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Abstract

In this paper we introduce a notion of σ-p.i.c.-functor. We prove

that the functor Pk of probabilities measures supported on ≤ k points

is a σ - p.i.c.-functor and the logarithmic law for Lebesgue dimension

takes place for Pk and paracompact p-spaces and stratifiable spaces.

We consider also a problem of a preservation of the class of weakly

countable-dimensional spaces by some σ-p.i.c - functors.
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1 Introduction

In [19] a notion of a projectively inductively closed functor (p.i.c.-functor)
was introduced. Every normal finitary functor, in particular expk, is a p.i.c.-
functor. But, as it follows from [19] and [20], one of the main functors of a finite
degree, the functor Pk of probability measures supported on ≤ k points, is not
a p.i.c-functor. In [21] it was proved that every p.i.c.-functor of a finite degree
satisfies the logarithmic law for Lebesgue dimension dim for all paracompact
∑

-spaces. It means that

dimFβ (X) ≤ k dimX + dimF (k)

for a p.i.c.-functor F of degree k and a non-empty paracompact
∑

-space X.
In this article we introduce a notion of a σ-p.i.c.-functor. The functor Pk is

a -σ-p.i.c.-functor (Theorem 3.17). The mentioned above logarithmic law takes
place for any σ-p.i.c.-functor F of a finite degree and paracompact

∑

-space
X such that F (X) is a normal space (Theorem 3.32). As corollaries we have
that the logarithmic law for dim takes place for Pk and paracompact p-spaces
(Theorem 3.44) and stratifiable spaces (Theorem 3.45). We prove also that
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Pω(X), where Pω is the functor of probability measures with finite supports,
is a weakly countable-dimensional space for any weakly countable-dimensional
paracompact p-space X and stratifiable space X (Theorem 3.51). The same is
true for the hyperspace functor expω of finite subsets (Theorem 3.54).

For a set A by |A| we denote the cardinality of A. For a subset A of a
topological space X by ClXA or just ClA we denote the closure of A in X . A
non-negative integer k we identify with the corresponding set of ordinals, i.e.
k = {0, ..., k − 1}, 0 = {∅}. All spaces are assumed to be Tychonoff, and all
mappings, continuous. Any additional information on general topology and
covariant functors one can find, for example, in ([10], [12], [18]).

2 Preliminary Notes

By Top we denote the category of all topological spaces and all their continuous
mappings. By Tych we denote the full subcategory of Top whose objects are
Tychonoff spaces. A Hausdorff compact space we call a compact space or just
a compactum. By Comp we denote the full subcategory of Tych, whose objects
are compacta. Recall several properties of a covariant functor F : Comp →
Comp. They say that F :

0) preserves the empty set, if F (∅) = ∅.
1) preserves singletons, if F (1) = 1.
2) is monomorphic, if for any (topological) embedding f : A → X , the

mapping F (f) : F (A) → F (X) is also an embedding.
3) is epimorphic, if for any surjective mapping f : X → Y, F (f) : F (X) →

F (Y ) is also surjective.

4) is continuous, if for any inverse spectrum S =
{

Xα; π
α
β : α ∈ A

}

of com-

pact spaces, the limit f : F (limS) → limF (S) of the mappings F (πα) ,
where πα : limS → Xα are the limiting projections of the spectrum S, is a
homeomorphism.

5) preserves intersections, if for any family {Aα : α ∈ A} of closed subsets of
a compact space X, the mapping F (i) : ∩{F (Aα) : α ∈ A} → F (X) defined
by F (i) (a) = F (iα) (a) ,where iα : Aα → X are the identity embeddings for
all α ∈ A, is an embedding.

6) preserves preimages, if for any mapping f : X → Y and an arbitrary
closed set A ⊂ Y , we have F (f−1 (A)) = F (f)−1 (F (A)) .

7) preserves weight, if w (F (X)) = w (X) for any infinite compactum X .

Definition 2.1 . A covariant functor F : Comp → Comp is called normal
[18] if it satisfies the propertiies 0)-7).

In what follows we shall use bigger classes than the class of normal functors.
But any of them shall preserve intersections and be monomorphic. Let us note,
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that almost all properties of a normality of functors have a sense for functors
acting in an arbitrary category C ⊂ Top. In particular, monomorphic and
intersection-preserving functors are naturally defined in the category Tych.
So. by a functor F : Tych → Tych we shall mean a covariant monomorphic
functor preserving intersections.

Definition 2.2 . A functor F : Comp → Comp is called regular if it
satisfies the properties 2)-6).

For a functor F and an element a ∈ F (X), the support of a is defined
as intersection of all closed sets A ⊂ X such that a ∈ F (A) (recall that we
consider only monomorphic functors preserving intersections). This support
we denote by suppF (X) (a) . When it is clear what functor and space are meant,
we denote the support of a merely by supp(a).

A.Ch.Chigogidze [8] extended an arbitrary intersection-preserving monomor-
phic functor F : Comp → Comp to the category Tych by setting

Fβ (X) = {a ∈ F (βX) : supp (a) ⊂ X}

for any Tychonoff space X . If f : X → Y is a continuous mapping of Tychonoff
spaces and βf : βX → βY is the (unique) extension of f over their Stone -
Cech compactifications, then

F (βf) (F (βX)) ⊂ Fβ (X) (1.1)

The last inclusion is a corollary of a trivial fact

f (supp (a)) ⊃ supp (F (f) (a)) . (1.2)

Therefore, we can define the mapping

Fβ (f) = F (βf) |X,

which makes Fβ into a functor.
A.Ch.Chigogidze proved [8] that if a functor F has certain normality prop-

erty, then Fβ has the same property (modified when necessary). In sections 1
and 2 by a functor F : Tych → Tych we shall mean, as a rule, a functor of
type Fβ. For such a functor F and any compact space X the space F (X) is
compact.

Definition 2.3 . A functor F : Tych → Tych is said to be compact (σ − compact)
if F (K) is compact(σ − compact) for any space X ∈ Comp.

Remark 2.4 . For any functor F : Comp → Comp the functor Fβ is
compact, but not every compact functor in Tych has type Fβ . As for examples
one can consider the functors PR and Pτ of Radon and τ - additive probability
measures correspondingly (look at [4]).
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Going back to functors F : Comp → Comp, we, evidently, have

a ∈ F (supp (a)) . (1.3)

If a functor F preserves preimages. then F preserves supports [18], i.e.

f(supp (a) = supp (F (f) (a)) . (1.4)

The property (1.4) can be conversed.

Proposition 2.5 .[18]. Any functor in Comp preserves supports if and
only if it preserves preimages.

Definition of the functor Fβ and property (1.4) imply that

f(suppFβ (X)
(a) = suppFβ(Y )Fβ(f)(a) (1.5)

for any preimage preserving functor F : Comp → Comp, Tychonoff spaces
X and Y , continuous mapping f : X → Y . and a ∈ Fβ(X).

Now we recall one construction given by V.N.Basmanov [5]. Let F :
Comp → Comp be a functor. By C(X.Y ) we denote the space of all con-
tinuous mappings from X to Y with compact-open topology.

In particular, C(k, Y ) is naturally homeomorphic to the k-th power Y k of
the space Y ; the homeomorphism takes each mapping ξ : k → Y to the point
(ξ(0), ..., ξ(k − 1)) ∈ Y k.

For a functor F , a non-empty compact space X , and a positive integer k,
in [5] there was defined the mapping

πF,X,k : C(k,X)× F (k) → F (X)

by
πF,X,k(ξ, a) = F (ξ)(a) (1.6)

for any ξ ∈ C (k,X) and a ∈ F (k). If X = ∅, then dom(πF,X,k) = ∅, and
Im (πF,X,k) = ∅.

When it is clear what functor F and what space X are meant. we omit the
subscripts F and X and write πX,k or πk instead of πF,X,k.

According to Shchepin’s theorem ([18], Theorem 3.1), the mapping

F : C (Z, Y ) → C (F (Z) , F (Y ))

is continuous for any continuous functor F and compacta Z and Y . This
implies the following assertion.

Proposition 2.6 .[5]. If F is a continuous functor, X is a compact space,
and κ is a positive integer, then the mapping πF,X,k is continuous.
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Recall a general definition. For a category C we denote by O(C) and M(C)
the family of all objects of C and the family of all morphisms of C respectively.
Let G and F be functors in some category C ⊂ Top. A natural transformation
i : G → F is a family of mappings iX : G(X) → F (X) , X ∈ O (C) , such that

F (f) ◦ iX = iY ◦G(f) (1.7)

for any f ∈ M (C).
Mappings iX are called components of a transformation i. A functor G

is said to be a subfunctor of a functor F if there is a natural transformation
i : G → F such that all its components iX are embeddings. This natural
transformation i is called an embedding of G into F . If i : G → F is an
embedding, then (1.7) implies

G(f) = i−1
Y ◦ F (f) ◦ iX (1.8)

Remark 2.7 . Usually subfunctors arise in a rather natural way. For
example, in the category Comp the functor expc of hyperspaces of subcontinua
is embedded in the functor exp of hyperspaces of closed subsets from the outset.
We shall assume that it is a standard situation. This means that a functor
G is a subfunctor of F if a natural transformation (embedding) i : G → F
consists of identity embeddings, i.e. G(X) is a subspace of F (X) for any space
X. In this case the condition (1.8) is equivalent to the condition

F (f) (G (X)) ⊂ G (Y ) (1.9)

Definition 2.8 . Let Fk be a subfunctor of a functor F in Comp defined
as follows. By definiton. Fk(∅) = F (∅). For a non-empty compact space X,
Fk(X) is the image of the mapping πF,X,k. For a mapping f : X → Y, Fk (f)

is the restriction of F (f) to Fk(X). Denote by
−

f :C (k,X) → C (k, Y ) the
mapping which takes ξ to composition f ◦ ξ. It is easy to see that

πY,k ◦
−

f ×idF ({k}) = F (f) ◦ πX,k (1.10)

Therefore, F (f) (Fk (X)) ⊂ Fk (Y ) . Hence, Fk is a functor. Clearly. Fk is a
subfunctor of F with the identity embedding Fk (X) ⊂ F (X) for an arbitrary
compact space X .

A functor F is called’a functor of degree k (they write degF = k), if Fk(X) =
F (X) for any compact space X , but Fk−1 (X) 6= F (X)) for some X. The next
assertion (Proposition 2.9) is Shchepin’s definition of the functor Fk. But using
Basmanov’s definition we should prove it. One can find the proof in [19].

Proposition 2.9 . For any continuous functor F and a compact space X,
we have

Fk (X) = {a ∈ F (X) : |sup p (a)| ≤ k} .
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The definition of a support and the property (1.3) imply

Proposition 2.10 . For a functor F , a compact space X . and a closed
subset A of X , we have

F (A) = {a ∈ F (X) : supp(a) ⊂ A} .

Proposition 2.11 . Let F be a functor in Tych, A be a closed subset
of X , a ∈ F (X), and sup p (a) ⊂ A. Then F (f) (a) = a for any mapping
f : X → X such that f |A = idA.

Proof. Let i : A → X be the identity embedding. Then i = f o i. Hence,

F (i) = F (f) ◦ F (i) . (1.11)

Since supp(a) ⊂ A and F (i) : F (A) → F (X) is the identity embedding,
we have a = F (i) (a) . Consequently. F (f) (a) = F (f)F (i) (a) = (in view of
(1.11))=F (i) (a) = a Proposition 2.11 is proved.

Proposition 2.12 . Let F be a regular functor in Comp and let G be its
regular subfunctor. Then

G (A) = G (X) ∩ F (A)

for any compact space X and its closed subset A.

Proof. The inclusion ⊂ is obvious. As for the inverse inclusion, we shall
prove it in several steps.

1. X is finite. LetX = {x1, . . . , xm , xm+1, . . . , xn} , A = {x1, . . . , xm} , xi 6=
xj for i 6= j. Take some set Y0 = {y1, . . . , yn−m} such that Yo ∩ X = ∅ Set
Y = A∪Y0 and Z = X ∪Y Define a mapping f : Z → Z in the following way:

f | A = id, f (xm+i) = yi , f (yi) = xm+i, i ∈ {1, . . . , n−m} .
Let a ∈ G (X) ∩ F (A). In accordance with Proposition 2.11. F (f) (a) =

a. In view of (1.8) and (1.9), we have G (f) (a) = F (f) (a) = a. Hence,
a ∈ G (Y ) by definition of f . Thus, a ∈ G (X) ∩ G (Y ) = (since G preserves
intersections)= G (A). So, the assertion of Proposition 2.12 is proved.

2. X is zero-dimensional. Then there exists an inverse spectrum S =
{

Xa, π
α
β , A

}

, consisting of finite spaces and epimorphisms, such thatX = limS
. Let πα : X → Xα be the limiting projections of the spectrum S. Since F
is a continuous functor, we can identify spaces F (X) and limF (S). Then
F (πα) are the limiting projections of the spectrum F (S). Let Aα = πα (A)
and ραβ = πα

β |Aα for any β ≤ α ∈ A. Then A = limSA and ρα = πα|A,

where SA =
{

Aα, ρ
α
β , A

}

and ρα are the limiting projections of the inverse

spectrum SA. Three other inverse spectra arise: F (SA). G(SA), and G(S).
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Then again we have F (A) = limF (SA), G(A) = limG(SA), and G(X) =
limG(S). Besides.F (ρa), G(ρa), and G(πα) are the limiting projections of the
spectra F (SA),G(SA), and G(S) respectively. Further,

F (ρa) = F (πα) |F (A) (1.12)

G (ρα) = G (πa) |G (A) (1.13)

for any α ∈ A. Moreover, since Xa are finite, we have

G (Xα) ∩ F (Aα) ⊂ G (Aα) (1.14)

for all α ∈ A. It is easy to see, that (1.12), (1.13), and (1.14) yield

G (X) ∩ F (A) ⊂ G (A) . (1.15)

So, the assertion of Proposition 2.12 for zero-dimensional spaces is proved.
3. X is an arbitrary compactum. There exist a zero-dimensional com-

pactum X0and an epimorphism f : X0 → X. Let A0 = f−1(A), and let
a ∈ G (X) ∩ F (A). Since G is an epimorphic functor, there is an element
b ∈ G (X0) such that G(f)(b) = a. Then F (f)(b) = a and, consequently, b ∈
F (f)−1 (F (a)) . But F preserves preimages. Hence, b ∈ F (f−1 (A)) = F (A0) .
Thus, b ∈ G (X0) ∩ F (A0) ⊂ G (A0), because of (1.15). Then a = G (f) (b) ∈
G (f) (G (A0)) ⊂ G (A). Proposition 2.12 is proved.

From definition of support we get

Proposition 2.13 . Let F be a functor in Comp, and let G be its sub-
functor. Then

suppF (X) (a) ⊂ suppG(X) (a)

for any compactum X and a ∈ G(X).

Proposition 2.14 . Let F be a regular functor in Comp, G be its regular
subfunctor. Then

suppF (X) (a) = suppG(X) (a)

for any compact space X and a ∈ G (X).

Proof. Denote suppF (X) (a) by A and suppG(X) (a) by B. Then a ∈
F (A) ∩ G (B)= (by Proposition 1.12)=G (A). Thus, suppG(X) (a) ⊂ A. On
the other hand, A ⊂ B, because of Proposition 2.13. Proposition 2.14 is
proved. Propositions 2.9 and 1.14 imply

Proposition 2.15 . Let F be a regular functor of degree≤ k in Comp, and
let G be its regular subfunctor. Then deg G ≤ k.
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From 1.8 we get immediately

Proposition 2.16 . Let F be a continuous functor in Comp, and let G be
its continuous subfunctor. Then Gk ⊂ Fk for any positive integer k.

Proposition 2.17 . Let F be a regular functor in Comp, and let G be a
regular subfunctor of F . Then

Gβ (X) = G (βX) ∩ Fβ (X)

for any Tychonoff space X .

Proof. Inclusion ⊂ is trivial. Now let

a ∈ G (βX) ∩ Fβ (X) . (1.16)

Consequently, suppF (a) ⊂ X. Hence, Proposition 2.14 implies that suppG(a) ⊂
X. So,(1.16) yields a ∈ Gβ (X). Proposition 2.17 is proved.

Proposition 2.18 . Let F be a functor in Comp, and let G be its sub-
functor. Then Gβis a subfunctor of Fβ .

Proof. Let a ∈ Gβ (X). It means that suppG(βX) ⊂ X . Then suppF (βX) ⊂
X , because of Proposition 2.13. Hence, a ∈ Fβ (X). So, we proved that

Gβ (X) ⊂ Fβ (X) (1.15)

for any Tychonoff space X . It remains to check the condition (1.9). Let
f : X → Y be a mapping, and let a ∈ Gβ (X) . We denote suppG(βX) (a) by K.
Then a ∈ G(K). Hence, F (βf) (a) = G (βf) (a) ∈ G (βf) (K) = G (f) (K) .
Consequently, sup pG(βY ) (F (βf) (a)) ⊂ f (K) ⊂ Y. Thus, F (βf) (a) ∈ Gβ (Y ) .
Proposition 2.18 is proved.

3 Main Results

3.1 On closed subfunctors and their sums

Definition 3.1 . Let F be a functor acting in a category C ⊂ Top, and let
G be a subfunctor of F . The functor G is called a closed subfunctor of the
functor F if for any X ∈ O (C) the space G(X) is a closed subspace of F (X).

The next assertion is trivial.

Proposition 3.2 . In the category Comp, every subfunctor is closed.
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From 2.8 and 3.2 we get

Corollary 3.3 . For every continuous functor F : Comp → Comp and
positive integer k, the functor Fk is a closed subfunctor of F .

Going back to the category Tych, for a Tychonoff space X , a continuous
functor F : Comp → Comp, and a positive integer k, we put

Fk (X) = πF,βX,k (C (k) , X)× F (k) . (2.1)

We also put
Fk (∅) = F (∅) . (2.10)

Now we denote the restriction of πF,β,X,k to C (k) × F (k) by πF,X,k. If
g : X → Y is a continuous mapping, then

F (βg)(Fk(X)) ⊂ Fk(Y ),

in view of the equality (1.10) for the mapping f = βg. Therefore, setting

Fk(g) = Fk(βg)|F (X),

we obtain a mapping Fk (g) : Fk (X) → Fk (Y )
Thus, we have defined the covariant functor

Fk : Tych → Tych,

that extends the functor Fk : Comp → Comp to the category Tych. Proposi-
tion 2.9 implies the following assertion.

Proposition 3.4 .[19]. If F : Comp → Comp is a continuous functor,
then Fk : Tych → Tych is a subfunctor of the functor Fβ, and

Fk (X) = Fβ (X) ∩ Fk (βX) . (2.2)

Equality (2.2) yields

Corollary 3.5 . For every continuous functor F : Comp → Comp and
positive integer k, the functor (Fk)β is a closed subfunctor of Fβ .

Remark 3.6 . Proposition 2.9 asserts that Shchepin’s and Basmanov’s
definitions of functor Fk coincide for any continuous functor F in Comp. Nev-
ertheless, we shall use both definitions depending on a situation and denote
them Fk,s and Fk,b respectively. As for equality (2.1), we may assume that it
defines functor (Fβ)k,b. Thus, equality (2.2) can be written as

(Fβ)k,b = (Fk,b)β = (Fx,s)β. (2.3)
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Proposition 3.7 . If G is a regular subfunctor of a regular-functor F in
Comp, then Gβ is a closed subfunctor of Fβ.

Proof. For an arbitrary Tychonoff space X , we haveGβ (X) = G (βX) ∩
{a : suppG (a) ⊂ X}=(according to Proposition 2.14)=G (βX)∩{a : suppF (a) ⊂ X}⊂cl

(by Proposition 3.2) F (βX)∩ {a : suppF (a) ⊂ X} = Fβ (X). Proposition 3.7
is proved.

Definition 3.8 .[19]. A functor F is said to be finitely open if the set
Fk(k + 1) is open in F (k + 1) for any positive integer k. The dual for this
definition states that F (k + 1)\Fk(k + 1) is closed in F (k + 1).

Remark 3.9 . As an example of a finitely open functor one can take any
finitary functor F , i.e. a functor F such that F (k) is finite for any positive in-
teger k. In particular, the hyperspace functor exp is finitary and, consequently,
finitely open.

Proposition 3.10 . If F is regular finitely open functor and G is its regular
subfunctor, then G is finitely open.

Proof. Since of Proposition 2.14, Gk(X) = G(X)∩Fk(X) for any compact
space X and positive integer k. Hence, G(k + 1) \ Gk(k + 1) is closed in
F (k+1) \Fk(k+1). Consequently, G(k+1)\Gk (k + 1) is compact in view of
finite openness of the functor F. Proposition 3.10 is proved.

Recall that an epimorphism f : X → Y is said to be inductively closed if
there exists a closed subset A of X such that f(A) = Y and f |A is a closed
mapping.

Definition 3.11 .[20]. A continuous functor F : Comp → Comp is called
projectively inductively closed (p.i.c.) if the mapping πF,X,k is inductively closed
for any Tychonoff space X and positive integer k.

Theorem 3.12 .[20]. Every continuous finitely open functor F , that pre-
serves empty set and preimages is a p.i.c.-functor.

Corollary 3.13 . Every finitary normal functor, in particular the functor
expk, is a p.i.c.-functor.

Let F : Tych → Tych be a functor and F n⊂clF, n ∈ w We say that F is a
union of F n (F = ∪∞

n=0 F
n) , if F (X) = ∪∞

n=0F
n (X) for any Tychonoff space

X .

Definition 3.14 . A functor F : Tych → Tych is said to be a σ-p.i.c.-
functor, if F = ∪∞

n=0(F
n)β, where every F n is a p.i.c-functor of a finite degree.
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Example 3.15 . In view of Remark 3.9 and Theorem 3.12. the functor
expω = U∞

n=1 expn is a σ-p.i.c.-functor. The next statement is evident.

Proposition 3.16 . If F =U∞
n=0 F n, where each F n is a σ-p.i.c.-functor,

then F is a σ-p.i.c.-functor.

Recall that by P : Comp → Comp they denote the functor of Borel regular
probability measures. This functor is normal [11]. According to Proposition
3.4 and Remark 3.5 we shall denote (Pk)β by Pk.

Theorem 3.17 . The functor Pk is a σ-p.i.c.-functor for any positive inte-
ger k.

Proof. For a compact space X and a positive integer n we set

P n (X) =
{

µ ∈ P (X) : µ (x) ≥ 1/n ∀x ∈ supp (µ)
}

. (2.4)

It is easy to verify that P n is a subfunctor of P in Comp. Moreover,
P n ⊂ Pn. Further, we put P n

k = (P n)k. It is a routine to check that

P n
k is a normal functor (2.5)

. Now we are going to prove that

P n
k is a finitely open functor. (2.6)

According to Definition 3.8, property (2.6) is equivalent to

P n
k (m+ 1) \P n

m(m+ 1) is closed in P n
k (m+ 1) for all m ≤ k − 1. (2.7)

Let µl ∈ P n
k (m+ 1) \P n

m (m+ 1) , l ∈ ω. Assume that the sequence {µl}
converges to a measure µ ∈ P n

k (m+ 1). Every measure ν ∈ Pk (m+ 1) is a
convex combination of Dirac measures δ (i) , i = 0, . .. , m. Let µl =

∑m
i=0 a

l
iδ (i)

and µ =
∑m

i=0 aiδ (i). Since µl converges to µ, every sequence ali converges to
ai, i = 0, . . . , m. By a choice of µl we have |supp(µl)| = m + 1, that is
supp(µl) = m + 1. Hence, ali ≥ 1/n for all l and i. Consequently, ai ≥ 1/n
for all i. Then µ ∈ P n

k (m+ 1) \P n
m (m+ 1). Property (2.7) is checked, P n

k is
a finitely open functor.

Theorem 3.12 and propery (2.5) imply that (P n
k )β is a p.i.c-functor. In

accordance with Proposition 3.7 this functor is closed in Pk. Further, a point
x ∈ X belongs to supp(µ), where µ ∈ Pk, if and only if µ (x) > 0. Conse-
quently, Pk is a union of (P n

k )β . Thus Pk is a σ-p.i.c.-functor. Theorem 3.17 is
proved.

Remark 3.18 . Actually, we proved more: the functor Pk is a union of its
normal finitely open subfunctors (P n

k )β.
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3.2 Applications to dimension

Recall some auxiliary notions and facts.

Definition 3.19 .[2]. A network for a space X is a collection N of subsets
of X such that whenever x ∈ U with U open, there exists F ∈ N with x ∈ F ⊂
U .

A family A of subsets of X is said to be σ -locally finite if it is a union of
countably many families An which are locally finite in X .

Definition 3.20 .[17]. A topological space X is called a σ-space, if it has
a σ–locally finite network.

In 1969 K.Nagami [16] has invented more general class than class of σ–
spaces.

Definition 3.21 . A space X is a (strong)-
∑

-space if there exist a σ-
discrete collection N and a cover c of X by closed countably compact (compact)
sets such that, whenever C ∈ c and C ⊂ U with open U , then C ⊂ F ⊂ U for
some F ∈ N .

Clearly, from Definitions 3.20 and 3.21 we have

Proposition 3.22 .[16]. Every perfect preimage of a σ-space is a strong
∑

-space. In particular, every σ-space is a
∑

-space.

K.Nagami [16] has shown that the class of strong
∑

-spaces is strictly larger
than the class of perfect preimages of σ–spaces. On the other hand, the class
of perfect preimages of σ-spaces is much larger than the class of σ-spaces. For
example, every compact σ-space is metrizable.

The class of paracompact p-spaces in sense of A.V.Arhangel’skii is a proper
subclass of paracompact strong

∑

-spaces.

Definition 3.23 .[3]. A space X is called a p -space if there exists a
countable family un such that:

1) un consists of open subsets of βX;
2) X ⊂ ∪un for each n;
3) ∩nst (x, un) ⊂ X for every x ∈ X.

Here for a family v of subsets of a space Y by st(y, v) we denote the set
∪{V ∈ v : y ∈ V }

Theorem 3.24 .[3]. The class of paracompact p-spaces coincides with the
class of perfect preimages of metrizable spces.
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Corollary 3.25 . Every paracompact p-space is a perfect preimage of a
paracompact σ-space and, consequently, is a paracompact

∑

-space.

Definition 3.26 .[7]. A space X is stratifiable if there is a function G which
assigns to each n ∈ ω and closed set H ⊂ X, an open set G(n,H) containing
H such that

(1) if H ⊂ K, then G(n,H) ⊂ G(n,K);

(2) H = ∩nCl (G (n,H)).

The class of stratifiable spaces was defined in 1961 by J.Ceder [7]. But he
called these spaces by M3-spaces. The latter form was proposed by C.R.Borges
[6] in 1966. Clearly, every metrizable space is stratifiable.

Theorem 3.27 .[14]. Stratifiable spaces are paracompact σ-spaces.

Proposition 3.22 and Theorem 3.27 imply

Corollary 3.28 . Every statifiable space is a paracompact
∑

- space.

Theorem 3.29 .[20]. Let F be a p.i.c.-functor of a finite degree. Then Fβ

preserves the class of paracompact
∑

-spaces.

Corollary 3.13 and Theorem 3.29 yield

Corollary 3.30 . Every normal finitary functor of a finite degree, in par-
ticular the functor expk, preserves the class of paracompact

∑

-spaces.

Theorem 3.31 .[21]. Let F be a p.i.c.-functor of finite degree k, and let
X be a paracompact

∑

-space. Then

dimFβ (X) ≤ k dimX + dimF (k)

We shall say that a σ-p.i.c.-functor F has degree k if in a representation
F = ∪∞

n=0F
n from Definition 3.14 every functor F n has degree ≤ k.

Theorem 3.32 . Let F : Tych → Tych be a σ-p.i.c.-functor of finite
degree k, let X be a paracompact

∑

-space, and let F(X) be a normal space.
Then

dimF (X) ≤ k dimX + dimF (k) (3.1)
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Proof. Let F = ∪∞
n=0F

n be a representation from Definition 3.14. Ac-
cording to Theorem 3.31 we have

(3.1)n dimF n (X) ≤ k dimX + dimF n (k)

for each n ∈ w. But every F n(X) is a closed subspace of a normal space
F (X). Consequently, inequalities (3.1)n and the countable sum theorem for
dim imply inequality (3.1). Theorem 3.32 is proved.

Theorem 3.32 and respectively Proposition 3.22, Corollaries 3.25 and 3.28
imply the following corollaries.

Corollary 3.33 . Let F : Tych → Tych be a σ-p.i.c.-functor of finite
degree k, let X be a paracompact σ-space, and let F (X) be a normal space.
Then

dimF (X) ≤ k dimX + dimF (k) .

Corollary 3.34 . Let F : Tych → Tych be a σ-p.i.c.-functor of finite
degree k, let X be a paracompact p-space, and let F (X) be a normal space.
Then

dimF (X) ≤ k dimX + dimF (k)

Corollary 3.35 . Let F : Tych → Tych be a σ-p.i.c.-functor of finite
degree k, let X be a stratifiable space, and let F (X) be a normal space. Then

dimF (X) ≤ k dimX + dimF (k)

Definition 3.36 . Let G1, G2 be subfunctors of a functor F : C → C,
where either C = Comp or C = Tych. Their intersection G = G1 ∩ G2 is
defined as: G (X) = G1 (X) ∩G2 (X) for every X ∈ O (C) ,

G (f) = F (f) |G (X) for every f : X → Y fromM (C) .

Proposition 3.37 . Let G1, G2 be normal subfunctors of a normal functor
F : Comp → Comp of finite degree ≤ k. Then their intersection G = G1 ∩G2

is a normal functor of degree ≤ k.

Proof. Clearly, every subfunctor of a normal functor preserves the empty
set, singletons, epimorphisms and weight. Now we prove that

G preserves intersections. (3.2)

Since we are in Comp, it suffices to show that G preserves intersections of
two sets. Let Ai⊂clX, i = 1, 2. We have

G (A1 ∩A2) = G1 (A1 ∩A2) ∩ G2 (A1 ∩A2) =(since Gi preserve intersec-
tions)= ∩2

i,j=1Gj (Ai) = G (A1) ∩G (A2) by definition of G1 ∩G2 .
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Further,

(3.3) every monomorphic functor H of a finite degree is epimorphic.

Let us notice that here a monomorphic functor H is called a functor of
finite degree ≤ k if for any a ∈ H (X) there is a set X0 ⊂ X such that
|X0| ≤ k and a ∈ H (X0) (Shchepin’s definition). Assume that f : X → Y is
an epimorphism and a ∈ H (Y ) . There is a set Y0 ⊂ Y such that |Y0| ≤ k and
a ∈ H (Y ) . Since f is an epimorphism, there is a set X0 ⊂ X such that f0 ≡
f |X0 is a bijection and f (X0) = Y0. The mapping f0 is a homeomorphism.
Consequently, H (f0) : H (X0) → H (Y0) is a homeomorphism too. Hence,
there is an element b ∈ G (X0) such that H (f) (b) = a . By definition we have
H (f0) = H (f) |H (X0). Thus, H (f) (b) = a. Property (3.3) is checked.

Since degF ≤ k, we have that degsF ≤ k, where degs is Shchepin’s defini-
tion of a degree. Clearly, degsH < degsF for any subfunctor H of F. Conse-
quently, from (3.3) we get that G is a continuous functor being a mononomor-
phic and epimorphic functor of a finite degree (look at [18], Proposition 3.7).
Hence, degG ≤ k in accordance with Proposition 2.9.

Finally,

(3.4) G preserves preimages.

In fact, let f : X → Y be a mapping and A⊂clY . Then G (f−1 (A)) =
G1 (f

−1 (A)) ∩ G2 (f
−1 (A)) = (because Gi preserve preimages)=

G1(f)
−1

(

G1 (A) ∩G2(f)
−1

)

(G2 (A)) ⊃ G1 (f)
−1

(

G (A) ∩G2(f)
−1

) (

G (A) ⊃ G(f)−1
)

(A)

On the other hand, let a ∈ G (f−1 (A)) = G1(f)
−1(G1(A)) ∩ G2(f

) −
1(G2(A)). ThenGi (f) (a) ∈ G1 (A)∩G2 (A) = G(A). Consequently, G (f) (a) ∈
G (A), that is a ∈ G(f)−1 (A). Property (3.4) is checked. Proposition 3.37 is
proved.

Proposition 3.38 . Let G1, G2 be normal subfunctors of a normal functor
F in Comp. Then

(G1)β ∩ (G2)β = (G1 ∩G2)β

.

Proof. Denote G1∩G2 by G. According to Proposition 3.37 G is a normal
functor. Let X be a Tychonoff space. Then (Gi)β (X) = Gi (βX)∩ Fβ (X) by
Proposition 2.17.

Consequently, (G1)β (X) ∩ (G2)β (X) = G1 (βX) ∩ G2 (βX) ∩ Fβ (X) =
G (βX) ∩ Fβ (X)=(in view of Proposition 1.17)=Gβ (X). Proposition 3.38 is
proved.

Theorem 3.39 . Let F be a normal subfunctor of Pk in Comp. Then Fβ

is a σ -p.i.c.-functor.
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Proof. According to Remark 3.18 we have

(Pk)β ≡ Pk = U∞
n=0(P

n
k )β.

On the other hand, Fβ is a closed subfunctor of (Pk)β, because of Proposi-
tion 3.7. Consequently,

Fβ = ∪∞
n=0

(

(P n
k )β ∩ Fβ

)

.

Hence, Proposition 3.38 yields Fβ = ∪∞
n=0(P

n
k ∩ F )β.

Thus, according to Definition 3.14 it remains to show that P n
k ∩ F is a

p.i.c.-functor of a finite degree. Property (2.5) and Proposition 3.37 imply
that P n

k ∩ F is a normal functor. Since of Proposition 2.9, deg(P n
k ∩ F ) ≤ k.

Further. P n
k is a finitely open functor, because of property (2.6). Then P n

k ∩F
is a finitely open functor by Proposition 3.10. Finally, P n

k ∩F is a p.i.c.-functor
in accordance with Theorem 3.12. Theorem 3.39 is proved.

Theorems 3.32 and 3.39 yield

Theorem 3.40 . Let F be a normal subfunctor of Pk in Comp, let X be
a paracompact

∑

-space, and let Fβ (X)be a normal space. Then

dimFβ (X) ≤ k dimX + dimF (k) .

Corollaries 3.33. 3.34. 3.35, and Theorem 3.40 imply the following corol-
laries.

Corollary 3.41 . Let F be a normal subfunctor of Pk in Comp, let X be
a paracompact σ-space, and let Fβ (X) be a normal space. Then

dimFβ (X) ≤ k dimX + dimF (k) .

Corollary 3.42 . Let F be a normal subfunctor of Pk in Comp, let X be
a paracompact p-space, and let Fβ (X) be a normal space. Then

dimFβ (X) ≤ k dimX + dimF (k) .

Corollary 3.43 Let F be a normal subfunctor of Pk in Comp, let X be a
stratifiable space, and let Fβ (X) be a normal space. Then

dimFβ (X) ≤ k dimX + dimF (k) .

Theorem 3.44 . Let F be a normal subfunctor of Pk in Comp, let X be
a paracompact p-space (in particular, metrizable space). Then

dimFβ (X) ≤ k dimX + dimF (k) .

If F = Pk,then
dimPk (X) ≤ k dimX + k − 1.
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Proof. In view of Corollary 3.42 it suffices to show that Fβ (X) is a normal
space. But it was proved in [1] that Pβ (X) is a paracompact p- space for
any paracompact p-space X. Further, (Pk)β is a closed subfunctor of Pβ by
Corollary 3.5. According to Proposition 3.7 Fβ is a closed subfunctor of (Pk)β.
Hence, Fβ (X) is a closed subspace of Pβ (X) . Since Theorem 3.24, a closed
subspace of a paracompact p-space is a paracompact p-space. Consequently,
Fβ (X) is a paracompact p-space. Theorem 3.44 is proved.

Theorem 3.45 . Let F be a normal subfunctor of Pk in Comp, let X be
a stratifiable space. Then

dimFβ (X) ≤ k dimX + dimF (k) .

If F = Pk,then
dimPk (X) ≤ k dimX + k − 1.

The proof is similar to that of Theorem 3.44. The only difference is that
instead of [l] one has to mention [13], where a preservation of the class of
stratifiable spaces by the functor Pk was proved.

Let us recall

Definition 3.46 . A normal space X is said to be weakly countable-dimensional
if X is a union of a countable family of closed subsets Xi such that dimXi < ∞
for each i.

The next two statements are trivial.

Proposition 3.47 . Every closed subspace of a weakly countable-dimensional
space is a weakly countable-dimensional space.

Proposition 3.48 . Every normal space which is a union of a count-
able family of its closed weakly countable-dimensional subspaces is weakly
countable-dimensional.

Theorem 3.49 .[21]. Let F be a p.i.c.-functor of a finite degree transform-
ing finite sets into finite-dimensional compacta, let X be a weakly countable-
dimensional space, and let X belongs to one of the following classes:

a)
∑

-paracompact spaces;
b) p-paracompact spaces;
c) σ -paracompact spaces;
d) stratifiable spaces;
e) metrizable spaces.
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Then Fβ (X) is a weakly countable-dimensional space.

Corollary 3.50 .[21]. Let F be a normal finitary functor of a finite degree,
in particular, functor expk, letX be a weakly countable-dimensional space, and
let X belongs to one of the following classes:

a)
∑

-paracompact spaces;
b) p-paracompact spaces;
c) σ -paracompact spaces;
d) stratifiable spaces;
e) metrizable spaces.

Then Fβ (X) is a weakly countable-dimensional space.
Recall that for a normal functor F : Comp → Comp by Fω they denote a σ-

compact subfunctor of Fβ defined as: Fω (X) = ∪∞
k=1Fk (X) for any Tychonoff

space X .Thus, Fω = ∪∞
k=1Fk.

Theorem 3.51 . If X is a weakly countable-dimensional space, which is
either p-paracompact (in particular, metrizable) or stratifiable, then Pω (X)is
weakly countable-dimensional.

Proof. Firstly, let us show that Pω (X) is normal. If X is p-paracompact,
then Pω (X) is an Fσ−set in Pβ (X) which is p-paracompact (see [1]). Hence,
Pω (X) is normal (even paracompact) as an Fσ−subset of a paracompact space.
If X is stratifiable, then Pω (X) is stratifiable as well (see [13]) and, conse-
quently, normal.

The space Pω(X) is a countable union of its closed subsets (P n
k )β (X).

Thus, in view of Proposition 3.48 it suffices to show that (P n
k )β (X) is a weakly

countable-dimensional space. But P n
k is a finitely open functor in accordance

with property (2.6). Consequently, P n
k is a p.i.c.-functor by Theorem 3.12.

Finally, applying Theorem 3.49 we get that (P n
k )β (X) is a weakly countable-

dimensional space. Theorem 3.51 is proved.
Proposition 3.47 and Theorem 3.51 yield

Corollary 3.52 . If X is a weakly countable-dimensional space, which is
either p-paracompact (in particular, metrizable) or stratifiable, then F (X)
is a weakly countable-dimensional space for an arbitrary closed subfunctor
F of Pω.

Corollary 3.53 If X is a weakly countable-dimensional space, which is
either p-paracompact (in particular, metrizable) or stratifiable, then Pk (X) is
weakly countable-dimensional.

Theorem 3.54 . If X is a weakly countable-dimensional space, which is
either p-paracompact (in particular, metrizable) or stratifiable, then expω (X)
is weakly countable-dimensional.
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Proof. If X is a paracompact p-space, then expβ (X) is a paracompact
p-space (see [9]). Hence, expω (X) is normal as an Fσ-set in the normal space
expβ (X). If X is a stratifiable space, then expω (X) is stratifiable (see [15])
and, consequently, normal. Applying Proposition 3.48 and Corollary 3.50 we
complete the proof.
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