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Abstract

In this paper, comparing with the previous results, we present a new
blow-up solution for strong solutions to the equation provided that the
potential (1 — 92)ug changes sign on R, which improves considerably
the previous result.
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1 Introduction
In this article, we will consider the nonlinear dispersive wave equation
Up — Uggr + (@ + b)UUL — ULV — bUULer + MU — Uzy) = 0, (1)

where @ > 0,6 > 0 and A > 0 are arbitrary constants, u is the fluid velocity in
the z direction, A\(u — u,,) represents the weakly dissipative term.

Fora=2b=1and A =0in Eq.(1), Eq.(1) becomes the famous Camassa-
Holm equation [1, 2, 3]

Up — Upgy + SUU; — 2Uplpy — Ulger =0, >0, x € R, (2)

where u(z,t) represents the free surface above a flat bottom. As a model to
describe the shallow water motion, Eq.(2) has a bi-Hamiltonian structure and
infinite conservation laws and is completely integrable.

Fora=2,b=1and A > 0in Eq.(1), Eq.(1) changes into weakly dissipative
Camassa-Holm equation [4]

Up — Ugzg + 3UUy — 2Uglpy — Ulhgye + AU — Uze) =0, >0, € R (3)
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Fora = 3, b = 1 and A = 0 in Eq.(1), Eq.(1) becomes the classical
Degasperis-Procesi equation|[5, 6]

Up — Uppy + AUUE — BUplpy — Ullgey = 0, >0, z € R. (4)

As amodel to describe the shallow water wave, Degasperis-Procesi equation (4)
also satisfies complete integrablity, bi-Hamiltonian structure, infinite conser-
vation laws and peakon soliton solutions which are analogous to the Camassa-
Holm. However, they are quite different model(see [5]).

Fora=3,b=1and A > 0 in Eq.(1), Eq.(1) is read as weakly dissipative
Degasperis-Procesi equation|[7]

Up — Upgy + 40Uy — BUgULe — Uy + MU — uye) =0, >0, z € R. (5)

In [8], Lai and Wu study global existence and blow-up to Eq.(1) with A = 0
assumed that the potential (1 —d?)ug does not change sign on R.. To our best
knowledge, the blow-up solution of Eq.(1) under the condition yo < 0 for
x < xg and yy > 0 for x > ¢ seems not have been investigated. Present paper
is mainly concerned with blow-up solution to Eq.(1) provided that the potential
(1 — 9?)ug changes sign on R. Since Eq.(1) is a generalization of Camassa-
Holm equation and Degasperis-Procesi equation, Eq.(1) loses some important
conservation laws that they possess. In the paper, we mainly depend on some
useful prior estimates from the equation and the good method presented in
Liu and Yin [6] to obtain the blow-up solution for the equation.

2 Preliminary Notes

We denote by * the convolution. Note that if G(z) := fe7”l, 2 € R, then

(1—0%)7'f = Gx f for all f € L*(R) and G * (u — uy,) = u. Using this
identity, the Cauchy problem of Eq.(1) becomes

up + buuy, + 0,G * [2u? + 22 (u )] + =0, t>0, z€R,
2 2 (6)
u(0, ) = uo(z),
which is equivalent to

Y + buy, + ayu, + Ay = 0, t >0, r €R,
Y=U— Uy, (7)
u(0, z) = ug(x).

3 Blow-up

We firstly recall the local well-posedness of solution and blow-up scenario for
problem (6).
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Lemma 2.1. [9] Given ug € H*(s > 2), there exist a mazimal T = T (uq)
and a unique solution u to problem (6), such that

= ul-,ug) € c([o, T): HS(R)> ale <[O,T); Hs‘l(R)).

Lemma 2.2. [9]Let ug € H®,s > 2, and u be the corresponding solution to
problem (6) with time T. Then T < oo if and only if

lim inf{ inf [um(t,x)” = —00.

t—T z€R
Lemma 2.3. Provided that 2b < a < 3b, ug € H*(R)NL'(R),s > 2, if
Yo = Uy — U Satisfies yo < 0 for x > xg, yo > 0 for x < xg and y(t,z) =
u(t, ) — Upe(t, ), then, fort € R, it holds
(i) || u < e™ || ug || on R,
(ii) || w ||2:<|| uo [|3: exp ( — 20+ 52 | g | (1 - e—,\t))_

Proof. Since ¢(t, z) is an increasing diffeomorphism of R with ¢, (¢, z) > 0
with respect to time ¢t. We deduce from the assumption that for ¢t € [0,T),

y(t,z) <0, if x> q(t, xo), (8)
y(t,z) >0, if x <q(t, xo),

and y(t, q(t, 7)) = 0.
Integrating the first equation of problem (6) with respect to x in interval
(—OO, Q(ta xO)] y1€ldS

d q(t,xo) q(t,zo0) q(t,zo) b —
E/_oo " udz = —b/oo ’ uuxd:c—/_oo ’ 0, (G * [%u2+ 3 5 a(ux)Q])dx

B q(t,aco)
—A/ udz. 9)

On the other hand, integrating the first equation of problem (6) with respect
to x in interval [g(t, zo), +00) leads to

o0 a, 3b—a

d 00 00
— udxr = —b UULdT —/ 0, (G * [=u* + ug ) dx
dt /q(t,m q(t,z0) q(t,z0) ( [2 2 (u)])

—A /qoo udz. (10)

(t,mo)

Subtracting (10) from (9) yields

d = ratzo) o0 a 3b—a
%(/_oo udr — o udxr) = —2G * [§u2 + 5 (ux)z]) | 2=q(t,z0)

9 q(t,z0) oo
—bu® | p=g(t,20) —)\(/ udr — / udz),
o q

(t,wo)
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which results in

%/_O:O|u\d:c§—>\/_o:o|u|d:c.

Hence, we get
lullp< e™ | ug [l -

This proves (i). Using u = G * y, one has

_2 d£+2/eyd£

_ 2/ d§+2/ey 3 (11)

Thus, we get

+00
u(t, z) + ug(t,x) = em/ e ty(&)de <0, if x> q(t, x0),

xT

ult, ) — ug(t, ) = e~ / Ey(E)de >0, if < qlt,z). (12)

—00

From (12), we get u, <|u | on R.
Multiplying Eq.(1) by u and integrating by parts, we have

Ld (u2 +u?)dr = —)\/ (u? 4 u?)dx — a/ Uy Uy AT — b/ Uy dex
2dt R R R
2 _
= —)x/(u2 + u?) b—a uldx
R R
2b

e [ uo [l w [ -

—)\/ (u? + u2)dzr + =
R

Applying the Gronwall’s inequality, one has

a—2b N
I <l o I exp (= 204+ 25 g s (1= 7).

This completes the proof of Lemma 2.3.
Theorem 2.4. Provided that 2b < a < 3b, ug € H*(R)NL'(R),s > 3,
and Yo = Ug — Uz Satisfies yo > 0 for x < xg, yo < 0 for x > xy and

2 2
A< —gle T
2(1+4co) l[uoll2,y exp[ 452 (1—e= ) [uol| 1]

u(t, z) to problem (6) blows up in finite time.
Proof. Applying a simple density argument, we only need to show that the
above theorem holds for s = 3. Let T' > 0 be the maximal time of existence of

ug(zo), where ¢y = then the solution
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the solution u to problem (6) with the initial data uy € H*(R). Differentiating
the first equation of problem (6) with respect to x, we get
a, 3b—a

Uy = uy — buty, + %uz — G [iu + T(ui)] — Ay (13)

Applying (6), we have

d

g talt 4t 20)) = wa(t, a(t, 20)) + uaa(t, g(t, xo))jt (2, o)

= Uty (t, q(t, ZL’Q)) + bu(t, C_I(ta xO))u:c:c(t> q(t> 0))

b—a

= it q(t,20)) + Ut gt 7o)

el [%zﬂ(t, q(t, z0)) + 3b2_ L2 (t, q(t, o))
_Aux(tv Q(tv LL’()))

= Dt qt ) + St alt a0)

2 2
G [t gt 0) + gt (t, 70))]
20w 2t 0)) — (0. q(1,20))

Note that ( see page 347 in [3] )
e [ ekt €) + 2t )l > w(t, )
e [ et €) + 20t )l 2wt ). (15)

It shows that G (3uZ+u?)(t, ) > su?(t, x) for V(t,z) € [0,T) x R . Therefore,
from (14), one has

Eux (t, q(t, ZL’Q)) + A, (t, Q(ta xO))
_ buz(t,q(t,xo))

26w (Rt gt x0) — (gt x)). (16)

uz(t, q(t, zo))

a —

Due to ¢(t,z) is an increasing diffeomorphism of R with ¢,(¢,z) > 0 with
respect to t, for ¢ € [0,7T), we deduce from the assumption of Theorem 2.4

that .
y( Y ) 2 O 1f xz S q(t>$0)7 (17>
x) <0, if x>q(t, x)
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and y(t, q(t,z)) = 0.
Set

M(t) = et [ e evae e 0,1,

= ¢1(t20) / y(t,&)de, telo,T).
q(t,z0)
From (17), for ¢t € [0,T), we obtain
M(t,q(t,z0)) >0 and N(t, q(t,zo)) <O0. (18)
On the other hand, taking into account equalities (11), for ¢ € [0,7"), we have

M(t, q(t, x0)) = u(t, q(t, x0)) — ua(t, q(t, o))
N(t,q(t,z0)) = u(t, q(t, z0)) + ua(t, q(t, x0)). (19)

(¢
Therefore, from Eqgs.(19), we get
M (t,q(t, 0))N(t,q(t, @) = u*(¢, q(t, 20)) — uz(t, q(t, 20)) < 0. (20)
Note that y(t, q(t,z9)) = 0,t € [0,T), it follows that
@M (1, q(t,20)) =~ 20)M (1, 4(1, 20)
vemseso [ sy e (o)

Using (7) and integrating by parts, it holds

/_ q:’%) Sy (t, €)dE = —\ / y(t,€)de — b / o (u(t, §)y(t,§))5d§
4a—w/ﬁ”¥ﬂ@uamuo&
:_/MO t§d£—|—b/ W2t €)de

q(t,zo q(t,zo)
b [ ult, uelt, ) m—wxﬁm ug(t, ult, §)dg
q(t,zo)
+m—w/m éwm@wwfmg

q(t,zo)
= e (t€d§+2/ W3 (t, €)de
+3b2—a/_oo 0) (t f)df betho (taQ(taxO))ugy(t,Q(t,xo))

a—2b
2

a—>b
et gt w0)) —

6q(t7x0)u2(t> q(tVIO)) (22)
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Substituting (22) into (21) leads to

DMt q(t,70)) + AM (1, g(t,20)) = —but 20) M (2, g(1, 20))

ot q(t,zo) 3b—a ot q(t,zo0)
+§e a(t.0) /_OO eSu(t, £)d¢ + 5 ¢ a(t.wo) /_OO etug(t,&)d¢
—2b

b2t o)) - 2Rt gl 20))

q(t,zo0) 1
= —bu?(t, q(t, z0)) + be 140 /_OO ’ eﬁ(iug(t,g) + u?(t, £))dg

—bu(t, C_I(t, IEO))U:c (ta Q(ta ZL’Q))

a — 2() Q(tvmo)

—E et [T e (w1, ) — w1, €))de
a—b a—2b

+ u3(t, q(t, o)) — u?(t, q(t, o))

2
> Lt alt, ) — et alt, 1)

a—2b o a(t:@o)
OBt [" S u2fe, ) — i, €)) e

_ _“T_Z)M(t,q(t,xo))N(t,Q(t,xo))

—9b q(t,o)
a 5 e—q(t,xo) /_Oo ef(u2(t,§) _ ug(t,f))df, (23)

where we have used (15) and (20).
Since ea(tw0) [105) o (u2(t,€) — ud(t,€))dE = M(t,q(t,x0))N(t, q(t, 70)) (
see page 815 in [6] ). For a — 2b > 0, we have

S Mt a(t,70)) + MMt q(t, 7)) >~ M, alt, 26 )N (1 a(t,70)) > 0. (24)

In an analogous way, we get
—b

et [1 00, 0, )29

%N(t q(t,z0)) + AN(t, q(t, z0)) <

8

Due to e?®t0)

st € (WP (1, €) —ud(t, £))dE > M(t, q(t, z0))N(t, q(t, o)) ( see
page 816 in [6] ).

For a — 2b > 0, we obtain

—

SN gt ) + AN (1, a(t,20)) < 2 M (6 a(t, 20 N g(t, ) < 0. (20

For t € [0,T), we have

o

M(O) = e [ efypfg)dg > 0

—00
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and
N(O) =™ [~ e Eyple)de <0,
To
Therefore, we derive from (24) and (26) that for t € [0,T)

e MM(0) > 0,

>
N(t) < e™N(0) < 0. (27)

Assume that solution u(t) to problem (6) exists globally in time ¢ € [0, 00),
i.e. T'= oo. Next, we show that it will lead to a contradiction.

From (24) and (27), we deduce

d b
EM(t) +AM(t) > —§M(t)e‘MN(O). (28)
In a similar way, it holds
(29)

N(t)e M M(0).

N o

d
SN +AN() <

Solving the inequalities (28) and (29), we obtain

M(t) > M(0)exp(—At + %N(O)e_)‘t — %N(O)),
N(t) < N(0) exp(—\t — %M(O)e—” + %M(O)).

Noting that M (0,x¢) > 0 and N(0,xy) < 0, and applying (20), one has

ui(ta Q(ta ZL’Q)) - u2(ta Q(ta ZL’Q))
> —exp (- 2n+ %(N(O) — M(O))(e ~ 1)) M(O)N(0) (30

It follows from Lemma 2.3 that
ul(t, q(t, x0)) — u?(t, q(t, x0))
uz(tv q(tv ,’,Uo))
uszc(t? q(t> IO)) B uz(ta Q(t> IO))
|| U(t, (J(t, 1’0)) ||§{1

- M(0)N(0)
T o 13 exp((1— e ) 552 [ ug )

The above inequality implies

: (31)

1
2
u“(t,q(t, x <
(,Q(, 0))—1 Coum’
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where

U62(930) - Uz(l"o)

= > 0.
| uo |2 exp((1 — e )22 || ug || 11)

€o
Set f(t) = u.(t, q(t, x0)), from (16), we deduce

d beo
Ef(t) +Af < 3

mfz(t) <0. (32)

From (11), for ¢ > 0, we have

£(8) = uelt.aft. )
q(t,zo) 0
= et [ Sy ey 4 St [7 esy(e)ae <o,

—00 q(t,xo)

where we have used (17). Therefore, From (32) we deduce

d/ 1 A bey
%(f(t)) - f() = 2(1+cp)’ (33)
Solving (33) yields
1 bC() A bCO 1
(f(o) T c0)>6 Tt S0 b=l 3

From the assumption of the Theorem, it holds

1 bC(]
0 T e

It shows that (ﬁ + f(ﬁiﬁ))e’\t — 00 as t — oo. Inequality (34) implies a

contradiction. Therefore, we prove that 1" < oc.
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