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Abstract

h—convex stochastic processes are introduced. Some results for h—convex
functions, like Jensen and Hermite-Hadamard inequalities type, are ex-
tended to h—convex stochastic processes.
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1 Introduction

In 1980, the study of quadratic and convex stochastic processes were initiated
by K. Nikodem in [6, 7]. Following this line of investigation, Skowronski des-
cribed the properties of Jensen-convex and Wright-convex stochastic process
in [10, 11]. More recently, D. Kotrys presented in [3, 4, 5] results on convex
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and strongly convex stochastic processes, among them, a Hermite-Hadamard
type inequality for convex stochastic processes.

If h:(0,1) — R is a non-negative function, h #Z 0, and I C R is an interval,
a function f: I — R, is an h—convex function on [ if the inequality

SO+ (1= Ntz) < h(A)f(t1) + (1 = N) f(t2)

holds for every ¢1,to € I and A\ € [0,1]. The h—convex functions appeared
in 2007, when S. Varosanec (see [8, 9]) unified and generalize the classes of
convex, s-convex, Godunova-Levin and P—functions, .

The aim of this paper is to introduce the notion of h—convex stochastic
processes and present some properties obtained like generalizations of some
properties of h—convex functions.

Let (£2,.A,P) be a probability space. A function X : Q — R is a random
variable if it is A—measurable. A function X : I x @ — R, where [ C R is
an interval, is a stochastic process if for every t € I the function X(¢,-) is a
random variable.

Fixed h like above, we say that a stochastic process X : I x 2 — R is an
h—convez stochastic process if, for every ty,t5 € I, A € (0,1), the following
inequality is satisfied

XMy + (1= Ntg,-) <h(N)X(t1,:) + (1 = XN)X(t2,) (a.e)
Also, we say that a stochastic process X : [ x  — R is

1. continuous in probability in I, if for all ty € I we have

P—1lim X(t,-) = X(to, "),

t—to
where P — lim denotes the limit in probability.

2. mean square continuous in the interval I, if for all ty €

lim E[(X(t,) — X(t,))*] =0,

t—to

where E[X (¢,-)] denotes the expectation value of the random variable

X(t, ).

Note that mean-square continuity implies continuity in probability, but the
converse is not true.

Let X : I x Q — R be a stochastic process with E[X (#)?] < oo for all
tel Letfa,bl CI,a=t) <t <..<t,=>bbea partition of [a,b] and
Ok € [tp_1,t;] for all k = 1,...,n. A random variable Y : Q — R is called
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the mean-square integral of the process X on [a, b], if for a normal sequence of
partitions of the interval [a, b] and for all ©4 € [t;_1,%], k = 1,...,n we have

n—oo

" 2

lim E <Z X (O, ) (tg — ty_1) — Y(-)) =0
k=1

In such case, we write

Y('):/ X(s, )ds (a.e)

For the existence of the mean-square integral is enought to assume the
mean-square continuity of the stochastic process X. Basic properties of the
mean-square integral can be read in [12].

Now, we shall present some examples of h—convex stochastic processes.

Example 1.1. Every convex stochastic process is an h—convex stochastic
process with h equals to the identity function.

Example 1.2. Let X : I xQ — R be a convex stochastic process. For every
k <1, consider the function

he:(0,1) — R

r — zF

Note that hi(X) > X for all X € (0,1). Moreover, for every t1,to € I and
A € (0,1), the following inequality is satisfied
XMy 4 (1= Ntg,) < AX(t1,)+ (1 —=N)X(ta,")
< he(N)X(t1, ) + he(1 = M) X (t2,+) (a.e)
Then, X s an hy—convex stochastic process.

Example 1.3. Fvery h—convex function gives an example of an h—convex
stochastic process.
Let A : Q — R a random variable, h : (0,1) — R a non-negative function,
h#0 and f : I — R an h—convex function. The stochastic process

X:(0,1)xQ — R
(t,w) — A(w)f(t)

18 an h—convex stochastic process.

2 Main Results

In this section we shall present some results concerning to the basic properties
of h—convex stochastic processes and also, we prove some inequalities, among
them, a Jensen-type, a conversion of Jensen-type and a Hermite-Hadamard-
type inequality.
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Basic Properties of h—convex stochastic processes

The following propositions show that the class of h—convex stochastic pro-
cesses satisfies some monotony property and is closed under addition, product
and positive scalar product.

Proposition 2.1. If hy,hy : (0,1) — R are non negative functions with
ho(A) < hi(A) for all X € (0,1) and X : I x Q@ — R is a non- negative
ho—convex stochastic process, then X is an hy—convex stochastic process.

Proof. Consider ty,ty € I, X\ € (0,1) arbitrary. Then,

X (At + (1= Nta,-) ha(AN) X (t1, ) + ha(1 — X)X (Lo, )

<
S hl(/\)X(tl, ) + hl(l — /\)X(tg, ) (ae)

O

Proposition 2.2. Let h: (0,1) — R be a non negative function. If X, Y :
I x Q2 — R are h—convex stochastic processes, then X + Y is an h—convex
stochastic process. Also, if a > 0 then aX is an h—convex stochastic process.

Proof. Consider t1,ty € I, A € (0,1) arbitrary.
(X +Y)(Aty + (1 = N, )
=X(At1 4+ (1 = Ntg, ) + Y (Mg + (1 — N, )
<A (X (t1, ) + Y (81, ) + h(1 = A)(X (Lo, -) + Y (t2,+))
=h(AN(X+Y)(t1,)+h(1 =X +Y)(tz,) (ae)

Now, consider o > 0. Then,

aX(My+ (1= Nta,-) < ah(N)X(t1,-) +ah(l — X)X (ts, )
= h(N)aX(t,:) +h(l = NaX(ty,-) (a.e)

O

Proposition 2.3. Let hy,hy : (0,1) — R be non negative functions and
X, Y : I x Q2 — R non- negative stochastic processes such that

(X(th ) - X(tQ’ '))(Y(tla ) - Y(tQ’ )) > 07
for all ty,ty € I. If X is hy—convez, Y is ho—conver and h(\) +h(1 —\) < ¢
for all A € (0,1), where h(\) = maz{hi(\), ha(\)} and c is a fized positive

number, then the product XY is a ch—convex stochastic process.
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Proof. Fix ti,ty € I and A, 5 € (0,1) such that A + 3 = 1.
First, note that (X (t1,-) — X(t2,-))(Y(t1,+) — Y(ta,)) > 0 implies

X(t1, )Y (ta, ) + X(to, )Y (t1,-) < X(t1,-)Y(t1,-) + X(t2, )Y (t2, )

Hence,
XY (Aty + Bta, -)
< (h(N)X (1, +) + 7 (B) X (22, ) (ha(A)Y (1, ) + ha(B)Y (22, )
< (WA X (t1,+) + h(B) X (L2, ) (R(N)Y (81, -) + h(B)Y (t2, )
< W2(N)XY (t1, ) +h(NA(B)XY (t1, ) +(Nh(B) XY (t2, -)+h*(B) XY (ts, -)
= (h(A) + 1(B))(M(N) XY (L1, ) + h(B) XY (t2, )
< ch(MN(XY)(t, ) + ch(B)(XY)(t2, 1) (a-e)
O

Let J C R an interval. A function h : J — R is a supermultiplicative

function if h(zy) > h(z)h(y) for all x,y € J.

In the following theorem we present conditions under the inequality

holds almost everywhere for all A, 5 > 0 such that A + 5 < 1.

Theorem 2.4. Let I be an interval such that 0 € I and h : (0,1) - R a
non negative function. If h is supermultiplicative and X : I x 0 — R is an
h—convex stochastic process such that X (0,-) = 0, then the inequality

X(Atg + Bta, ) < h(N)X(t1,-) + h(B) X (t2,-)
holds almost everywhere for all t1,ty € I and all A\, B > 0 such that A+ 3 < 1.

Proof. If A+ 8 =1, the inequality holds because of definition of h—convexity
in stochastic processes. Let A\,3 > 0 be numbers such that A + 8 = v with
v < 1. Let us define numbers a := % and b := g Then, a+b =1 and we have
the following:
X (At1 + Bta, )
= X(avt; + byts, -)
< h( )X (t1,+) + h(b) X (712, )
ha)X (vt + (1 =7)0, ) + h(b) X (7t + (1 — )0, -))
h(a)h(7) X (t1, ) + h(a)h(1 = 7)X(0, ) + h(b)h(7) X (L2, -)
h(b)h(1 — )X (0, -)
a)h(7) X (tr, ) + h(D)h(7) X (L2, -))
ay)X(ty,-) + h(b7) X (L2, -)
MX(ty, ) +h(B)X(t2,))  (a-e)

AAA /—\/—\

IIVANN
= > >
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Theorem 2.5. Let h be a non-negative function with h(\) < 5 for some
A € (0, %) If X : I x Q — R is a non negative stochastic process such that

XMy + Ba, ) < hOVX (11, ) + h(B)X (82, ) (1)

holds almost everywhere for any ty,to € I and o, 5 > 0 with o+ 8 < 1, then
X(0,-) =0.

Proof. Let us suppose that exists w € 2 with X (0,w) # 0. Then, X(0,w) >0
and putting t; = to = 0 in the inequality (1), we get

X(0,w) < h(N)X(0,w) + h(B)X(0,w) (a.e.)

for A\, 5 > 0 such that A + 5 < 1. Considering A = 3, A € (0, %) and dividing
by X(0,w), we obtain 1 < h(A) 4+ h(X) = 2h(\) for all A € (0,3). That is,
= < h(X) for all A € (0,3), what is a contradiction with the assumption of
theorem.

U

Corollary 2.6. Fized s > 0, let consider the function hg : (0,00) — R
defined by hs(x) = x*. If I is an interval such that 0 € I and X : [ x Q2 — R
1$ a non negative hy—convex stochastic process, then the inequality

X(Aty + Bla,-) <A X (ty, ) + h(B) X (12, )

holds almost everywhere for all A\, 3 >0, A+ 5 < 1 if and only if X(0,-) = 0.

Proof. (=) For s > 1, is enough to note that h, is non-negative and h,(3) <
The proof for s < 1 can be read in [2].

(<) Note that hg is non-negative and supermultiplicative. Then use Theo-
rem (2.4).

1
3-

O

Proposition 2.7. Let h: (0,1) — R be a non-negative supermultiplicative
function and let X : I x Q — R be an h—convex stochastic process. Then, for
ty,to, t3 € I, with t; < ty < t3 such that t3 —ty,t3 —ts, 1o —t1 € J the following
inequality holds almost everywhere,

hts — t2)X (11, ) — h(ts — t)X (ta, ) + h(ts — 1) X (ts, ) > 0

Proof. Let X : I x Q — R be an h—convex stochastic process and t1,ts,1t3 €
I be numbers wich satisfy assumptions of the proposition. Then, we have
g%if, % € (0,1) and 2%2 + g%g = 1. Also, since h is supermultiplicative
and non-negative,

lwy%g:hcy%ﬂ@—M)thviﬁh%—h%

3— 1t 3— 1t
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ts — 1 ts —h
Let h(ts —t1) > 0. Because of the h—convexity, X satisfies

hits — ) = h (tQ iz P tl)) > h (tz - tl) hits — 1),

XAz + (1= XN)zo,-) S h(N)X(21,:) + h(1 = N)X(29,7) (a.e)

for all 21,2, € I, A € (0,1). In particular, for A = 2:2, 2 = t, 2 = t3, we
have ty = Az; + (1 — \)2y and

tg—tg lo — 11
h X (tq, - h X (i3, -
(tg_tl) () + (tg_tl) (ta. )

h(ts —ts) h(ts — t1)
h(ls—t1) (t, ) + mX(t?” ) (ae)

X(t27'>

IN

<

Finally, multiplying by h(t3 — ¢;) we obtain the following

h(ts — )X (ta,) < hlts — t2)X (11, ) + h(ts — t) X (t3,-) (ace)

That is,

0 < hits — t2)X (1, ") — h(ts — t)X (ta, ) + h(ts — t) X (3, ) (a.e)

O
Now, we will present a Jensen-type inequality for h—convex stochastic pro-
cesses.

Jensen-type inequality

Theorem 2.8. Let A1, ..., \, be positive real numbers such that > | A\ =1,
n > 2. If h is a non-negative supermultiplicative function and X : I x @ — R
15 a non-negative h—convex stochastic process, then the inequality

X <i Aity, ) < i h(A)X (¢, )

holds almost everywhere for every ti,ts, ..., t, € I.

Proof. The proof is by induction. If n = 2, the inequality is satisfied because
of definition of h—convexity in stochastic processes. Let us suppose that the
inequality holds for n — 1 and consider tq,ts,...,t, € I and A\, Ay, ..., \, > 0
with " | A; = 1. For every n > 1 define L, = > | A;. Then, it follows
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n n—1
X <Z Aiti, ) = X (Antn + Z Aits, )
i=1 =1
= X ()\ntn + Ly Z ot )

i=1

INA
3
T
h
>
o

W)X (tn, ) + h(Lu_1) X ( 2, ) (a.e)

=1

Since Z:.L;ll L)‘il =1 and h > 0, using the inductive hypothesis, we have

IN

(L 1) X <n21 2t ) h(Ly_1) nzl h (ﬁ;) X(t,)

Due to h and X are non-negative and h is supermultiplicative,

n—1 n—1

> Lot (£25) X(0) < Y AX 60 (0o

L,
i=1 n—1 i=1

Then,

X (i Am) < h(A)X(tn, ) + nz_lh(&-)X(tm )

=1

O
The following theorem is a conversion of Jensen’s inequality.

Theorem 2.9. Let Ay, ..., \, be positive real numbers such that . A\ =1
and (m,M) C I. If h : (0,1) — R is a non negative supermultiplicative
function and X : I x 0 — R is an h—convex stochastic process, then for any
t1, ..., ty € (m, M), the following inequality holds almost everywhere

ih (g—;X(ti, -)) < X(m,-) Zf: h (g_) h(M=b) 4 X (M, ) ih (g_) h (L= )
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Proof. Fix i € {1,...,n}. Putting t; = m,ty = t;,t3 = M in the inequality 2,
we get
Since h is non negative, we have

() Xt < 0 () b (M) X, + b (2) b (422 X(M,

Adding all inequalities for ¢« = 1, ..., n, we complete the proof.

O

In [1], Angulo et al. proved a Hermite-Hadamard type inequality for

h—convex functions. Now, we will present an analogous result for h—convex
stochastic processes.

Hermite-Hadamard type inequality

Theorem 2.10. Let be h : (0,1) — R a non-negative function, h # 0 and
X : I xQ — R a non negative, h—convex, mean square integrable stochastic
process. For every a,b € I, (a <b), the following inequality is satisfied almost
everywhere

2h1(é>X (agb’ > <5 /;X@’ )it < (X(a )+ X (b)) | bz

Proof. Fix a,b € I, a < band take u = za+ (1 —2)b, v = (1 — 2)a+ zb. Then,

v _ atb - S
457 = %=, The h—convexity of X implies that

X(a+b") _ X(u+v’.)
2 2

h (%) X (1) + X (0,)]

IN

= h (%) [(X(za+ (1 —2)b,-) + X((1 = 2)a+ 2b,-)] (a.e)

Because of the monotonicity and linearity of the mean-square integral (see
[12]), we have (a.e.)

1
X(a—i—b’.) _ /X<a+b")dz
2 0 2

h (%) Uol X(za+ (1—2)b,-)dz + /01 X((1 = 2)a + zb,-)dz

IN

Changing variables in the mean square integral (see [12]), we obtain

/OlX(za+(1_Z)b")d'z:/baaibX(“")du:aib/baX(“f)dU (a.e)



580 D. Barrdez, L. Gonzalez, N. Merentes and A. Moros

X((1- b, - X(v
/ z)a + zb, b—a/

Hence, we have the following

(50) = ()]
- 1(2)

o (2
2h

In the other hand side, we have

and

b/
[
V)=

That is,

X(u,)du + —a/X }
b—a X (t,-)dt

X(1—=2z)a+2b,-) < h(l—2)X(a,-)+ h(z)X(b,-)

Using basic properties of mean square integral,

ia/mbX(t")dt = /OIX((l—Z)a-sz,-)dz

< X(a,.)/o1 h(1_z)dz+X(b,-)/01 h(z)d>

= X(a,-) /1 h(t)dt + X (b,-) /1 h(t)dt
= (X(a,-) +X(b,-))/0 h(z)dz (a.e.)

O
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