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Abstract

We investigate the stability of nonlinear dynamic integral equation
of the form x(t) = f(t, x(t),

∫ t

t0
g(t, τ, x(τ))∆τ) on time scales by using

a fixed point method.
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1 Introduction and preliminaries

1.1 The Hyers-Ulam stability

In 1940, S.M. Ulam gave a wide range of talks at the Mathematics Club of
the University of Wisconsin, in which discussed a number of important un-
solved problems. He [52] posed the following question concerning the stability
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of group homomorphisms before a Mathematical Colloquium: When can we
assert that the solutions of an inequality are close to one of the exact solutions
of the corresponding equation?

A year later, D.H. Hyers [19] dealt with ε-additive mapping by direct
method, which gave a partial solution to the above question. The result was
extended by T. Aoki [2], D.G. Bourgin [7] and Th.M. Rassias [44]. We men-
tion here that the interest of this topic has been increasing since it came into
being, some other results concerning functional equations one can find, e.g., in
[13, 46, 47, 14, 12, 23, 41] and some related information (e.g., ε-isometries, su-
perstability of functional equations and the stability of differential expressions)
we refer to [20, 21, 22, 4, 11, 37, 18, 50, 8, 9].

To the best of our knowledge, the first one who pay attention to the stability
of differential equations is M. Ob loza [38, 39]. Thereafter, C. Alsina and R.
Ger [1] proved that the stability holds true for differential equation y′(x) =
y(x). Then, a generalized result was given by S.-E. Takahasi, T. Miura and
S. Miyajima [51], in which they investigated the stability of the Banach space
valued linear differential equation of first order (see also [34, 36]). A more
general result on the linear differential equations of first order of the form
y′(t) + α(t)y(t) + β(t) = 0 was given by S.-M. Jung [26] and the stability of
linear differential equations of second order was established by Y. Li et al. (see
[30, 32, 15, 29]).

In the near past many research papers have been published about the
Ulam-Hyers stability of functional, differential and difference equations. The
main tool used by the authors for obtaining stability results was the direct
method. Recently Rus developed a unified approach based on Gronwall type
inequalities and Picard operators. This approach can be applied to a wide
range of problems.

Definition 1.1 Let (X, d) be a metric space and T : X → X be an operator.
The fixed point equation Tx = x is said to be Ulam-Hyers stable if there exists
a real number CT > 0 such that: for each real number ε > 0 and each solution
y∗ of the equation d(y, Ty) < ε, there exists a solution x∗ of the Tx = x such
that d(y∗, x∗) < CT · ε.

1.2 Time scale analysis

Stefan Hilger in his doctoral dissertation, that resulted in his seminal paper
[17] in 1990, initiated the study of time scales in order to unify continuous and
discrete analysis. In recent years, the theory of dynamic equations on time
scales, which provides powerful new tools for exploring connections between
the traditionally separated fields, has been developing rapidly and has received
much attention. We refer the reader to the book by Bohner and Peterson [5]
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and to the papers cited therein. The time scales calculus has a tremendous po-
tential for applications in mathematical models of real processes, for instance,
in biotechnology, chemical technology, economic, neural networks, physics, so-
cial sciences and so on, see the monographs of Aulbach and Hilger [3], Bohner
and Perterson [5] and the references therein.

For convenience, we will provide without proof several foundational defi-
nitions and results from the calculus on time scales so that the paper is self-
contained.

Let T be a nonempty closed subset (time scale) of R. The forward and
backward jump operators σ, ρ : T → T and the graininess µ : T → R

+ are
defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t) − t.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if
ρ(t) < t, right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t.
If T has a left-scattered maximum m, then T

k = T\{m}; otherwise T
k = T.

Definition 1.2 Fix t ∈ T. Let f : T −→ R. The delta derivative of f
at the point t is defined to be the number f∆(t) (provided it exists), with the
property that, for each ǫ > 0, there is a neighborhood U of t such that

|f(σ(t)) − f(s) − f∆(t)(σ(t) − s)| ≤ ǫ|σ(t) − s|,

for all s ∈ U . Define f∆n

(t) to be the delta derivative of f∆n−1

(t); i.e.,
f∆n

(t) = (f∆n−1

(t))∆.

Theorem 1.3 Assume f : T → R is a function and let t ∈ T
k. Then we

have the following:
(1) If f is differentiable at t, then f is continuous at t.
(2) If f is continuous at t and t is right-scattered, then f is differentiable

at t with

f∆(t) =
f(σ(t)) − f(t)

µ(t)
.

(3) If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f(t) − f(s)

t− s

exists and is a finite number. In this case

f∆(t) = lim
s→t

f(t) − f(s)

t− s
.

(4) If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t).
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Definition 1.4 A function f is left-dense continuous (i.e. ld-continuous),
if f is continuous at each left-dense point in T and its right-sided limit exists
at each right-dense point in T. If F∆(t) = f(t), then define the delta integral
by

∫ t

a

f(s)∆s = F (t) − F (a).

Definition 1.5 The function p : T → R is said to be regressive if 1 +
µ(t)p(t) 6= 0, for all t ∈ T

k. We denote by R = R(T) = R(T,R) the set of all
regressive and rd-continuous functions and define

R+ = {p ∈ R | 1 + µ(t)p(t) > 0 for all t ∈ T.

Definition 1.6 For p ∈ R we define (see [5]) the exponential function
ep(·, t0) on the time scale T as the unique solution to the scalar initial value
problem

x∆(t) = p(t)x(t), x(t0) = 1.

if p ∈ R+, then ep(·, t0) > 0, for all t ∈ T. We note that, if T = R, the
exponential function is given by

ep(t, s) = exp(

∫ t

s

p(τ)dτ), eα(t, s) = exp(α(t− s)), eα(t, 0) = exp(αt)

for s, t ∈ R, where α ∈ R is a constant and p : R → R is a continuous
function. To compare with the discrete case, if T → Z (the set of integers),
the exponential function is given by

ep(t, s) =
t−1
∏

τ=s

[1 + p(τ)], eα(t, s) = (1 + β)t−s, eα(t, 0) = (1 + α)t

for s, t ∈ Z with s < t, where α 6= −1 is a constant and p : Z → R is a sequence
satisfying p(t) 6= −1 for all t ∈ Z.

Theorem 1.7 (Properties of the exponential function). If p, q ∈ R, then
(1) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(2) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(3) ep(t, s) = 1

ep(s,t)
= e⊖p(s, t);

(4) ep(t, s)ep(s, r) = ep(t, r);
(5) ep(t, s)eq(t, s) = ep⊕q(t, s);

(6) ep(t,s)
eq(t,s)

= ep⊖q(t, s);

(7) ( 1
ep(·,s)

)∆ = − p(t)
eσp (·,s)

, where for all p, q ∈ R we define

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t)
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and

(⊖p)(t) := −
p(t)

1 + µ(t)p(t)

for all t ∈ T
k.

We remark, that (R,
⊕

) is an Abelian group, called the regressive group.

For more details about calculus on time scales, one can see [3], [5].

2 Nonlinear dynamic integral equation on time

scale

S. András, A.R. Mészáros discussed the Ulam-Hyers stability of dynamic equa-
tions on time scales via Picard operators [53]. D.R. Anderson, B. Gates and D.
Heuer studied the Hyers-Ulam stability of second-order linear dynamic equa-
tions on time scales [54]. In the study of dynamic equations on time scales,
most often the analysis turns to that of a related integral equation on time
scales. It seems integral equations on time scales have an enormous potential
for rich and diverse applications and thus they are most worthy of attention.
In this paper we consider the Hyers-Ulam stability nonlinear dynamic integral
equation

x(t) = f(t, x(t),

∫ t

t0

g(t, τ, x(τ))∆τ), (2.1)

where x is the unknown function to be found, g : I2
T
× R

n → R
n, f : IT ×

R
n × R

n → R
n, t is from a time scale T, τ ≤ t and IT = I

⋂

T, I = [t0,∞]
be the given subset of R, R

n the real n-dimensional Euclidean space with
appropriate norm defined by ‖ ·‖, x0 is a given constant in R

n and the integral
sign represents a very general type of operation, known as the delta integral.
The existence and uniqueness of solutions of above nonlinear dynamic integral
equation was proved by D.B. Pachpatte in [40].

Let IT := [t0,∞)T, β > 0 be a constant and consider the space of continuous

functions C([t0,∞)T;Rn) such that supt∈[t0,∞)T
x(t)

eβ(t,t0)
< ∞ and denote this

special space by Cβ([t0,∞)T;Rn). The norm of linear space Cβ([t0,∞)T;Rn)
can be defined as following:

‖x‖∞β = sup
t∈[t0,∞)T

|x(t)|

eβ(t, t0)
,

thus

d(x, y)∞β = sup
t∈[t0,∞)T

|x(t) − y(t)|

eβ(t, t0)
,
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is the metric of Cβ([t0,∞)T;Rn). T. Kulik and C. C. Tisdell show that
(Cβ([t0,∞)T; R

n), ‖ · ‖∞β ) is Banach spaces and (Cβ([t0,∞)T;Rn), d∞β ) is com-
plete linear metric space in [28].

We need the following lemma proved in Bohner and Peterson [5].

Lemma 2.1 [5] Let t0 ∈ T
k and assume that k : T× T → R is continuous

at (t, t), where t ∈ T with t > t0. Also assume that k(t, ·) is rd-continuous
on [t0, σ(t)]. Suppose that for each ε > 0 there exists a neighborhood N of t
independent of [t0, σ(t)] such that

|k(σ(t), τ) − k(s, τ) − k∆(t, τ)(σ(t) − s)| ≤ ε|σ(t) − s|,

for s ∈ N , where k∆ denotes the ∆ derivative of k with respect to the first
variable. Then

g(t) =

∫ t

t0

k(t, τ)∆τ,

for all t ∈ IT, implies

g∆(t) =

∫ t

t0

k∆(t, τ)∆τ + k(σ(t), t)

for t ∈ IT.

The following lemma proved in [6] is useful to prove our main results.

Lemma 2.2 [6] Assume that µ ∈ crd and µ ≥ 0 and c ≥ 0 is a real
constant. Let k(t, s) be defined as in Lemma 2.1 such that k(σ(t), t) ≥ 0 and
k∆(t, s) ≥ 0 for s, t ∈ T with s ≤ t. Then

µ(t) ≤ c +

∫ t

t0

k(t, τ)µ(τ)∆τ

implies

µ(t) ≤ ceA(t, t0),

for all t ∈ T, where

A(t) = k(σ(t), t) +

∫ t

t0

k∆(t, τ)∆τ.

Next, we present our result on the Hyers-Ulam stability of (2.1).
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Theorem 2.3 Let L > 0, β > 0,M ≥ 0, γ > 1 be constants with β =
Lγ. Suppose that the functions f, g in (2.1) are rd-continuous and satisfy the
conditions

|f(t, u, v) − f(t, ū, v̄)| ≤M [|u− ū| + |v − v̄|],

|g(t, s, u) − g(t, s, v)| ≤ L|u− v|,

d1 = sup
t∈[t0,∞)T

1

eβ(t, t0)
|f(t, 0,

∫ t

t0

g(t, τ,∆τ)| <∞.

If M(1 + 1
γ
) < 1, then nonlinear dynamic integral equation (2.1) has Hyers-

Ulam stability.

Proof. Let x ∈ Cβ([t0,∞)T;Rn) and define the operator T by

(Tx)(t) = f
(

t, x(t),
∫ t

t0
g(t, τ, x(τ))∆τ

)

− f
(

t, 0,
∫ t

t0
g(t, τ, 0)∆τ

)

+f
(

t, 0,
∫ t

t0
g(t, τ, 0)∆τ

)

.

(1) Firstly, we show that T maps Cβ([t0,∞)T;Rn) into itself. Let x ∈
Cβ([t0,∞)T;Rn). Using the hypotheses, we have

‖Tx‖∞β = sup
t∈[t0,∞)T

|(Tx)(t)|

eβ(t, t0)

= sup
t∈[t0,∞)T

1

eβ(t, t0)

∣

∣f(t, x(t),

∫ t

t0

g(t, τ, x(t))∆τ) − f(t, 0,

∫ t

t0

g(t, τ, 0)∆τ)

+f(t, 0,

∫ t

t0

g(t, τ, 0)∆τ)
∣

∣

≤ sup
t∈[t0,∞)T

1

eβ(t, t0)

∣

∣f(t, x(t),

∫ t

t0

g(t, τ, x(t))∆τ) − f(t, 0,

∫ t

t0

g(t, τ, 0)∆τ)
∣

∣

+ sup
t∈[t0,∞)T

1

eβ(t, t0)

∣

∣f(t, 0,

∫ t

t0

g(t, τ, 0)∆τ)
∣

∣

≤ d1 + sup
t∈[t0,∞)T

1

eβ(t, t0)
M [|x(t)| +

∫ t

t0

L|x(τ)|∆τ ]

≤ d1 +M
[

sup
t∈[t0,∞)T

|x(t)|

eβ(t, t0)
+ L sup

t∈[t0,∞)T

1

eβ(t, t0)

∫ t

t0

eβ(τ, t0)
|x(τ)|

eβ(τ, t0)
∆τ

]

≤ d1 +M
[

‖x‖∞β + L‖x‖∞β sup
t∈[t0,∞)T

1

eβ(t, t0)

∫ t

t0

eβ(τ, t0)∆τ
]

= d1 +M‖x‖∞β
[

1 + L sup
t∈[t0,∞)T

1

eβ(t, t0)
(
eβ(t, t0) − 1

β
)
]

= d1 +M‖x‖∞β (1 +
L

β
)

= d1 + ‖x‖∞β M(1 +
1

γ
)

<∞.
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Thus operator T maps Cβ([t0,∞)T;Rn) into itself.

(2) Next, we verify that T is a contraction mapping, so dynamic integral
equation (2.1) has a unique solution. Let u, v ∈ Cβ([t0,∞)T;Rn), u 6= v. We
have

d∞β (Tu, Tv)= sup
t∈[t0,∞)T

|(Tu)(t) − (Tv)(t)|

eβ(t, t0)

= sup
t∈[t0,∞)T

1

eβ(t, t0)

∣

∣f(t, u(t),

∫ t

t0

g(t, τ, u(τ))∆τ) − f(t, v(t),

∫ t

t0

g(t, τ, v(τ))∆τ)
∣

∣

≤ sup
t∈[t0,∞)T

1

eβ(t, t0)
M

[

|u(t) − v(t)| +

∫ t

t0

L|u(τ) − v(τ)|∆τ
]

= M
[

sup
t∈[t0,∞)T

|u(t) − v(t)|

eβ(t, t0)
+ sup

t∈[t0,∞)T

1

eβ(t, t0)
L

∫ t

t0

eβ(τ, t0)
|u(τ) − v(τ)|

eβ(τ, t0)
∆τ

]

≤M
[

d∞β (u, v) + Ld∞β (u, v) sup
t∈[t0,∞)T

1

eβ(t, t0)

∫ t

t0

eβ(τ, t0)∆τ
]

= Md∞β (u, v)[1 + L supt∈[t0,∞)T
1

eβ(t,t0)

eβ(t,t0)−1

β
]

= Md∞β (u, v)(1 + L
β

)

= M(1 + 1
γ
)d∞β (u, v).

Let α = M(1 + 1
γ
), then M(1 + 1

γ
) < 1, and d∞β (Tu, Tv) ≤ αd∞β (u, v), by

Banach’s fixed point theorem T has unique fixed point v∗ in Cβ([t0,∞)T;Rn).
Thus v∗ is the unique solution of nonlinear dynamic integral equation (2.1).

(3) Finally, we will show that dynamic integral equation (2.1) has Hyers-
Ulam stability.

For any ε > 0, since (Cβ([t0,∞)T; R
n), ‖ · ‖∞β ) is Banach spaces and

(Cβ([t0,∞)T;Rn), d∞β ) is complete linear metric space, if d∞β (Tu, u) = d∞β (Tu−
u, 0) ≤ ε, by Tv∗ = v∗, we have

d∞β (u, v∗) = d∞β (u− Tu+ Tu− Tv∗, 0)
= d∞β (Tu− u, Tu− Tv∗)
≤ d∞β (Tu− u, 0) + d∞β (Tu− Tv∗, 0)
≤ ε+ αd∞β (u, v∗).

Thus

d∞β (u, v∗) ≤
1

(1 − α)
· ε

Hence, nonlinear dynamic integral equation (2.1) has Hyers-Ulam stability.
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By the same technique, we can show that the following theorem holds.

Theorem 2.4 For the integral equation

x(t) = f(t) +

∫ t

a

k(t, s, xσ(s))∆s, t ∈ IT. (2.2)

where x : IT → R
n is the unknown function, f : IT → R

n is continuous and
k : IT × IT × IT → R

n is continuous in its first and third variables and rd-
continuous in its second variable. Let L > 0, β > 0, γ > 1 be constants with
β = Lγ. If for any (t, s) ∈ [a,∞)2

T
, (u, v) ∈ R

2n.

|k(t, s, u) − k(t, s, v)| ≤ L|u− v|,

L sup
t∈[a,∞)T

µ(t) < 1 −
1

γ
,

sup
t∈[a,∞)T

1

eβ(t, a)
‖f(t) +

∫ t

a

k(t, s, 0)∆τ)‖ <∞.

Then nonlinear dynamic integral equation (2.2) has Hyers-Ulam stability.

In fact, it is easy to see the following is an equivalent formulation of (2.2).

x(t) =

(

f(t) +

∫ t

a

k(t, s, 0)∆s

)

+

∫ t

a

(k(t, s, xσ(s))−k(t, s, 0))∆s, t ∈ [a,∞)T. (2.3)

Since Cβ([a,∞)T;Rn) is complete metric space, and the operator is defined
by

(Tx)(t) :=

(

f(t) +

∫ t

a

k(t, s, 0)∆s

)

+

∫ t

a

(k(t, s, xσ(s))−k(t, s, 0))∆s, t ∈ [a,∞)T.

is a contractive map and Banach fixed point theorem will then apply. By the
same technique in the proof of theorem 2.3, we can show that equation (2.2)
has Hyers-Ulam stability.
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[14] P. Gǎvruţǎ, A generalization of the Hyers-Ulam-Rassias stability of ap-
proximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
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