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Abstract

h−convex stochastic processes are introduced. Some results for h−convex

functions, like Jensen and Hermite-Hadamard inequalities type, are ex-

tended to h−convex stochastic processes.
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1 Introduction

In 1980, the study of quadratic and convex stochastic processes were initiated
by K. Nikodem in [6, 7]. Following this line of investigation, Skowroński des-
cribed the properties of Jensen-convex and Wright-convex stochastic process
in [10, 11]. More recently, D. Kotrys presented in [3, 4, 5] results on convex
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and strongly convex stochastic processes, among them, a Hermite-Hadamard
type inequality for convex stochastic processes.

If h : (0, 1) → R is a non-negative function, h 6≡ 0, and I ⊆ R is an interval,
a function f : I → R, is an h−convex function on I if the inequality

f(λt1 + (1− λ)t2) ≤ h(λ)f(t1) + h(1− λ)f(t2)

holds for every t1, t2 ∈ I and λ ∈ [0, 1]. The h−convex functions appeared
in 2007, when S. Varošanec (see [8, 9]) unified and generalize the classes of
convex, s-convex, Godunova-Levin and P−functions, .

The aim of this paper is to introduce the notion of h−convex stochastic
processes and present some properties obtained like generalizations of some
properties of h−convex functions.

Let (Ω,A,P) be a probability space. A function X : Ω → R is a random

variable if it is A−measurable. A function X : I × Ω → R, where I ⊆ R is
an interval, is a stochastic process if for every t ∈ I the function X(t, ·) is a
random variable.

Fixed h like above, we say that a stochastic process X : I × Ω → R is an
h−convex stochastic process if, for every t1, t2 ∈ I, λ ∈ (0, 1), the following
inequality is satisfied

X(λt1 + (1− λ)t2, ·) ≤ h(λ)X(t1, ·) + h(1− λ)X(t2, ·) (a.e)

Also, we say that a stochastic process X : I × Ω → R is

1. continuous in probability in I, if for all t0 ∈ I we have

P − lim
t→t0

X(t, ·) = X(t0, ·),

where P − lim denotes the limit in probability.

2. mean square continuous in the interval I, if for all t0 ∈ I

lim
t→t0

E[(X(t, ·)−X(t0, ·))
2] = 0,

where E[X(t, ·)] denotes the expectation value of the random variable
X(t, ·).

Note that mean-square continuity implies continuity in probability, but the
converse is not true.

Let X : I × Ω → R be a stochastic process with E[X(t)2] < ∞ for all
t ∈ I. Let [a, b] ⊆ I, a = t0 < t1 < ... < tn = b be a partition of [a, b] and
Θk ∈ [tk−1, tk] for all k = 1, ..., n. A random variable Y : Ω → R is called
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the mean-square integral of the process X on [a, b], if for a normal sequence of
partitions of the interval [a, b] and for all Θk ∈ [tk−1, tk], k = 1, ..., n we have

lim
n→∞

E





(

n
∑

k=1

X(Θk, ·)(tk − tk−1)− Y (·)

)2


 = 0

In such case, we write

Y (·) =

∫ b

a

X(s, ·)ds (a.e)

For the existence of the mean-square integral is enought to assume the
mean-square continuity of the stochastic process X . Basic properties of the
mean-square integral can be read in [12].

Now, we shall present some examples of h−convex stochastic processes.

Example 1.1. Every convex stochastic process is an h−convex stochastic

process with h equals to the identity function.

Example 1.2. Let X : I×Ω → R be a convex stochastic process. For every

k ≤ 1, consider the function

hk : (0, 1) −→ R

x 7−→ xk

Note that hk(λ) ≥ λ for all λ ∈ (0, 1). Moreover, for every t1, t2 ∈ I and

λ ∈ (0, 1), the following inequality is satisfied

X(λt1 + (1− λ)t2, ·) ≤ λX(t1, ·) + (1− λ)X(t2, ·)

≤ hk(λ)X(t1, ·) + hk(1− λ)X(t2, ·) (a.e)

Then, X is an hk−convex stochastic process.

Example 1.3. Every h−convex function gives an example of an h−convex

stochastic process.

Let A : Ω → R a random variable, h : (0, 1) → R a non-negative function,

h 6≡ 0 and f : I → R an h−convex function. The stochastic process

X : (0, 1)× Ω −→ R

(t, ω) 7−→ A(ω)f(t)

is an h−convex stochastic process.

2 Main Results

In this section we shall present some results concerning to the basic properties
of h−convex stochastic processes and also, we prove some inequalities, among
them, a Jensen-type, a conversion of Jensen-type and a Hermite-Hadamard-
type inequality.
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Basic Properties of h−convex stochastic processes

The following propositions show that the class of h−convex stochastic pro-
cesses satisfies some monotony property and is closed under addition, product
and positive scalar product.

Proposition 2.1. If h1, h2 : (0, 1) → R are non negative functions with

h2(λ) ≤ h1(λ) for all λ ∈ (0, 1) and X : I × Ω → R is a non- negative

h2−convex stochastic process, then X is an h1−convex stochastic process.

Proof. Consider t1, t2 ∈ I, λ ∈ (0, 1) arbitrary. Then,

X(λt1 + (1− λ)t2, ·) ≤ h2(λ)X(t1, ·) + h2(1− λ)X(t2, ·)

≤ h1(λ)X(t1, ·) + h1(1− λ)X(t2, ·) (a.e)

Proposition 2.2. Let h : (0, 1) → R be a non negative function. If X, Y :
I × Ω → R are h−convex stochastic processes, then X + Y is an h−convex

stochastic process. Also, if α > 0 then αX is an h−convex stochastic process.

Proof. Consider t1, t2 ∈ I, λ ∈ (0, 1) arbitrary.

(X + Y )(λt1 + (1− λ)t2, ·)

= X(λt1 + (1− λ)t2, ·) + Y (λt1 + (1− λ)t2, ·)

≤ h(λ)(X(t1, ·) + Y (t1, ·)) + h(1− λ)(X(t2, ·) + Y (t2, ·))

= h(λ)(X + Y )(t1, ·) + h(1− λ)(X + Y )(t2, ·) (a.e)

Now, consider α > 0. Then,

αX(λt1 + (1− λ)t2, ·) ≤ αh(λ)X(t1, ·) + αh(1− λ)X(t2, ·)

= h(λ)αX(t1, ·) + h(1− λ)αX(t2, ·) (a.e)

Proposition 2.3. Let h1, h2 : (0, 1) → R be non negative functions and

X, Y : I × Ω → R non- negative stochastic processes such that

(X(t1, ·)−X(t2, ·))(Y (t1, ·)− Y (t2, ·)) ≥ 0,

for all t1, t2 ∈ I. If X is h1−convex, Y is h2−convex and h(λ) + h(1− λ) ≤ c

for all λ ∈ (0, 1), where h(λ) = max{h1(λ), h2(λ)} and c is a fixed positive

number, then the product XY is a ch−convex stochastic process.
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Proof. Fix t1, t2 ∈ I and λ, β ∈ (0, 1) such that λ+ β = 1.
First, note that (X(t1, ·)−X(t2, ·))(Y (t1, ·)− Y (t2, ·)) ≥ 0 implies

X(t1, ·)Y (t2, ·) +X(t2, ·)Y (t1, ·) ≤ X(t1, ·)Y (t1, ·) +X(t2, ·)Y (t2, ·)

Hence,
XY (λt1 + βt2, ·)

≤ (h1(λ)X(t1, ·) + h1(β)X(t2, ·))(h2(λ)Y (t1, ·) + h2(β)Y (t2, ·))
≤ (h(λ)X(t1, ·) + h(β)X(t2, ·))(h(λ)Y (t1, ·) + h(β)Y (t2, ·))
≤ h2(λ)XY (t1, ·)+h(λ)h(β)XY (t1, ·)+h(λ)h(β)XY (t2, ·)+h2(β)XY (t2, ·)
= (h(λ) + h(β))(h(λ)XY (t1, ·) + h(β)XY (t2, ·))
≤ ch(λ)(XY )(t1, ·) + ch(β)(XY )(t2, ·) (a.e)

Let J ⊆ R an interval. A function h : J → R is a supermultiplicative
function if h(xy) ≥ h(x)h(y) for all x, y ∈ J .

In the following theorem we present conditions under the inequality

X(λt1 + βt2, ·) ≤ h(λ)X(t1, ·) + h(β)X(t2, ·)

holds almost everywhere for all λ, β > 0 such that λ+ β ≤ 1.

Theorem 2.4. Let I be an interval such that 0 ∈ I and h : (0, 1) → R a

non negative function. If h is supermultiplicative and X : I × Ω → R is an

h−convex stochastic process such that X(0, ·) = 0, then the inequality

X(λt1 + βt2, ·) ≤ h(λ)X(t1, ·) + h(β)X(t2, ·)

holds almost everywhere for all t1, t2 ∈ I and all λ, β > 0 such that λ+ β ≤ 1.

Proof. If λ+ β = 1, the inequality holds because of definition of h−convexity
in stochastic processes. Let λ, β > 0 be numbers such that λ + β = γ with
γ < 1. Let us define numbers a := λ

γ
and b := β

γ
. Then, a+ b = 1 and we have

the following:
X(λt1 + βt2, ·)

= X(aγt1 + bγt2, ·)
≤ h(a)X(γt1, ·) + h(b)X(γt2, ·)
= h(a)X(γt1 + (1− γ)0, ·) + h(b)X(γt2 + (1− γ)0, ·))
≤ h(a)h(γ)X(t1, ·) + h(a)h(1− γ)X(0, ·) + h(b)h(γ)X(t2, ·)

+h(b)h(1− γ)X(0, ·)
= h(a)h(γ)X(t1, ·) + h(b)h(γ)X(t2, ·))
≤ h(aγ)X(t1, ·) + h(bγ)X(t2, ·)
= h(λ)X(t1, ·) + h(β)X(t2, ·)) (a.e)
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Theorem 2.5. Let h be a non-negative function with h(λ) < 1

2
for some

λ ∈ (0, 1
2
). If X : I × Ω → R is a non negative stochastic process such that

X(λt1 + βt2, ·) ≤ h(λ)X(t1, ·) + h(β)X(t2, ·) (1)

holds almost everywhere for any t1, t2 ∈ I and α, β > 0 with α + β ≤ 1, then
X(0, ·) = 0.

Proof. Let us suppose that exists w ∈ Ω with X(0, ω) 6= 0. Then, X(0, ω) > 0
and putting t1 = t2 = 0 in the inequality (1), we get

X(0, ω) ≤ h(λ)X(0, ω) + h(β)X(0, ω) (a.e.)

for λ, β > 0 such that λ + β ≤ 1. Considering λ = β, λ ∈ (0, 1
2
) and dividing

by X(0, ω), we obtain 1 ≤ h(λ) + h(λ) = 2h(λ) for all λ ∈ (0, 1

2
). That is,

1

2
≤ h(λ) for all λ ∈ (0, 1

2
), what is a contradiction with the assumption of

theorem.

Corollary 2.6. Fixed s > 0, let consider the function hs : (0,∞) → R

defined by hs(x) = xs. If I is an interval such that 0 ∈ I and X : I × Ω → R

is a non negative hs−convex stochastic process, then the inequality

X(λt1 + βt2, ·) ≤ h(λ)X(t1, ·) + h(β)X(t2, ·)

holds almost everywhere for all λ, β > 0, λ+ β ≤ 1 if and only if X(0, ·) = 0.

Proof. (⇒) For s ≥ 1, is enough to note that hs is non-negative and hs(
1

3
) < 1

2
.

The proof for s < 1 can be read in [2].
(⇐) Note that hs is non-negative and supermultiplicative. Then use Theo-

rem (2.4).

Proposition 2.7. Let h : (0, 1) → R be a non-negative supermultiplicative

function and let X : I × Ω → R be an h−convex stochastic process. Then, for

t1, t2, t3 ∈ I, with t1 < t2 < t3 such that t3− t1, t3− t2, t2− t1 ∈ J the following

inequality holds almost everywhere,

h(t3 − t2)X(t1, ·)− h(t3 − t1)X(t2, ·) + h(t2 − t1)X(t3, ·) ≥ 0

Proof. Let X : I × Ω → R be an h−convex stochastic process and t1, t2, t3 ∈
I be numbers wich satisfy assumptions of the proposition. Then, we have
t3−t2
t3−t1

, t2−t1
t3−t1

∈ (0, 1) and t3−t2
t3−t1

+ t2−t1
t3−t1

= 1. Also, since h is supermultiplicative
and non-negative,

h(t3 − t2) = h

(

t3 − t2

t3 − t1
.(t3 − t1)

)

≥ h

(

t3 − t2

t3 − t1

)

h(t3 − t1),
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h(t2 − t1) = h

(

t2 − t1

t3 − t1
.(t3 − t1)

)

≥ h

(

t2 − t1

t3 − t1

)

h(t3 − t1),

Let h(t3 − t1) > 0. Because of the h−convexity, X satisfies

X(λz1 + (1− λ)z2, ·) ≤ h(λ)X(z1, ·) + h(1− λ)X(z2, ·) (a.e)

for all z1, z2 ∈ I, λ ∈ (0, 1). In particular, for λ = t3−t2
t3−t1

, z1 = t1, z2 = t3, we
have t2 = λz1 + (1− λ)z2 and

X(t2, ·) ≤ h

(

t3 − t2

t3 − t1

)

X(t1, ·) + h

(

t2 − t1

t3 − t1

)

X(t3, ·)

≤
h(t3 − t2)

h(t3 − t1)
X(t1, ·) +

h(t2 − t1)

h(t3 − t1)
X(t3, ·) (a.e)

Finally, multiplying by h(t3 − t1) we obtain the following

h(t3 − t1)X(t2, ·) ≤ h(t3 − t2)X(t1, ·) + h(t2 − t1)X(t3, ·) (a.e)

That is,

0 ≤ h(t3 − t2)X(t1, ·)− h(t3 − t1)X(t2, ·) + h(t2 − t1)X(t3, ·) (a.e)

Now, we will present a Jensen-type inequality for h−convex stochastic pro-
cesses.

Jensen-type inequality

Theorem 2.8. Let λ1, ..., λn be positive real numbers such that
∑n

i=1
λi = 1,

n ≥ 2. If h is a non-negative supermultiplicative function and X : I × Ω → R

is a non-negative h−convex stochastic process, then the inequality

X

(

n
∑

i=1

λiti, ·

)

≤

n
∑

i=1

h(λi)X(ti, ·)

holds almost everywhere for every t1, t2, ..., tn ∈ I.

Proof. The proof is by induction. If n = 2, the inequality is satisfied because
of definition of h−convexity in stochastic processes. Let us suppose that the
inequality holds for n − 1 and consider t1, t2, ..., tn ∈ I and λ1, λ2, ..., λn > 0
with

∑n

i=1
λi = 1. For every n > 1 define Ln =

∑n

i=1
λi. Then, it follows
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X

(

n
∑

i=1

λiti, ·

)

= X

(

λntn +

n−1
∑

i=1

λiti, ·

)

= X

(

λntn + Ln−1

n
∑

i=1

λi

Ln−1

ti, ·

)

≤ h(λn)X(tn, ·) + h(Ln−1)X

(

n−1
∑

i=1

λi

Ln−1

ti, ·

)

(a.e)

Since
∑n−1

i=1

λi

Ln−1

= 1 and h ≥ 0, using the inductive hypothesis, we have

h(Ln−1)X

(

n−1
∑

i=1

λi

Ln−1

ti, ·

)

≤ h(Ln−1)
n−1
∑

i=1

h
(

λi

Ln−1

)

X(ti, ·)

=

n−1
∑

i=1

h(Ln−1)h
(

λi

Ln−1

)

X(ti, ·) (a.e)

Due to h and X are non-negative and h is supermultiplicative,

n−1
∑

i=1

h(Ln−1)h

(

λi

Ln−1

)

X(ti, ·) ≤
n−1
∑

i=1

h(λi)X(ti, ·) (a.e)

Then,

X

(

n
∑

i=1

λiti

)

≤ h(λn)X(tn, ·) +
n−1
∑

i=1

h(λi)X(ti, ·)

=

n
∑

i=1

h(λi)X(ti, ·) (a.e)

The following theorem is a conversion of Jensen’s inequality.

Theorem 2.9. Let λ1, ..., λn be positive real numbers such that
∑n

i=1
λi = 1

and (m,M) ⊆ I. If h : (0, 1) → R is a non negative supermultiplicative

function and X : I × Ω → R is an h−convex stochastic process, then for any

t1, ..., tn ∈ (m,M), the following inequality holds almost everywhere

n
∑

i=1

h
(

λi

Ln

X(ti, ·)
)

≤ X(m, ·)
n
∑

i=1

h
(

λi

Ln

)

h
(

M−ti
M−m

)

+X(M, ·)
n
∑

i=1

h
(

λi

Ln

)

h
(

ti−m
M−m

)
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Proof. Fix i ∈ {1, ..., n}. Putting t1 = m, t2 = ti, t3 = M in the inequality 2,
we get

X(ti, ·) ≤ h
(

M−ti
M−m

)

X(m, ·) + h
(

ti−m
M−m

)

X(M, ·)

Since h is non negative, we have

h
(

λi

Ln

)

X(ti, ·) ≤ h
(

λi

Ln

)

h
(

M−ti
M−m

)

X(m, ·) + h
(

λi

Ln

)

h
(

ti−m
M−m

)

X(M, ·)

Adding all inequalities for i = 1, ..., n, we complete the proof.

In [1], Angulo et al. proved a Hermite-Hadamard type inequality for
h−convex functions. Now, we will present an analogous result for h−convex
stochastic processes.

Hermite-Hadamard type inequality

Theorem 2.10. Let be h : (0, 1) → R a non-negative function, h 6≡ 0 and

X : I × Ω → R a non negative, h−convex, mean square integrable stochastic

process. For every a, b ∈ I, (a < b), the following inequality is satisfied almost

everywhere

1

2h
(

1

2

)X

(

a+ b

2
, ·

)

≤
1

b− a

∫ b

a

X(t, ·)dt ≤ (X(a, ·) +X(b, ·))

∫

1

0

h(z)dz

Proof. Fix a, b ∈ I, a < b and take u = za+(1− z)b, v = (1− z)a+ zb. Then,
u+v
2

= a+b
2
. The h−convexity of X implies that

X

(

a+ b

2
, ·

)

= X

(

u+ v

2
, ·

)

≤ h

(

1

2

)

[X(u, ·) +X(v, ·)]

= h

(

1

2

)

[X(za + (1− z)b, ·) +X((1− z)a + zb, ·)] (a.e)

Because of the monotonicity and linearity of the mean-square integral (see
[12]), we have (a.e.)

X

(

a+ b

2
, ·

)

=

∫

1

0

X

(

a + b

2
, ·

)

dz

≤ h

(

1

2

)[
∫

1

0

X(za + (1− z)b, ·)dz +

∫

1

0

X((1− z)a + zb, ·)dz

]

Changing variables in the mean square integral (see [12]), we obtain
∫

1

0

X (za + (1− z)b, ·) dz =

∫ a

b

1

a− b
X(u, ·)du =

1

a− b

∫ a

b

X(u, ·)du (a.e)



580 D. Barráez, L. González, N. Merentes and A. Moros

and
∫

1

0

X((1− z)a + zb, ·)dz =
1

b− a

∫ b

a

X(v, ·)dv

Hence, we have the following

X

(

a+ b

2
, ·

)

≤ h

(

1

2

)[

1

a− b

∫ a

b

X(u, ·)du+
1

b− a

∫ b

a

X(v, ·)dv

]

= h

(

1

2

)

2

b− a

∫ b

a

X(t, ·)dt

That is,
1

2h
(

1

2

)X

(

a+ b

2
, ·

)

≤
1

b− a

∫ b

a

X(t, ·)dt

In the other hand side, we have

X((1− z)a + zb, ·) ≤ h(1− z)X(a, ·) + h(z)X(b, ·)

Using basic properties of mean square integral,

1

b− a

∫ b

a

X(t, ·)dt =

∫

1

0

X((1− z)a + zb, ·)dz

≤ X(a, ·)

∫

1

0

h(1− z)dz +X(b, ·)

∫

1

0

h(z)dz

= X(a, ·)

∫

1

0

h(t)dt+X(b, ·)

∫

1

0

h(t)dt

= (X(a, ·) +X(b, ·))

∫

1

0

h(z)dz (a.e.)
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