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Abstract

In this paper, the authors introduce a new class of generalized b star
- closed map in topological spaces (briefly gbs-closed map) and study
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maps.
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1 Introduction

Different types of Closed and open mappings were studied by various re-
searchers. In 1996, Andrijevic introduced new type of set called b-open set.
A.A.Omari and M.S.M. Noorani [1] introduced and studied b-closed map.
Sekar and Mariappa [10] introduced regular generalized b-closed map in topo-
logical space.

The aim of this paper is to introduce generalized b star-closed map and
to continue the study of its relationship with various generalized closed maps.
Through out this paper (X, τ) and (Y, σ) represent the non-empty topological
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spaces on which no separation axioms are assumed, unless otherwise men-
tioned.

Let A ⊆ X, the closure of A and interior of A will be denoted by cl(A)
and int(A) respectively, union of all b-open sets X contained in A is called
b-interior of A and it is denoted by bint(A), the intersection of all b-closed sets
of X containing A is called b-closure of A and it is denoted by bcl(A).

2 Preliminaries

In this section, we referred some of the closed set definitions which was already
defined by various authors.

Definition 2.1. [7] Let a subset A of a topological space (X, τ), is called a
pre-open set if A ⊆ int(cl(A)).

Definition 2.2. [4] Let a subset A of a topological space (X, τ), is called a
a semi-open set if A ⊆ cl(int(A)).

Definition 2.3. [7] Let a subset A of a topological space (X, τ), is called a
α -open set if A ⊆ int(cl(int(A))).

Definition 2.4. [2] Let a subset A of a topological space (X, τ), is called a
b-open set if A ⊆ cl(int(A)) ∪ int(cl(A)).

Definition 2.5. [3] Let a subset A of a topological space (X, τ), is called a
generalized closed set (briefly g-closed) if cl(A) ⊆ U whenever A ⊆ U and U
is g-open in X.

Definition 2.6. [1] Let a subset A of a topological space (X, τ), is called
a generalized b- closed set (briefly gb- closed) if bcl(A) ⊆ U whenever A ⊆ U
and U is open in X.

Definition 2.7. [6] Let a subset A of a topological space (X, τ), is called
a α generalized * -closed set (briefly α g*-closed) if cl(A) ⊆ intU whenever
A ⊆ U and U is α open in X.

Definition 2.8. [8] Let a subset A of a topological space (X, τ), is called a
g∗s-closed set (briefly g ∗ s- closed) if scl(A) ⊆ U whenever A ⊆ U and U is
gs-open in X.

Definition 2.9. [5] Let a subset A of a topological space (X, τ), is called
a regular generalized b-closed set (briefly rgb- closed) if scl(A) ⊆ U whenever
A ⊆ U and U is regular open in X.

Definition 2.10. [9] Let a subset A of a topological space (X, τ), is called
a generalized b star - closed set (briefly gb∗- closed) if bcl(A) ⊆ U whenever
A ⊆ U and U is g∗ open in X.
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3 On generalized b star -closed map

In this section, we introduce generalized b∗ - closed map (gb∗ - closed map) in
topological spaces by using the notions of gb∗ - closed sets and study some of
their properties.

Definition 3.1. Let X and Y be two topological spaces. A map f : (X, τ)→
(Y, δ) is called generalized b star - closed (briefly, gb∗ - closed map) if the image
of every closed set in X is gb6∗ -closed in Y .

Theorem 3.2. Every closed map is gb∗ - closed but not conversely.

Proof. Let f : (X, τ)→ (Y, δ) is closed map and V be an closed set in X then
f(V ) is closed in Y . Hence gb∗ - closed in Y . Then f is gb∗ - closed.

The converse of above theorem need not be true as seen from the following
example.

Example 3.3. Consider X = Y = {a, b, c}, τ = {X,φ, {a}, {a, b}} and
σ = {Y, φ, {a}, {b, c}}. Let f : (X, τ) → (Y, σ) be defined by f(a) = c, f(b) =
b, f(c) = a. The map is gb∗ - closed but not closed as the image of and {b, c}
in X is {a, b} is not closed in Y .

Theorem 3.4. Every semi - closed map is gb∗ - closed set but not con-
versely.

Proof. Let f : (X, τ)→ (Y, δ) is semi - closed map and V be an closed set in X
then f(V ) is closed in Y . Hence gb∗ - closed in Y . Then f is gb∗ - closed.

The converse of above theorem need not be true as seen from the following
example.

Example 3.5. Consider X = Y = {a, b, c}, τ = {X,φ, {a}, {a, c}} and
σ = {Y, φ, {a}, {b, c}}. Let f : (X, τ) → (Y, σ) be defined by f(a) = b, f(b) =
c, f(c) = a. The map is gb∗ - closed but not semi - closed as the image of and
{b, c} in X is {a, c} is not semi - closed in Y .

Theorem 3.6. Every pre - closed map is gb∗ - closed but not conversely.

Proof. Let f : (X, τ)→ (Y, δ) be pre-closed map and V be an closed set in X
then f(V ) is closed in Y . Hence gb∗ - closed in Y . Then f is gb∗ - closed.

The converse of above theorem need not be true as seen from the following
example.

Example 3.7. Consider X = Y = {a, b, c}, τ = {X,φ, {b, c}} and σ =
{Y, φ, {a}, {a, b}, {a, c}}. Let f : (X, τ)→ (Y, σ) be defined by f(a) = a, f(b) =
b, f(c) = c. The map is gb∗ - closed but not pre - closed as the image of {a}
in X is {a} is not pre-closed in Y .
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Theorem 3.8. Every αg∗ - closed map is gb∗ - closed but not conversely.

Proof. Let f : (X, τ)→ (Y, δ) be αg∗ - closed map and V be an closed set in X
then f(V ) is closed in Y . Hence gb∗ - closed in Y . Then f is gb∗ - closed.

The converse of above theorem need not be true as seen from the following
example.

Example 3.9. Consider X = Y = {a, b, c}, τ = {X,φ, {a}, {a, c}} and
σ = {Y, φ, {a}, {a, b}}. Let f : (X, τ) → (Y, σ) be defined by f(a) = a, f(b) =
b, f(c) = c. The map is gb∗ - closed but not αg∗ - closed as the image of {b}
in X is {b} is not αg∗ - closed in Y .

Theorem 3.10. Every b - closed map is gb∗ - closed but not conversely.

Proof. Let f : (X, τ)→ (Y, δ) b - closed map and V be an closed set in X then
f(V ) is closed in Y . Hence gb∗ - closed in Y . Then f is gb∗ - closed.

The converse of above theorem need not be true as seen from the following
example.

Example 3.11. Consider X = Y = {a, b, c},τ = {X,φ, {a}} and σ =
{Y, φ, {a}, {a, b}}. Let f : (X, τ) → (Y, σ) be defined by f(a) = c, f(b) =
a, f(c) = b. The map is gb∗ -closed but not b-closed as the image of {b, c} in
X is {a, b} is not b-closed in Y .

Theorem 3.12. Every g∗ - closed map is gb∗ - closed but not conversely.

Proof. Let f : (X, τ)→ (Y, δ) be g∗ - closed map and V be an closed set in X
then f(V ) is closed in Y . Hence gb∗ - closed in Y . Then f is gb∗ - closed.

The converse of above theorem need not be true as seen from the following
example.

Example 3.13. Consider X = Y = {a, b, c},τ = {X,φ, {a}, {a, c}} and
σ = {Y, φ, {a, c}}. Let f : (X, τ) → (Y, σ) be defined by f(a) = c, f(b) =
a, f(c) = b. The map is gb∗ - closed but not g∗ - closed as the image of and
{b, c} in X is {a, b} is not g∗ - closed in Y .

Theorem 3.14. Every g∗ - closed map is gb∗ - closed but not conversely.

Proof. Let f : (X, τ) → (Y, δ) be g∗ closed map and V be an closed set in X
then f(V ) is closed in Y . Hence gb∗ - closed in Y . Then f is gb∗ - closed.

The converse of above theorem need not be true as seen from the following
example.
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Example 3.15. Consider X = Y = {a, b, c},τ = {X,φ, {a}, {a, c}} and
σ = {Y, φ, {a}, {a, b}}. Let f : (X, τ) → (Y, σ) be defined by f(a) = b, f(b) =
a, f(c) = c. The map is gb∗ - closed but not g∗s - closed as the image of {b, c}
in X is {a, c} is not g∗s - closed in Y .

Theorem 3.16. Every gb∗ - closed map is rgb - closed but not conversely.

Proof. Let f : (X, τ)→ (Y, δ) be gb∗ - closed map and V be an closed set in X
then f(V ) is closed in Y . Hence rgb - closed in Y . Then f is rgb - closed.

The converse of above theorem need not be true as seen from the following
example.

Example 3.17. Consider X = Y = {a, b, c},τ = {X,φ, {b}, {a, b}} and
σ = {Y, φ, {a}}. Let f : (X, τ) → (Y, σ) be defined by f(a) = b, f(b) =
c, f(c) = a. The map is rgb - closed but not gb∗ - closed as the image of {a, c}
in X is {a, b} is not gb∗-closed in Y .

Theorem 3.18. A map f : (X, τ) → (Y, σ) is continuous and gb∗ - closed
set A is gb∗ -closed set of X then f(A) is gb∗ closed in Y .

Proof. Let f(A) ⊆ U where U is g∗ open set in Y . Since f is continuous,
f−1(U) is open set containing A. Hence bcl(A) ⊆ f−1(U) (as A is gb∗ - closed).
Since f is gb∗ - closed f(bcl(A)) ⊆ U is gb∗ closed set ⇒ bcl(f(bcl(A)) ⊆ U ,
Hence bcl(A) ⊆ U . So that f(A) is gb∗ - closed set in Y .

Theorem 3.19. If a map f : (X, τ) → (Y, σ) is continuous and closed set
and A is gb∗ - closed then f(A) is gb∗ - closed in Y .

Proof. Let F be a closed set of A then F is gb∗ - closed set. By theorem 3.18
f(A) is gb∗ - closed. Hence fA(F ) = f(F ) is gb∗ - closed set of Y . Here fA is
gb∗ - closed and also continuous.

Theorem 3.20. If f : (X, τ)→ (Y, σ) is closed map and g : (Y, σ)→ (Z, η)
is gb∗ - closed map , then the composition g · f : (X, τ)→ (Z, η) is gb∗ - closed
map.

Proof. Let F be any closed set in (X, τ). Since f is closed map, f(F ) is closed
set in (Y, σ). Since g is gb∗ - closed map, g(f(F )) is gb∗ - closed set in (Z, η).
That is g · f(F ) = g(f(F )) is gb∗ closed. Hence g · f is gb∗ closed map.

Remark 3.21. If f : (X, τ) → (Y, σ) is gb∗ - closed map and g : (Y, σ) →
(Z, η) is closed map, then the composition need not gb∗ - closed map .

Theorem 3.22. A map f : (X, τ)→ (Y, σ) is gb∗ - closed if and only if for
each subset S of (Y, σ) and each open set U containing f−1(S) ⊂ U , there is
a gb∗ - open set V of (Y, σ) such that S ⊂ V and f−1(V ) ⊂ U .
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Proof. Suppose f is gb∗ - closed. Let S ⊂ Y and U be an open set of (X, τ)
such that f−1(S) ⊂ U . Now X − U is closed set in (X, τ). Since f is gb∗ -
closed, f(X − U) is gb∗ - closed set in (Y, σ). There fore V = Y f(X − U) is
an gb∗ - open set in (Y, σ). Now f−1(S) ⊂ U implies S ⊂ V and f−1(V ) =
X − f−1(f(X − U)) ⊂ X − (X − V ) = U . (ie) f−1(V ) ⊂ U .

Conversely,
Let F be a closed set of (X, τ). Then f−1(f(F c)) ⊂ F c and F c is an

open in (X, τ). By hypothesis, there exist a gb∗ - open set V in (Y, σ) such
that f(F c) ⊂ V and f−1(V ) ⊂ F c ⇒ F ⊂ f−1(V )c. Hence V c ⊂ f(F ) ⊂
f(((f−1(V ))c)c ⊂ V c ⇒ f(V ) ⊂ V c. Since V c is gb∗ - closed, f(F ) is gb∗ -
closed. (ie) f(F ) is gb∗ - closed in Y . Therefore f is gb∗ - closed.

Theorem 3.23. If f : X1 × X2 → Y1 × Y2 is defined as f(x1, x2) =
(f1(x1), f2(x2)), then f : X1 ×X2 → Y1 × Y2 is gb∗ closed map.

Proof. Let U1 × U2 ⊂ X1 × X2 where Ui ∈ pgbcl(Xi), for i = 1, 2. Then
f(U1×U2) = f1(U1)×f2(U2) ∈ pgbcl(X1×Y2). Hence f is gb∗ - closed set.

Theorem 3.24. Let h : X → X1×X2 be gb∗ - closed map and Let fi : X×Xi

be define as h(x) = (x1, x2) and fi(x) = xi, then fi : X × Xi is gb∗ - closed
map for i = 1, 2.

Proof. Let U1 × U2 ∈ X1 ×X2, then f1(U1) = h1(U1 ×X2) ∈ gb∗cl(X), there
fore f1 is gb∗ - closed. Similarly we have f2 is gb∗ - closed. Thus fi is gb∗ -
closed map for i = 1, 2.

Theorem 3.25. For any bijection map f : (X, τ) → (Y, σ), the following
statements are equivalent:
(i) f−1 : (Y, σ)→ (X, τ) is gb∗ - continuous.
(ii) f is gb∗ - open map.
(iii) f is gb∗ - closed map.

Proof. (i)⇒(ii) Let U be an open set of (X, τ). By assumption, (f−1)−1(U) =
f(U) is gb∗ - open in (Y, σ) and so f is gb∗ - open.

(ii)⇒(iii) Let F be a closed set of (X, τ). Then F c is open set in (X, τ).
By assumption f(F c) is gb∗ - open in (Y, σ). Therefore f(F c) = f(F )c is gb∗ -
open in (Y, σ). That is f(F ) is gb∗ - closed in (Y, σ). Hence f is gb∗ - closed.

(iii)⇒(i) Let F be a closed set of (X, τ). By assumption, f(F ) is gb∗ -
closed in (Y, σ). But f(F ) = (f−1)−1(F )⇒ (f−1) is continuous.

Remark 3.26. The following examples show that gb∗ - closed and gb closed
maps are independent.

Example 3.27. Let X = Y = {a, b, c} with τ = {X,ϕ, {b}, {b, c}} and
σ = {Y, ϕ, {a}, {a, c}}. Define a function f : (X, τ) → (Y, σ) by f(a) = b,
f(b) = c, f(c) = a, then f is gb closed map but not gb∗ closed map as the
image of and {a, c} in X is {a, b} is not gb∗ closed set in Y .
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Example 3.28. Let X = Y = {a, b, c} with τ = {X,ϕ, {a}, {a, b}} and
σ = {Y, ϕ, {c}, {b, c}}. Define a function f : (X, τ) → (Y, σ) by f(a) = c,
f(b) = a, f(c) = b, then f is gb∗ closed but not gb closed as the image of and
{b, c} in X is {a, b} is not gb closed set in Y .

4 On generalized b star -open map

In this section, we introduce generalized b star- open map (briefly gb∗ - open)
in topological spaces by using the notions of gb∗ - open sets and study some
of their properties.

Definition 4.1. Let X and Y be two topological spaces. A map f : (X, τ)→
(Y, δ) is called generalized b star - open (briefly, gb∗ - open) if the image of
every open set in X is gb∗ - open in Y .

Theorem 4.2. Every open map is gb∗ - open but not conversely.

Proof. Let f : (X, τ) → (Y, δ) is open map and V be an open set in X then
f(V ) is open in Y . Hence gb∗ - open in Y . Then f is gb∗ - open.

The converse of above theorem need not be true as seen from the following
example.

Example 4.3. Consider X = Y = {a, b, c},τ = {X,φ, {c}, {a, c}} and σ =
{Y, φ, {b}}. Let f : (X, τ)→ (Y, σ) be defined by f(a) = b, f(b) = c, f(c) = a.
The map is gb∗ - open but not open as the image of and {a, c} in X is {b, c}
is not open in Y .

Theorem 4.4. A map f : (X, τ)→ (Y, σ) is gb∗ - closed set if and only if
for each subset S of Y and for each open set U containing f−1(S) ⊂ U there
is a gb∗ - open set V of Y such that S ⊂ U and f−1(V ) ⊂ U .

Proof. Suppose f is gb∗ - closed set. Let S ⊂ Y and U be an open set of
(X, τ) such that f−1(S) ⊂ U . Now X − U is closed set in (X, τ). Since f is
gb∗ closed, f(X − U) is gb∗ closed set in (Y, σ). Then V = Y − f(X − U) is
gb∗ open set in (Y, σ). There fore f−1(S) ⊂ U implies S ⊂ V and f−1(V ) =
X − f−1(f(X − U)) ⊂ X − (X − V ) = U . (ie) f−1(V ) ⊂ U .

Conversely,
Let F be a closed set of (X, τ). Then f−1(f(F c)) ⊂ F c and F c is an

open in (X, τ). By hypothesis, there exists a gb∗ open set V in (Y, σ) such
that f(F c) ⊂ V and f−1(V ) ⊂ F c ⇒ F ⊂ (f−1(V )c. Hence V c ⊂ f(F ) ⊂
f(((f−1(V ))c)c) ⊂ V c ⇒ f(V ) ⊂ V c . Since V c gb∗ - closed, f(F ) is gb∗-
closed. (ie) f(F ) is gb∗ - closed in (Y, σ) and there fore f is gb∗ - closed.
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Theorem 4.5. For any bijection map f : (X, τ) → (Y, σ), the following
statements are equivalent.
(i) f−1 : (X, τ)→ (Y, σ) is gb∗ - continuous.
(ii) f is gb∗ open map.
(iii) f is gb∗ - closed map.

Proof. (i)⇒ (ii) Let U be an open set of (X, τ). By assumption (f−1)−1(U) =
f(U) is gb∗ - open in (Y, σ). There fore f is gb∗ - open map.

(ii)⇒ (iii) Let F be closed set of (X, τ), Then F c is open set in (X, τ). By
assumption, f(F c) is gb∗ - open in (Y, σ). There fore f(F ) is gb∗ - closed in
(Y, σ). Hence f is gb∗- closed.

(iii)⇒ (i) Let F be a closed set of (X, τ), By assumption f(F ) is gb∗ -
closed in (Y, σ). But f(F ) = (f−1)−1(F ). Hence f−1 : (X, τ) → (Y, σ) is gb∗

-continuous.

5 Conclusion

The classes of generalized b star -closed map and generalized b star -open map
defined using gb∗ -closed sets form a topology. The gb∗-closed maps can be
used to derive a new decomposition of continuity, contra continuous function,
almost contra continuous function, closure and interior. This idea can be
extended to fuzzy topological space and fuzzy intuistic topological spaces.
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