymbol{R}. For arbitrary $x, y \in \boldsymbol{R}$ let set

$$
(x, y) \in r \Leftrightarrow x \geq y \text { and } x \geq_{w} y
$$

As \boldsymbol{R} does not contain a copy of ω_{1} nor ω_{1}^{*} there are no uncountable chains nor uncountable antichains. Let us observe that P is an ω - directed set. Let us choose arbitrary $x, y \in \boldsymbol{R}$ such that $x \geq_{w} y$. Then there are less than $2^{\aleph_{0}}$ many points for which x is their bound. Then there exists $z \in \boldsymbol{R}$ which is a bound of x and y.

3 Main results

Let us start with the theorem which will be crucial for our later investigation.

Theorem 3.1 Let (X, r) be a set with relation r. Then each regular cardinal number $\kappa>\hat{s}(X)$ is a calibre for X.

Proof Let us suppose that κ is not a calibre for X. It means that there exists $A \in[X]^{\kappa}$ of cardinality κ in which each chain has cardinality less than κ.

Let $a_{0} \in A$ be an arbitrary element and $A_{0} \subset A$ be a maximal chain (with respect to relation r) such that $a_{0} \in A_{0}$. Obviously $\left|A_{0}\right|<\kappa$. Let $\left(\left\{a_{0}\right\}, A_{0}\right)$ be the first pair of a strong sequence.

Let $a_{1} \in A \backslash A_{0}$ be an arbitrary element and $A_{1} \subset A \backslash A_{0}$ be a maximal chain (with respect to relation r) such that $a_{1} \in A_{1}$. Obviously $a_{1} \notin A_{0}$ because A_{0} is a maximal chain. Let $\left(\left\{a_{1}\right\}, A_{1}\right)$ is the second pair of the strong sequence.

Let us suppose that the strong sequence $\left\{\left(\left\{a_{\beta}\right\}, A_{\beta}\right): \beta<\alpha\right\}$, where $a_{\beta} \in$ $A \backslash \cup_{\gamma<\beta} A_{\gamma}$ and $A_{\beta} \subset \backslash \bigcup_{\gamma<\beta} A_{\gamma}$ is a maximal chain (with respect to relation $r)$ such that $a_{\beta} \in A_{\beta}, \beta<\alpha$ has been defined.

Obviously $A \backslash \bigcup_{\beta<\alpha} A_{\beta}$ is not empty because $\left|A_{\beta}\right|<\kappa$ for all $\beta<\alpha$ and $\left|\cup_{\gamma<\beta} A_{\beta}\right|<\kappa$ (because κ is regular). Hence we can choose an arbitrary element $a_{\alpha} \in A \backslash \bigcup_{\beta<\alpha} A_{\beta}$ and a maximal chain $A_{\alpha} \subset A \backslash \cup_{\beta<\alpha} A_{\beta}$ (with respect to relation r) such that $a_{\alpha} \in A_{\alpha}$. Let $\left(a_{\alpha}, A_{\alpha}\right)$ be the next pair of the strong sequence.

According to the construction above we have obtained the strong sequence $\left\{\left(\left\{a_{\alpha}\right\}, A_{\alpha}\right): \alpha<\kappa\right\}$ of the length greater than $\hat{s}(X)$. Contradiction.

Comparing theorem 3.1 and observation before it we immediately obtain that

Corollary 3.2 Let (X, r) be a set with relation r. If a regular cardinal number κ is not a precalibre for X, then there exists a strong sequence of length κ.

Proof Let us notice that if κ is not a precalibre, then it is also not a calibre. Our claim immediately follows from proof of theorem 3.1.

In order to obtain some important results let us rewrite definitions of density and boundeness.

A subset $M \subset X$ is dense on X if for each $x \in X$ there exists $y \in M$ with $(x, y) \in r$.

We define density $d(X)$ as follows:

$$
d(X)=\min \{|M|: M \text { is dense in } X\} .
$$

A subset $M \subset X$ is unbounded on X if there exists no $x \in X$ such that $(y, x) \in r$ for each $y \in M$.

We define boundeness $b d(X)$ as follows:

$$
b d(X)=\min \{|M|: M \text { is an unbounded chain in } X\} .
$$

Theorem 3.3 Let (X, r) be a set with transitive relation r and $d(X)=\kappa$, where κ is a calibre for X. Then X contains an unbounded chain of length κ.

Proof Let $M=\left\{x_{\alpha}: \alpha<\kappa\right\}$ be a dense set on X. Let $A \subset M$ be a maximal chain. It has length κ. Let us suppose that A has a bound. It means that there exists $p \in A$ such that $(x, p) \in r$ for all $x \in A$. But there exists $x_{\xi} \in M$ such that $\left(p, x_{\xi}\right) \in r$ because M is dense in X. Contradiction.

Corollary 3.4 Let (X, r) be a set with transitive relation r with regular density κ and $\kappa>\hat{s}(X)$. Then X contains an unbounded chain of length κ. In other words, if $d(X)>\hat{s}(X)$, then $d(X)=b d(X)>\hat{s}(X)$.

Proof Applying theorem 3.1 and theorem 3.3 we immediately obtain our claim.

Now we will investigate connections between length of strong sequences and length of antichains.

The minimal cardinal κ such that every antichain on X has length less than κ is a saturation of X.
We will use $\operatorname{sat}(X)$ to signify the saturation of X.
Let us prove the following theorem (compare [11]).
Theorem 3.5 If for a set with relation (X, r) there exists a strong sequence $\left(S_{\alpha}, H_{\alpha}\right) ; \alpha<\left(\kappa^{\lambda}\right)^{+}$such that $\left|H_{\alpha}\right| \leq \kappa^{\lambda}$ for each $\alpha<\left(\kappa^{\lambda}\right)^{+}$, then there exists a strong sequence $\left(S_{\alpha}, T_{\alpha}\right) ; \alpha<(\lambda)^{+}$such that $\left|T_{\alpha}\right|<\omega$ for each $\alpha<(\lambda)^{+}$,

Proof Let us take $H_{0} \subset X$. Let us notice that if $\alpha>0$ then the set $S_{\alpha} \cup H_{0}$ is not ω-directed. It means that for each $\alpha>0$ there exists $T \in H_{0}$ such that $S_{\alpha} \cup T$ is not ω-directed. Let $B_{0}=\left(\kappa^{\lambda}\right)^{+} \backslash\{0\}$

Let us consider a function

$$
f_{0}: B_{0} \rightarrow\left[H_{0}\right]^{<\omega}
$$

such that $f_{0}(\alpha) \in\left\{T \in\left[H_{0}\right]^{<\omega}: S_{\alpha} \cup T\right.$ is not ω - directed $\}$ for all $\alpha \in B_{0}$. Since $\left|H_{0}\right| \leq \kappa^{\lambda}$, hence the function f_{0} determines a partition of B_{0} into at most κ^{λ} elements. But $\left(\kappa^{\lambda}\right)^{+}$is regular, hence at least one element of the partition has cardinality $\left(\kappa^{\lambda}\right)^{+}$. Let

$$
P_{0}=\left\{A_{0}^{\xi} \subset B_{0}:\left|A_{0}^{\xi}\right|=\left(\kappa^{\lambda}\right)^{+}, f_{0} \mid A_{0}^{\xi}=\text { const for } \xi \leq \kappa^{\lambda}\right\} .
$$

P_{0} has the following properties

1) P_{0} contains only pairwise disjoint sets
2) $\left|P_{0}\right| \leq \kappa^{\lambda}$
3) $\left(\left(\kappa^{\lambda}\right)^{+} \backslash \cup P_{0}\right)<\left(\kappa^{\lambda}\right)^{+}$.

For any $A_{0}^{\xi} \in P_{0}$ let $\left(S_{0}, f_{0}\left(A_{0}^{\xi}\right)\right)$ be the first pair of strong sequences.
Let $\alpha_{0}(\xi)=\inf A_{0}^{\xi}$ for $\xi<\kappa^{\lambda}$. For each $\alpha>\alpha_{0}(\xi)$ the sets $S_{\alpha} \cup H_{\alpha_{0}(\xi)}$ are not ω-directed. It means that for each $\alpha>\alpha_{0}(\xi)$ there exists $T \in\left[H_{\alpha_{0}(\xi)}\right]^{<\omega}$ such that $S_{\alpha} \cup T$ is not ω-directed. Let $B_{\alpha_{0}(\xi)}=A_{0}^{\xi} \cap\left\{\alpha<\left(\kappa^{\lambda}\right)^{+}: \alpha>\alpha_{0}(\xi)\right\}$.

Let us consider functions

$$
f_{\alpha_{0}(\xi)}: B_{\alpha_{0}(\xi)} \rightarrow\left[H_{\alpha_{0}(\xi)}\right]^{<\omega}
$$

such that $f_{\alpha_{0}(\xi)}(\alpha) \in\left\{T \in\left[H_{\alpha_{0}(\xi)}\right]^{<\omega}: S_{\alpha} \cup T\right.$ are not ω - directed $\}$ for $\alpha \in$ $B_{\alpha_{0}(\xi)}$. Because each function $f_{\alpha_{0}(\xi)}$ determines a partition of $B_{\alpha_{0}(\xi)}$ into at most κ^{λ} elements, hence we can consider a family

$$
P_{\alpha_{0}(\xi)}=\left\{A_{\alpha_{0}(\xi)}^{\xi} \in B_{\alpha_{0}(\xi)}:\left|A_{\alpha_{0}(\xi)}^{\xi}\right|=\left(\kappa^{\lambda}\right)^{+}, f_{\alpha_{0}(\xi)} \mid A_{\alpha_{0}(\xi)}^{\xi}=\text { const for } \xi \leq \kappa^{\lambda}\right\}
$$

of the following properties

1) $P_{\alpha_{0}(\xi)}$ contains only pairwise disjoint sets
2) $\left|P_{\alpha_{0}(\xi)}\right| \leq \kappa^{\lambda}$
3) $\left(\left(\kappa^{\lambda}\right)^{+} \backslash \cup P_{\alpha_{0}(\xi)}\right)<\left(\kappa^{\lambda}\right)^{+}$.

For any $A_{\alpha_{0}(\xi)}^{\xi} \in P_{\alpha_{0}(\xi)}$ let $\left(S_{\alpha_{0}(\xi)}, f_{\alpha_{0}(\xi)}\left(A_{\alpha_{0}(\xi)}^{\xi}\right)\right)$ be the second pair of the strong sequences.

Let us suppose that the following objects have been defined for $\delta<\gamma<$ $\tau<\lambda^{+}$
sets $B_{\alpha_{\gamma}(\xi)}=A_{\alpha_{\delta}(\xi)}^{\xi} \cap\left\{\alpha<\left(\kappa^{\lambda}\right)^{+}: \alpha>\alpha_{\gamma}(\xi)\right\}$
functions

$$
f_{\alpha_{\gamma}(\xi)}: B_{\alpha_{\gamma}(\xi)} \rightarrow\left[H_{\alpha_{\gamma}(\xi)}\right]^{<\omega}
$$

such that $f_{\alpha_{\gamma}(\xi)}(\alpha) \in\left\{T \in\left[H_{\alpha_{\gamma}(\xi)}\right]^{<\omega}: S_{\alpha} \cup T\right.$ are not ω - directed $\}$ for $\alpha \in$ $B_{\alpha_{\gamma}(\xi)}$,
families

$$
P_{\alpha_{\gamma}(\xi)}=\left\{A_{\alpha_{\gamma}(\xi)}^{\xi} \in B_{\alpha_{\gamma}(\xi)}:\left|A_{\alpha_{\gamma}(\xi)}^{\xi}\right|=\left(\kappa^{\lambda}\right)^{+}, f_{\alpha_{\gamma}(\xi)} \mid A_{\alpha_{\gamma}(\xi)}^{\xi}=\text { const for } \xi \leq \kappa^{\lambda}\right\}
$$

of the following properties

1) $P_{\alpha_{\gamma}(\xi)}$ contains only pairwise disjoint sets
2) $\left|P_{\alpha_{\gamma}(\xi)}\right| \leq \kappa^{\lambda}$
3) $\left(\left(\kappa^{\lambda}\right)^{+} \backslash \cup P_{\alpha_{\gamma}(\xi)}\right)<\left(\kappa^{\lambda}\right)^{+}$,
the strong sequences

$$
\left\{\left(S_{\alpha_{\gamma}(\xi)}, f_{\alpha_{\gamma}(\xi)}\left(A_{\alpha_{\gamma}(\xi)}^{\xi}\right)\right): \alpha_{\gamma}(\xi)<\tau, \xi \leq \kappa^{\lambda}\right\} .
$$

Let $B_{\alpha_{\beta}(\xi)}=A_{\alpha_{\gamma}(\xi)}^{\xi} \cap\left\{\alpha<\left(\kappa^{\lambda}\right)^{+}: \alpha>\alpha_{\beta}(\xi)\right\}$. Let us consider a function

$$
f_{\alpha_{\beta}(\xi)}: B_{\alpha_{\beta}(\xi)} \rightarrow\left[H_{\alpha_{\beta}(\xi)}\right]^{<\omega}
$$

such that $f_{\alpha_{\beta}(\xi)}(\alpha) \in\left\{T \in\left[H_{\alpha_{\beta}(\xi)}\right]^{<\omega}: S_{\alpha} \cup T\right.$ are not ω - directed $\}$ for $\alpha \in$ $B_{\alpha_{\beta}(\xi)}$,
the families

$$
P_{\alpha_{\beta}(\xi)}=\left\{A_{\alpha_{\beta}(\xi)}^{\xi} \in B_{\alpha_{\beta}(\xi)}:\left|A_{\alpha_{\beta}(\xi)}^{\xi}\right|=\left(\kappa^{\lambda}\right)^{+}, f_{\alpha_{\beta}(\xi)} \mid A_{\alpha_{\beta}(\xi)}^{\xi}=\text { const for } \xi \leq \kappa^{\lambda}\right\}
$$

of the following properties

1) $P_{\alpha_{\beta}(\xi)}$ contains only pairwise disjoint sets
2) $\left|P_{\alpha_{\beta}(\xi)}\right| \leq \kappa^{\lambda}$
3) $\left(\left(\kappa^{\lambda}\right)^{+} \backslash \cup P_{\alpha_{\beta}(\xi)}\right)<\left(\kappa^{\lambda}\right)^{+}$.

For each set $A_{\alpha_{\beta}(\xi)}^{\xi} \in P_{\alpha_{\beta}(\xi)}$ let us consider

$$
\left\{\left(S_{\alpha_{\beta}(\xi)}, f_{\alpha_{\beta}(\xi)}\left(A_{\left.\alpha_{\beta(\xi)}\right)}^{\xi}\right)\right): \alpha_{\beta}(\xi)<\tau, \xi \leq \kappa^{\lambda}\right\}
$$

the next pair of the strong sequence.

Let us notice that some of defined sequences may be shorter than λ^{+}. In order to find the proper one on each step we can consider

$$
\eta_{\beta}=\sup \left\{\alpha_{\beta}: \alpha_{\beta}=\inf A_{\alpha_{\beta}(\xi)}^{\xi}, A_{\alpha_{\beta}(\xi)}^{\xi} \in P_{\alpha_{\beta}(\xi)}\right\}
$$

Such element exists because $\left|P_{\alpha_{\beta}(\xi)}\right| \leq \kappa^{\lambda}$. According to our choice it is obvious that the strong sequence $\left(S_{\eta_{\beta}}, f_{\eta_{\beta}}\left(A_{\eta_{\beta}}\right)\right)_{\eta_{\beta}<\lambda+}$ exists.

Corollary 3.6 If for a set (X, r) with relation r there exists a strong sequence $\left(S_{\alpha}, H_{\alpha}\right) ; \alpha<\left(\kappa^{\lambda}\right)^{+}$such that $\left|H_{\alpha}\right| \leq \kappa$ for each $\alpha<\left(\kappa^{\lambda}\right)^{+}$, then there exists A of cardinality greater than λ which consists of pairwise incomparable elements.

Proof Let $\left(S_{\alpha}, H_{\alpha}\right)_{\alpha<\left(\kappa^{\lambda}\right)+}$ be a strong sequence. According to theorem 3.5 there exists a strong sequence $\left(S_{\alpha}, T_{\alpha}\right)_{\alpha<\lambda+}$ such that $\left|T_{\alpha}\right|<\omega$. According to definition of a strong sequence for all $\alpha<\lambda^{+}$the set $S_{\alpha} \cup T_{\alpha}$ is ω-directed. For each $\alpha<\lambda^{+}$let us consider the sets

$$
A_{\alpha}=\left\{a \in X:(b, a) \in r \text { for all } b \in S_{\alpha} \cup T_{\alpha}\right\} .
$$

Now let us take all sequences of the form $\left(a_{\alpha}\right)_{\alpha<\lambda^{+}}$such that $a_{\alpha} \in A_{\alpha}, \alpha<\lambda^{+}$. According to definition of strong sequence at least one of such sequences contains only pairwise incomparable elements. The elements of such sequence form required set A.

As a corollary we obtain
Corollary 3.7 Let (X, r) be a set with relation. Let κ be a cardinal number. Then for each $A \subset X$ such that $|A| \geq\left(\kappa^{\text {sat }(X)}\right)^{+}$there exists an ω - directed set $B \subset A$ such that $|B|>\operatorname{sat}(X)$.

Proof Let $A \subset X$ be a set of required cardinality. Let us suppose that each ω - directed subset of A has cardinality not grater than $\operatorname{sat}(X)$.

Let us choose an arbitrary element $x_{0} \in A$. Let $B_{0} \subset A$ be a maximal ω directed set (with respect to relation r) such that $x_{0} \in B_{0}$. Let $\left(\left\{x_{0}\right\}, B_{0}\right)$ be the first pair of a strong sequence.

Let $x_{1} \in A \backslash B_{0}$ be an arbitrary element. Let $B_{1} \subset A \backslash B_{0}$ be a maximal ω - directed set such that $x_{1} \in B_{1}$. Let $\left(\left\{x_{1}\right\}, B_{1}\right)$ be the second pair of the strong sequence.

Let us suppose that the strong sequence $\left\{\left(\left\{x_{\beta}\right\}, B_{\beta}\right): \beta<\alpha\right\}$ where $x_{\beta} \in$ $A \backslash \bigcup_{\gamma<\beta} B_{\gamma}$ is an arbitrary element and $B_{\beta} \subset A \backslash \bigcup_{\gamma<\beta} B_{\gamma}$ is a maximal ω directed set such that $x_{\beta} \in B_{\beta}$.

According to our assumption $\left|B_{\beta}\right| \leq \operatorname{sat}(X)$ for $\beta<\alpha$, hence $\left|\bigcup_{\beta<\alpha} B_{\beta}\right| \leq$ $\operatorname{sat}(X)$. Hence there exists an element $x_{\alpha} \in A \backslash \bigcup_{\beta<\alpha} B_{\beta}$. Let $B_{\alpha} \subset A \backslash \bigcup_{\beta<\alpha} B_{\beta}$ be a maximal ω - directed set such that $x_{\alpha} \in B_{\alpha}$. Let ($\left\{x_{\alpha}\right\}, B_{\alpha}$) be the next pair of the strong sequence.

Applying previous theorem for $\lambda=\operatorname{sat}(X)$ we have obtained an antichain of cardinality greater than $\operatorname{sat}(X)$. Contradiction.

The next theorem is one of the main results of this paper.
Theorem 3.8 Let (X, r) be a set with relation. If sat (X) is regular then $\operatorname{sat}(X) \leq \hat{s}(X)$.

Proof Let us suppose not, i.e. $\operatorname{sat}(X)>\hat{s}(X)$. According to our assumption $\operatorname{sat}(X)$ is regular and according to theorem $3.1 \operatorname{sat}(X)$ is a calibre for X. Contradiction.

Applying corollary 3.4 and theorem 3.8 we almost immediately obtain the following corollary

Corollary 3.9 Let (X, r) be aset with relation r. Let $d(X)$ and sat (X) be regular cardinals. If $d(X)>\hat{s}(X)$, then $\operatorname{sat}(X) \leq \hat{s}(X)<b d(X)=d(X)$.

4 Applications

A. Preordered sets

Let (X, \leq) be a preordered set (i.e. \leq is reflexive and transitive). For symplifying notation we will use X instead of (X, \leq) Let $b d(X)$ and $d(X)$ mean boundeness and density respectively.

The following theorem is true
Theorem 4.1 Let (X, \leq) be a preordered set without maximal elements. Then $b d(X)$ is regular and $b d(X) \leq c f(d(X)) \leq d(X)$. Moreover

1) if $d(X)$ is a calibre then $b(X)=d(X)$;
2) if $d(X)>\hat{s}(X)$, then $\operatorname{sat}(X) \leq \hat{s}(X)<b d(X)=d(X)$.

Proof The first part of the theorem follows from [2], p. 195, the second one - from theorem 3.3 and the third one - from corollary 3.9.

Now let us consider a set $F=\left(\omega^{\omega}, \leq^{*}\right)$ of all functions from ω to ω, where

$$
\alpha \leq^{*} \beta=\{n \in \omega: \neg(\alpha(n) \leq \beta(n))\} \text { is a finite set. }
$$

Let us denote

$$
b d(F)=b d\left\{\omega^{\omega}, \leq^{*}\right\} \text { and } d(F)=d\left(\omega^{\omega}, \leq^{*}\right)
$$

According to [2], p. 196

$$
\aleph_{0}<b d(F) \leq c f(d(F)) \leq d(F) \leq 2^{\aleph_{0}} .
$$

The following corollary is true
Corollary 4.2 Let $F=\left(\omega^{\omega}, \leq^{*}\right)$. Let $\operatorname{sat}(F)$ be regular and $d(F)>\hat{s}(F)$. Then

$$
\aleph_{0}<\operatorname{sat}(F) \leq \hat{s}(F) \leq 2^{\aleph_{0}} .
$$

Proof The inequalities follows from previous remark and corollary 3.9.

B. Partially ordered sets

Let P be a partially ordered set. Let us notice that all results presented above become true. Moreover using [4] (pp. 157-158) one can formulate the following lemma

Lemma 4.3 Let P be a partially ordered set. Then $\operatorname{sat}(P)$ is a regular uncountable cardinal.

Let us notice that $\operatorname{sat}(P)<\kappa$ for κ being a calibre for P. Using lemma 4.6 and corollaries 3.9 and 4.4 we quickly obtain the following

Corollary 4.4 Let P be a partially ordered set and $\hat{s}(P)$ be an uncountable cardinal number. Then $\operatorname{sat}(P) \leq \hat{s}(P)$. Moreover

1) if $\kappa>\hat{s}(P)$ then $\operatorname{sat}(P)<\kappa$;
2) if $d(P)>\hat{s}(P)$, then $\operatorname{sat}(P) \leq \hat{s}(P)<b d(P)=d(P)$.

Let us consider the following example.

Example 4.5 Let $\left(P, \leq_{l e x}\right)$ be a set with the lexicographical order. Then $\operatorname{sat}(P)=\hat{s}(P)$.

C. Families of sets

Let $\mathcal{P}(X)$ be a family of all sets ordered by inclusion. Then instead of $\operatorname{sat}(X)$ we will consider cellularity (we use standard notation for cellularity $c(X))$. Then according to above considerations we obtain

Corollary 4.6 Let $\mathcal{P}(X)$ be a family of sets. Then $c(X) \leq \hat{s}(X)$.
The following question is whether the inequality from corollary 4.6 can be substituted by $<$.

Corollary 4.7 Let X be a regular, first countable and ccc space with $d(X)=$ \aleph_{2}. Then $c(X)<\hat{s}(X)$.

Proof Let $D \subset X$ be a dense set. Let $x_{0} \in D$ be an arbitrary element and let $B_{x_{0}}$ be a base in the point x_{0}. Let $U_{0} \in B_{x_{0}}$ be an arbitrary open set such that $x_{0} \in U_{0}$. Let $\left(\left\{U_{0}\right\}, B_{x_{0}}\right)$ be the first pair of a strong sequence.

Suppose that the strong sequence $\left(\left\{U_{\beta}\right\}, B_{x_{\beta}}\right)_{\beta<\alpha}$ for $\alpha<\aleph_{2}$ has been defined.

Let us take the set $\left\{x_{\beta}: \beta<\alpha\right\}$. Obviously the set $D \backslash \operatorname{cl}\left\{x_{\beta}: \beta<\alpha\right\}$ is nonempty and we can choose a point $x_{\alpha} \in D \backslash \operatorname{cl}\left\{x_{\beta}: \beta<\alpha\right\}$. Since regularity of X we can find a set $U \supset \operatorname{cl}\left\{x_{\beta}: \beta<\alpha\right\}$ and a neighbourhood V of x_{α} such that $U \cap V=\emptyset$. Hence for all $\beta<\alpha$ there exists $U_{\beta} \in B_{x_{\beta}}$ such that $U_{\beta} \cap V_{\alpha}=\emptyset$ (where V_{α} is a neigbourhood of x_{α}). Let ($\left\{x_{\alpha}\right\}, B_{x_{\alpha}}$) be the next pair of the strong sequence. Hence we obtain a strong sequence of length \aleph_{2}.

Example 4.8 Let us notice that an example of the space with the properties required in corollary 4.7 one can find in [1]. (See also [11], p. 41).

References

[1] M. G. Bell, A normal first countable ccc non-separable space, Proc. A. M. S. 74(1), 1979, 151-155.
[2] L. Bukovsky, The structure of the real line, Springer Basel AG 2011.
[3] B. A. Efimov, Diaditcheskie bikompakty, (in Russian), Trudy Mosk. Matem. O-va 14, 1965, 211-247.
[4] T. Jech, Set theory, Academic Press, 1978.
[5] W. Kubiś, Topics about posets, unpublished.
[6] W. Kulpa, Sz. Plewik and M. Turzański, Applications of Bolzano-Weiestrass method, Topology Proceedings Volume 22, 1997, 237-245.
[7] E. Marczewski (E. Szpilrajn) Remarque sur les produits cartesiens D'espaces topologiques, C. R. (Doklady), Acad. Sci. URSS, 31, 1941, 525-527
[8] E. C. Milner, M. Pouzet, On the cofinality of partially ordered sets, Ordered sets NATO adv. Study Inst. Ser. C: Math. Phys. Sci., 83 Reidel Dordrecht-Boston, Mass., 1982, 279-298.
[9] B.C. Milner, K. Pripky, The cofinality of the partially ordered set Proc. London 46 (9), 1983, 454-470.
[10] N. A. Shanin, On the product of topological spaces Trudy Mat. Inst. Steklov., 24, 1948.
[11] M. Turzański, Cantor cubes: chain conditions, Prace naukowe Uniwersytetu Ślaskiego w Katowicach nr 1612, K-ce 1996.
[12] M. Turzański, Strong sequences and the weight of regular spaces, Comment. Math. Univ. Carolinae 33,3, 1992, 557-561.

