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Abstract
In this paper, the authors introduce a new type of connected spaces
called generalized « regular-connected spaces (briefly gar-connected
spaces) in topological spaces. The notion of generalized « regular-
compact spaces is also introduced (briefly gar-compact spaces) in
topological spaces. Some characterizations and several properties
concerning gar-connected spaces and gar-compact spaces are obtained.
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1 Introduction

Topological spaces are mathematical structures that allow the formal defini-
tions of concepts such as connectedness, compactness, interior and closure.
In 1974, Das [4] defined the concept of semi-connectedness in topology and
investigated its properties. Compactness is one of the most important, use-
ful and fundamental concepts in topology. In 1981, Dorsett [6] introduced
and studied the concept of semi-compact spaces. In 1990, Ganster [7] de-
fined and investigated semi-Lindelof spaces. Since then, Hanna and Dorsett
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[10], Ganster and Mohammad S. Sarsak [8] investigated the properties of semi-
compact spaces. The notion of connectedness and compactness are useful and
fundamental notions of not only general topology but also of other advanced
branches of mathematics. Ganster and Steiner [9] introduced and studied the
properties of gh-closed sets in topological spaces. Benchalli et al [2] introduced
gb - compactness and gb - connectedness in topological spaces. Dontchev and
Ganster[5] analyzed sg - compact space. Later, Shibani [13] introduced and
analyzed rg - compactnes and rg - connectedness. Crossely et al [3] introduced
semi - closure. Vadivel et al [14] studied rga - interior and rga - closure sets
in topological spaces. The aim of this paper is to introduce the concept of
gar-connected and gar-compactness in topological spaces.

2 Preliminary Notes

Definition 2.1. A subset A of a topological space (X, 1), is called sg closed,
if scl(A) C U. The complement of sg closed set is said to be sg open set . The
family of all sqg open sets (respectively semi generalised closed sets) of (X, T)

is denoted by SG — O(X, 7) [respectively SG — CL(X, T)].

Definition 2.2. A subset A of a topological space (X, T), is called general-
ized o regular-closed set [11] (briefly gar-closed set) if acl(A) C U whenever
A CU and U is regular open in X. The complement of gar-closed set is called
gar-open. The family of all gar-open [respectively gar-closed] sets of (X, T)
is denoted by gar — O(X, 1) [respectively gar — CL(X,T)].

Definition 2.3. A subset A of a topological space (X, T) is called b-open
set[1] if A C cl(int(A)) U int(cl(A)). The complement of b-open set is b-
closed sets. The family of all b-open sets (respectively b-closed sets) of (X, T)
is denoted by bO(X,T) (respectively bC'L(X,T))

Definition 2.4. The gar-closure of a set A, denoted by gar — CI(A)[12] is
the intersection of all gar-closed sets containing A.

Definition 2.5. The gar-interior of a set A, denoted by gar — int(A)[12]
s the union of all gar-open sets containing A.

Definition 2.6. A topological space X is said to be gb-connected [2] if X
cannot be expressed as a disjoint of two non-empty gb-open sets in X. A sub
set of X is gb-connected if it is gb-connected as a subspace.

Definition 2.7. A subset A of a topological space (X, T) is called generalized
a reqular-closed set[11] (briefly gar-closed set) if acl(A) C U whenever A C U
and U 1is reqular open in X.
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3 Main Results gar-Connectedness

Definition 3.1. A topological space X 1is said to be gar-connected if X
cannot be expressed as a disjoint of two mon - empty gar-open sets in X. A
subset of X is gar-connected if it is gar-connected as a subspace.

Example 3.2. Let X = {a,b,c} and let 7 = {X, p,{a},{c},{a,c}}. Itis
gar-connected.

Theorem 3.3. For a topological space X, the following are equivalent.
(i) X is gar-connected.

(1)) X and ¢ are the only subsets of X which are both gar-open and gor-
closed.

(i1i) Each gar-continuous map of X into a discrete space Y with at least two
points is constant map.

Proof. (i) = (ii) : Suppose X is gar - connected. Let S be a proper subset
which is both gar - open and gar - closed in X. Its complement X — S is also
gar - open and gar - closed. X = SU (X — 9), a disjoint union of two non
empty gar - open sets which is contradicts (i). Therefore S = ¢ or X.

(ii) = (i) : Suppose that X = AU B where A and B are disjoint non empty
gar - open subsets of X. Then A is both gar - open and gar - closed. By
assumption A = ¢ or X. Therefore X is gar - connected.

(ii) = (iii) : Let f: X — Y be a gar - continuous map. X is covered by gar -
open and gar - closed covering {f‘l(y) Cy € Y}. By assumption f~!(y) = ¢
or X foreach y € Y . If f7l(y) = ¢ for all y € (V) , then f fails to be a
map. Then there exists only one point y € Y such that f~!(y) # ¢ and hence
f~Yy) = X. This shows that f is a constant map.

(iii) = (ii) : Let S be both gar - open and gar - closed in X. Suppose S # ¢.
Let f: X — Y be a gar - continuous function defined by f(S) = {y} and
f(X =S) = {w} for some distinct points y and w in Y. By (iii) f is a constant
function. Therefore S = X. O

Theorem 3.4. Fvery gar - connected space is connected.

Proof. Let X be gar - connected. Suppose X is not connected. Then there
exists a proper non empty subset B of X which is both open and closed in X.
Since every closed set is gar - closed, B is a proper non empty subset of X
which is both gar - open and gar - closed in X. Using by Theorem 3.3, X is
not gar - connected. This proves the theorem. O

The converse of the above theorem need not be true as shown in the following
example.
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Example 3.5. Let X = {a,b,c} and let 7 = {X, ¢, {b},{c},{a,c}}. X is
connected but not gar - connected. Since {b},{a,c} are disjoint gar - open
sets and X = {b} U {a,c}.

Theorem 3.6. If f : X — Y is a gar - continuous onto and X is gar -
connected, then Y 1s connected.

Proof. Suppose that Y is not connected. Let Y = AU B where A and B are
disjoint non - empty open set in Y. Since f is gar - continuous and onto,
X = fY(A) U fY(B) where f~'(A) and f~!(B) are disjoint non - empty
gar - open sets in X. This contradicts the fact that X is
gar - connected. Hence Y is connected. O

Theorem 3.7. If f: X — Y is a gar - wrresolut and X is gar - connected,
then'Y is gar - connected.

Proof. Suppose that Y is not gar connected. Let Y = AU B where A and B
are disjoint non - empty gar open set in Y. Since f is gar - irresolut and onto,
X = f7YA) U f4(B) where f~'(A) and f~!(B) are disjoint non - empty
gar - open sets in X. This contradicts the fact that X is gar - connected.
Hence Y is
gar - connected. O

Definition 3.8. A topological space X is said to be Ty, - space if every
gar - closed set of X s closed subset of X.

Theorem 3.9. Suppose that X is Ty, - space then X is connected if and
only if it is gar - connected.

Proof. Suppose that X is connected. Then X cannot be expressed as disjoint
union of two non - empty proper subsets of X. Suppose X is not a gar -
connected space. Let A and B be any two gar - open subsets of X such that
X = AUB, where ANB =¢pand A C X,B C X. Since X is T, - space
and A, B are gar - open. A, B are open subsets of X, which contradicts that
X is connected. Therefore X is gar - connected.

Conversely, every open set is gar - open. Therefore every gar - connected
space is connected. ]

Theorem 3.10. If the gar - open sets C' and D form a separation of X
and if Y is gar - connected subspace of X, then'Y lies entirely within C or D.

Proof. Since C' and D are both gar - open in X, the sets CNY and DNY
are gar - open in Y. These two sets are disjoint and their union is Y. If they
were both non - empty, they would constitute a separation of Y. Therefore,
one of them is empty. Hence Y must lie entirely C' or D. [
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Theorem 3.11. Let A be a gar - connected subspace of X. If A C B C
gar — cl(A) then B is also gar - connected.

Proof. Let A be gar - connected and let A C B C gar — cl(A). Suppose that
B = C' cupD is a separation of B by gar - open sets. By using Theorem 3.10,
A must lie entirely in C' or D. Suppose that A C C, then gar — cl(A) C
gar —cl(B). Since gar —cl(C') and D are disjoint, B cannot intersect D. This
contradicts the fact that C' is non empty subset of B. So D = ¢ which implies
B is gar - connected. O]

Theorem 3.12. A contra gar - continuous image of an gar - connected
space is connected.

Proof. Let f : X — Y is a contra gar - continuous function from gar -
connected space X on to a space Y. Assume that Y is disconnected. Then
Y = AU B, where A and B are non empty clopen sets in Y with AN B = ¢.
Since f is contra gar - continous, we have f~'(A) and f~!(B) are non empty
gar - open sets in X with f~1(A)U fY(B)=f(AUB) = f1(Y) =X and
Y AN fYB)= f"Y(AN B) = f~*(¢) = ¢. This shows that X is not gar

- connected, which is a contradiction. This proves the theorem. O

4 Main Results gar - Compactness

Definition 4.1. A collection {Aa Ca € A} of gar -open sets in a topological
space X is called a gar - open cover of a subset B of X if B C |J {Aa Ta € A}
holds.

Definition 4.2. A topological space X is gar - compact if every gar - open
cover of X has a finite sub - cover.

Definition 4.3. A subset B of a topological space X is said to be gar -
compact relative to X, if for every collection {Aa o€ A} of gar - open
subsets of X such that B C | {Aa fa € A} there exists a finite subset Ay of
A such that B C U{Aa o= Ao}.

Definition 4.4. A subset B of a topological space X is said to be gar -
compact if B is gar - compact as a subspace of X.

Theorem 4.5. Every gar - closed subset of gar - compact space is gar -
compact relative to X.

Proof. Let A be gar - closed subset of a gar - compact space X. Then A€ is
gar - open in X. Let M = {Ga o€ A} be a cover of A by gar - open
sets in X. Then M* = M U A° is a gar - open cover of X. Since X is
gar - compact, M* is reducible to a finite sub cover of X, say X = G, U
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Gao UGu3 U ... UGum UAS G, € M. But A and A° are disjoint. Hence
AC Gy UGwUGU...UGu,Gar € M, this implies that any gar open
cover M of A contains a finite sub - cover. Therefore A is gb - compact relative
to X. That is, every gar - closed subset of a gar - compact space X is gar -
compact. ]

Definition 4.6. A function f : X — Y is said to be gar - continuous if
7YV is gar - closed in X for every closed set V of Y.

Theorem 4.7. A gar - continuous image of a gar - compact space is com-
pact.

Proof. Let f: X — Y be a gar - continuous map from a gar - compact space
X onto a topological space Y. Let {Aa ta € A} be an open cover of Y. Then
{ffl(Ai) ti € A} is a gar - open cover of X. Since X is gar - compact, it
has a finite sub - cover say {f~'(A1),f™! i € A(A2),..., [ (A,)}. Since
fis onto {Ay, As, ..., A,} is a cover of Y, which is finite. Therefore Y is
compact. ]

Definition 4.8. A function f : X — Y is said to be gar - irresolute if
f‘l(V) 18 gar - closed in X for every gar - closed set' V of Y.

Theorem 4.9. If a map f : X — Y is gar - irresolute and a subset B of X

is gar - compact relative to X, then the image f(B) is gar - compact relative
toY.

Proof. Let{Aa Ca € A} be any collection of gar - open subsets of Y such
that f(B) C U{A4s : @« € A} C. Then B C U{f*(Aa) : @ € A}. Since
by hypothesis B is gar - compact relative to X, there exists a finite subset
Ao € A such that B C J{f7'(Aa) : @ € Ag}. Therefore we have f(B)J C
{(As) : o € Ag}, it shows that f(B) is gar - compact relative to Y. O

Theorem 4.10. A space X is gar - compact if and only if each family
of gar - closed subsets of X with the finite intersection property has a non -
empty intersection.

Proof. Given a collection A of subsets of X, let C' = {X — A: A € A} be the
collection of their complements. Then the following statements hold.

(a) A is a collection of gar - open sets if and only if C' is a collection of gar -
closed sets.

(b) The collection A covers X if and only if the intersection (.. C of all the
elements of C' is empty.
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(c¢) The finite sub collection {A;, Ay, ... A, } of A covers X if and only if the
intersection of the corresponding elements C; = X — A; of C' is empty.The
statement (a) is trivial, while the (b) and (c) follow from De Morgan’s law.
X—(Uues Aa) = Npes (X —=A,). The proof of the theorem now proceeds in
two steps, taking contra positive of the theorem and then the complement.
The statement X is gar - compact is equivalent to : Given any collection
A of gar - open subsets of X, if A covers X, then some finite sub collection
of A covers X. This statement is equivalent to its contra positive, which
is the following.

Given any collection A of gar - open sets, if no finite sub - collection of A
of covers X, then A does not cover X. Let C be as earlier, the collection
equivalent to the following:

Given any collection C' of gar - closed sets, if every finite intersection of
elements of C' is not - empty, then the intersection of all the elements of
C is non - empty. This is just the condition of our theorem.

]

Definition 4.11. A space X is said to be gar - Lindelof space if every cover
of X by gar - open sets contains a countable sub cover.

Theorem 4.12. Let f : X — Y be a gar - continuous surjection and X be
gar - Lindelof, then Y is Lindelof Space.

Proof. Let f : X — Y be a gar - continuous surjection and X be gar -
Lindelof. Let {V,,} be an open cover for Y. Then {f~'(V,,)} is a cover of X by
gar - open sets. Since X is gar - Lindelof, { f~(V,,)} contains a countable sub
cover, namely {f~'(V,,)}. Then {V,,} is a countable subcover for Y. Thus
Y is Lindelof space. O

Theorem 4.13. Let f : X — Y be a gar - irresolute surjection and X be
gar - Lindelof, then Y is gar - Lindelof Space.

Proof. Let f : X — Y be a gar - irresolute surjection and X be gar - Lindelof.
Let {V,} be an open cover for Y. Then {f~!(V,)} is a cover of X by gar -
open sets. Since X is gar - Lindelof, { f~!(V,,)} contains a countable sub cover,
namely {f~'(V,,)}. Then {V,,} is a countable subcover for Y. Thus Y is gar
- Lindelof space. O

Theorem 4.14. If f : X — Y is a gar - open function and Y 1is gar
-Lindelof space, then X is Lindelof space.

Proof. Let {V,} be an open cover for X. Then {f(V,)} is a cover of Y by
gar - open sets. Since Y is gar Lindelof, {f(V,)} contains a countable sub
cover, namely {f(Van)}. Then {V,,} is a countable sub cover for X. Thus X
is Lindelof space. [
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