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Abstract

This article is devoted to the study of the chaotic properties of some
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1 Introduction

A continuous operator T on a Banach space X is said to be hypercyclic if the
following condition is met:
There exists an element φ ∈ X that its orbit Orb(T, φ) = {φ, Tφ, T 2φ, .....}
is dense in X and is said to be chaotic in the sense of Devaney [2, 11] if the
following conditions is met:
1) T is hypercyclic.
2) The set {φ ∈ X; ∃ n ∈ IN such that T nφ = φ} of periodic points of oper-
ator T is dense in X.
It is well known that linear operators in finite-dimensional linear spaces can’t
be chaotic but the nonlinear operator may be. Only in infinite-dimensional
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linear spaces can linear operators have chaotic properties.These last proper-
ties are based on the phenomenon of hypercyclicity or the phenomen of non-
wandercity.
The study of the phenomenon of hypercyclicity originates in the papers by
Birkoff [6] and Maclane [19] that show, respectively, that the operators of
translation and differentiation, acting on the space of entire functions are hy-
percyclic.
The theories of hypercyclic operators and chaotic operators have been inten-
sively developed for bounded linear operator, we refer to [6, 9, 10] and refer-
ences therein and for a bounded operator, Ansari asserts in [1] that powers of
a hypercyclic bounded operator are also hypercyclic

For an unbounded operator, Salas exhibit in [22] an unbounded hyper-
cyclic operator whose square is not hypercyclic. The result of Salas show that
one must be careful in the formal manipulation of operators with restricted
domains. For such operators it is often more convenient to work with vectors
rather than with operators themselves.
Now, let T be an unbounded operator on a separable infinite dimensional Ba-
nach space X.

We define the following sets:

D(T ) = {φ ∈ X;Tφ ∈ X} (1.1)

D(T∞) =
⋂∞
n=0D(T n) (1.2)

The notion of chaos for unbounded operators was defined in [5] by Bés et
al as follows:

Definition 1.1 A linear unbounded densely defined operator (T,D(T )) on
a Banach space X is called chaotic if the following conditions are met:
1) T n is closed for all positive integers n..
2) there exists an element φ ∈ D(T∞) whose orbit Orb(T, φ) = {φ, Tφ, T 2φ, .....}
is dense in X
3) the set {φ ∈ X;∃ m ∈ IN such that Tmφ = φ} of periodic points of oper-
ator T is dense in X.

Recently these theories are begin developed on some concrete examples of
unbounded linear operators, see [4,7,12]. In [12] it has been shown that the
operators Hp = zp d

p+1

dzp+1 ; p = 0, 1, ..... are chaotic in the sense of Definition 1.1
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on the classic Fock-Bargmann space [3] :

F2 = {φ : IC −→ IC entire;
∫
IC
| φ(z) |2e−|z|2dxdy <∞} (1.3)

where z = x+ iy.

In the present work, we consider generalized Fock-Bargmann spaces (the
spaces of entire functions with e−|z|

β
measure; β > 0) and we shall prove that

the operators Hp = zpDp+1; p = 0, 1, ..... in these spaces are chaotic where D
is the adjoint operator of the operator of multiplication by the independent
variable z on these spaces. D belongs to class Gelfond-Leontiev operators of
generalized differentiation [8]

This paper is organized as follows : In section 2 we give some elemen-
tary properties of generalized Fock-Bargmann spaces and the action of Hp =
zpDp+1; p = 0, 1, ..... on these spaces. In section 3 we recall some sufficient con-
ditions on hypercyclicity of unbounded operator given by Bès-Chan-Seubert
theorem [5]. As our operator Hp is a unilateral weighted backward shift with
an explicit weight, we use the results of Bès et al to proof the chaoticity of Hp

in generalized Fock-Bargmann spaces ( we can also use the results of Bermudez
et al [4] to proof the chaoticity of our operator Hp).

2 Action of zpDp+1 of order p on generalized

Fock-Bargmann spaces

We define the generalized Fock-Bargmann space by :

Fβ = {φ : IC −→ IC entire;
∫
IC
| φ(z) |2e−|z|βdµ(z) <∞} (2.1)

where β > 0 is an arbitrary constant, dµ(z) = β
2πΓ( 2

β
)
dxdy and z = x+ iy.

Note that F2 coincides with the classic Fock-Bargmann space.
Fβ is a Hilbert space with an inner product

< φ,ψ >= β
2πΓ( 2

β
)

∫
IC
φ(z)ψ(z)e−|z|

β

dxdy (2.2)

and the associated norm is denoted by || . ||.

Let m0 = 0, mn =
Γ( 2
β

(n+1))

Γ( 2n
β

)
n = 1, 2, ... and [mn]! = m1.m2......mn then it

may be shown that the functions
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e0(z) = 1 and en(z) = zn√
[mn]!

;n = 1, 2, .... (2.3)

form a complet orthonormal set in Fβ.

Define the principal vectors eλ ∈ Fβ (for every λ ∈ IC) as complex valued
functions

eλ(z) = e(z, λ)= 1 +
∞∑
n=1

en(z)en(λ) of λ and z in IC

If φ(z) =
∞∑
n

anen(z) then< φ, eλ >= φ(λ) ( the reproducing property) be-

cause
∫
IC

∞∑
n

anen(z)(1 +
∞∑
n=1

en(z)en(λ))e−|z|
β

dµ(z) = a0 +
∞∑
n=1

anen(λ) || en ||= φ(λ)

or, in other words

φ(z) =
∫
IC
φ(λ)eλ(z)e−|λ|

β

dµ(λ) for all φ ∈ Fβ (2.4)

so that eλ(z) is called a reproducing kernel for Fβ

Note that the reproducing kernel eλ(z) is uniquely determined by the
Hilbert space Fβ and the evaluation linear functional φ ∈ Fβ → φ(z) ∈ IC
is a bounded linear functional on Fβ.

So applying (2.4) to the function ez at λ; we get ez(λ) =< ez; eλ > for
z; λ ∈ IC and by the above relations, for z ∈ IC we obtain

|| ez ||=
√
< ez, ez > =

√
e(z, z).

A systematic study of these generalized Fock-Bargmann spaces can be
founded in [16] where Irac-Astaud and Rideau have constructed an deformed
harmonic algebra (DHOA) on Fβ and in [17] where Knirsch and Schneider
have invesigated the continuity and Schattenvon Neumann p-class member-
ship of Hankel operators with anti-holomorphic symbols on these spaces with
β ∈ IN .
Note that the generalized Fock-Bargmann spaces Fβ are different from the
generalized Bargmann spaces Em m = 0, 1, .... defined in [13].It would be in-
teresting to characterize the orthogonal space of Fβ in L2(IC, e−|z|

β
dµ(z)) for

β 6= 2.
Now on the generalized Fock-Bargmann representation Fβ, we denote the op-
erator of multiplication by the independent variable z on Fβ by :

Mφ(z) = zφ(z) with domain ID(M) = {φ ∈ Fβ; zφ ∈ Fβ} (2.5)
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The operator M acts on en(z) as following:

Men(z) =

√
Γ( 2
β

(n+2))√
Γ( 2
β

(n+1))
en+1(z) (2.6)

Then its adjoint is generalized differentiation given by :

Den(z) =

√
Γ( 2
β

(n+1))√
Γ( 2
β
n)

en−1(z) (2.7)

and for φ(z) =
∞∑
n=0

anz
n we have D1 = 0 and Dφ(z) =

1

z

∞∑
n=0

anmnz
n where

mn =
Γ( 2
β

(n+1))

Γ( 2
β
n)

with domain:

ID(D) = {φ ∈ Fβ;Dφ ∈ Fβ} (2.8)

Note that if β = 2 the generalized differentiation operator D is:

Dφ(z) = d
dz
φ(z) (2.9)

Now we define a family of weighted shifts Hp acting on Fβ as following

Hp = MpDp+1 with domain ID(Hp) = {φ ∈ Fβ;Hpφ ∈ Fβ} (2.10)

Then we get

H∗pen(z) = Mp+1Dpen(z) =
√
mn+1

∏p
j=1[mn−j+1]en+1(z).

i.e. H∗p is weighted shift with weight ωn =
√
mn+1

∏p
j=1[mn−j+1] for n = 1, .....

and as we have denoted [mn]! = m1.m2.......mn then ωn =
√
mn+1

[mn]!
[mn−p]!

for
n = 1, .....

Remark 2.1 (i) If β 6= 2 and p = 0 then the operator H0 = D is particular
case of Gelfond-Leontiev operator of generalized differentiation [8] on Fβ and
coincides with the usual differentiation on F2.
(ii) For β = 2, It is known in [12] that :
(a) the operator Hp with its domain ID(Hp) is an operator chaotic on the clas-
sic Fock-Bargmann space.

(b) H0φλ(z) = λφλ(z) ∀ λ ∈ IC, where φλ(z) =
∞∑
n=0

λn√
n!
en(z) and

|| φλ ||2= e|λ|
2

(c) The function e−|λ|
2
φλ(z) is called a coherent normalized quantum optics
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(see [18] and [21])
(d) For p = 1, it is known that H1 + H∗1 is a not selfadjoint operator and it
is chaotic on the classic Fock-Bargmann space [7] and this operator play an
essential role in Reggeon field theory (see [14] and [15])

Before to show that the operator Hp = zpDp+1 with its domain ID(Hp) is
an operator chaotic on the generalized Fock-Bargmann space Fβ, we begin by

Lemma 2.2 (i) Let p ∈ IN and ep(z) =
zp√
[mp]!

then Dmep(z) = 0,

∀ m ≥ p+ 1
(ii) Let ωn =

√
mn+1

[mn]!
[mn−p]!

with n ≥ p and if we denote by

γp,n = ωp.ωp+1........ωn−1 for n ≥ p+ 1 and γp,p = 1 then the function

Gλ(z) = ep(z)+
∞∑

n=p+1

λn−p

γp,n
en(z) is eigenfunction of zpDp+1 associated to λ for

all λ ∈ IC i.e. zpDp+1Gλ(z) = λGλ(z) ∀λ ∈ IC

(iii) Let φ̃λ(z) = 1 +
∞∑
n=1

λn√
[mn]!

en(z) then Dφ̃λ(z) = λφ̃λ(z) for all λ ∈ IC and

we shall called it the generalized coherent state on Fβ.

Proof

i) For p = 0 we have De0(z) = 0 then Dme0(z) = 0 ∀ m ≥ 1.
For p ≥ 1 we have Dep(z) =

√
mpep−1(z) then

Dpep(z) =
√

[mp]!e0(z) and Dp+1ep(z) =
√

[mp]!De0(z) = 0, in particular

Dmep(z) = 0 ∀ m ≥ p+ 1.

ii) Let Gλ(z) = ep(z) +
∞∑

n=p+1

λn−p

γp,n
en(z) with γp,n = ωp.ωp+1........ωn−1 for

n ≥ p+ 1 and γp,p = 1.
Then

zpDp+1Gλ(z) = 0 +
∞∑

n=p+1

λn−p

γp,n
zpDp+1en(z) =

∞∑
n=p+1

λn−p

γp,n−2

en−1(z)

= λ
∞∑
n=p

λn−p

γp,n−1

en(z) = λ[ep(z) +
∞∑

n=p+1

λn−p

γp,n−1

en(z)]

iii) For p = 0 we have Gλ(z) = φ̃λ(z) then Dφ̃λ(z) = λφ̃λ(z) for all λ ∈ IC.

Note that for λ = 1 the function φ̃(z) = 1+
∞∑
n=1

1√
[mn]!

en(z) is a periodic point

of the operator D, i.e Dφ̃(z) = φ̃(z).
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Let us now recall some asymptotic properties of analytic functions. They
are characterized by their growth and the density of their zeros.

Let M(R) be the maximum modulus of an analytic function f(z) for
|z| = R. Its growth is described by the order ρ and the type σ, which are
defined as follows:

- ρ = lim
lnlnM(R)

lnR
; | z |= R→∞ (2.11)

- σ = lim
lnM(R)

Rρ
; | z |= R→∞ (2.12)

These definitions imply that M(R) ∼ eσR
ρ

as R goes to infinity (here the
∼ indicates that M(R) is log-asymptotic to eσR

ρ
)

The relation (2.4) yields an important estimate for the functions in Fβ :

| φ(z) |≤|| φ || e
1
2
|z|β (2.13).

or in other words, Fβ is inclued in the set of analytic functions in the complex
plane with order ρ = β and of type σ = 1

2

We shall now establish some properties on the sequence mn and on the
generalized coherent state φ̃λ(z)

Lemma 2.3 (i) Let m0 = 0,mn =
Γ( 2
β

(n+1))

Γ( 2n
β

)
;n = 1, 2, ...

then mn ∼ ( 2
β
)

2
βn

2
β , n→ +∞

(ii) The order of φ̃λ(z) is ρ = β
2

and its type is σ = 1

Proof

(i) It is well know that Γ(x) '
√

2πxx−
1
2 e−x then

mn '
√

2π[ 2
β
(n+ 1)]

2
β

(n+1)− 1
2 e−

2
β

(n+1)

√
2π[ 2

β
n]

2
β
n− 1

2 e−
2
β
n

' [
2
β
(n+ 1)

2
β
n

]
2
β
n− 1

2 [
2

β
(n+ 1)]

2
β e−

2
β

' [(1 +
1

n
)n]

2
β ][1 +

1

n
]
−1
2 [

2

β
]
2
β [n+ 1]

2
β e−

2
β ' (

2

β
)

2
βn

2
β

Also note that the property i) can be verified by using the relation
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Γ(z+a
Γ(z+b)

' za−b when | z |→ ∞ uniformly for | argz |≤ π − δ

(δfixed; 0 < δ < π) for all a ∈ IC and b ∈ IC

Consequently we have:

Lim
mn

( 2
β
)

2
βn

2
β

= 1, n→ +∞ (2.14).

(ii) A necessary and sufficient condition that φ(z) =
∞∑
n=0

anz
n should be an

integral function of finite order ρ (see Titchmarsh in [23], p.253 or Vourdas in
[24], p. 4870) is that

ρ = Lim
nln(n)

ln( 1
|an|)

; n→∞ (2.15).

and its type σ is determined by the formula

(σeρ)
1
ρ = Lim n

1
ρ | an |

1
n ; n→∞ (2.16).

To apply these results at φ̃λ(z) to found its order ρ = β
2

and its type σ = 1,
we begin by noting that by virtue of property (2.14) we have

∀ε > 0,∃N > 0 such that (( 2
β
)

2
β − ε)n

2
β ≤| mn |≤ ( 2

β
)

2
β + ε)n

2
β ∀n ≥ N.

Then ∀n ≥ N we have | m1.m2......mN [( 2
β
)

2
β − ε]n−N (n!)

2
β

(N !)
2
β
|≤

| [mn]! |≤| m1.m2......mN [( 2
β
)

2
β + ε]n−N (n!)

2
β

(N !)
2
β
|

and
| λn |

| m1.m2......mN [( 2
β
)

2
β + ε]n−N (n!)

2
β

(N !)
2
β
|
≤ | λn |
| [mn]! |

≤ | λn |

| m1.m2......mN [( 2
β
)

2
β − ε]n−N (n!)

2
β

(N !)
2
β
|

Now, we consider the functions :

1) φ̃1(z) = 1 +
N∑
n=1

λnzn

[mn]!
+

∞∑
n=N+1

λnzn

[mN ]![( 2
β
)

2
β + ε]n−N (n!)

2
β

(N !)
2
β

then by virtue of property (2.15) its order is given by:

ρ1 = lim
nln(n)

ln | [mN ]![( 2
β
)

2
β + ε]n−N (n!)

2
β

(N !)
2
β
|

n→∞
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and

2)φ̃2(z) = 1 +
N∑
n=1

λnzn

[mn]!
+

∞∑
n=N+1

λnzn

[mN ]![( 2
β
)

2
β − ε]n−N (n!)

2
β

(N !)
2
β

then by virtue of property (2.15) its order is given by:

ρ2 = lim
nln(n)

ln | [mN ]![( 2
β
)

2
β − ε]n−N (n!)

2
β

(N !)
2
β
|

n→∞

The asymptotic development of Gamma function is given by Stirling for-
mula as follows :

Γ(x) '
√

2π
x

(x
e
)x[1 + 1

12x
+ .......+] (2.17)

By virtue of this property (2.17) we get Γ(n+ 1) ' [n
e
]n
√

2πn and

ln[(n!)α] ' αnln[n
e
(2πn)

1
2n ] (2.18)

α = 2
β

which operates in the explicit calculation of ρ1 or ρ2

For other asymptotic expansions for the Gamma function, we can see the
recent work of Nemes in [20 ].

Now as

ρ1 = lim
nln(n)

ln | [mN ]![( 2
β
)

2
β + ε]n−N (n!)

2
β

(N !)
2
β
|

n→∞

= lim nln(n)

ln(
[mN ]!

(N !)
2
β

)+(n−N)ln[( 2
β

)
2
β +ε]+ 2

β
ln(n!)

n→∞

= lim nln(n)

ln(
[mN ]!

(N !)
2
β

)−Nln[( 2
β

)
2
β +ε]+nln[( 2

β
)
2
β +ε]+ 2

β
ln(n!)

n→∞

then by virtue of the property (2.18) we deduce that

ρ1 = lim
nln(n)

ln( [mN ]!

(N !)
2
β

)−Nln[( 2
β
)

2
β + ε] + nln[( 2

β
)

2
β + ε] + n 2

β
ln(n

e
2n
√

2πn)
n→∞

= lim nln(n)

ln(
[mN ]!

(N !)
2
β

)−Nln[( 2
β

)
2
β +ε]+nln[( 2

β
)
2
β +ε]+n 2

β
[ln(n

e
)+ln

2n√2πn]
n→∞
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= lim ln(n)

1
n

[ln(
[mN ]!

(N !)
2
β

)−Nln[( 2
β

)
2
β +ε]]+ln[( 2

β
)
2
β +ε]+ 2

β
ln(n)− 2

β
+ 2
β
ln( 2n√2πn)

n→∞

= β
2

Then the order of φ̃1(z) is ρ1 = β
2

By taking [( 2
β
)

2
β −ε] in above calculation, we deduce that the order of φ̃2(z)

is ρ2 = β
2

and as ρ1 ≤ ρ ≤ ρ2 we get the order of φ̃λ(z),ρ = β
2

To obtain the type σ of φ̃λ(z), we apply the property (2.16) for the function
φ̃1(z) of order ρ2 = β

2
then its type σ1 is given by:

(σ1e
β
2
)

2
β = Lim n

2
β

n

√
[mN ]![( 2

β
)
2
β +ε]n−N n!

2
β

N ! 2
β

, n→∞

= lim n
2
β

(( 2
β

)
2
β +ε) n

√
[mN ]!

(( 2
β
)
2
β +ε)NN !

2
β

n!
2
β

, n→∞

Let γ = n

√
[mN ]!

(( 2
β

)
2
β +ε)NN !

2
β

then (σ1e
β
2
)

2
β = Lim n

2
β

(( 2
β

)
2
β +ε)γ

n
√
n!

2
β

, n→∞

As n!
2
β ' [n

e
(2πn)

1
2n ]

2n
β , then

n
√
n!

2
β ' n

2
β (1

e
)

2
β ( 2n
√

2πn)
2
β ' e

2
β

n
2
β (2πn)

1
nβ

Then σ
2
β

1 = [
2
β

2
β

2
β +ε

]
2
β lim 1

γ(2πn)
1
nβ

, n→∞. In particular we have

σ1 ≤
2
β

2
β

√
( 2
β

)
2
β +ε

and σ ≥
2
β

2
β

√
( 2
β

)
2
β +ε

.

Now by using the calculation of type σ2 we deduce that

2
β

2
β

√
( 2
β

)
2
β +ε

≤ σ ≤
2
β

2
β

√
( 2
β

)
2
β −ε
∀ ε > 0

Consequently we have σ =
2
β

2
β

√
( 2
β
)

2
β

= 1.
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3 Chaoticity of the operator Hp = zpDp+1 on

generalized Fock-Bargmann space Fβ

The operator Hp = zpDp+1 is an unbounded operator on generalized Fock-
Bargmann space Fβ. Consider the subset IP ⊂ Fβ consisting of all polynomials
which is dense in Fβ and it is included in the domain of Hp. Thus it is densely
defined.
Now we recall a sufficient condition for the hypercyclicity of an unbounded
operator given by Bès− Chan− Seubert theorem

Theorem 3.1 ( Bès-Chan-Seubert [5] )Let X be a separable infinite di-
mensional Banach and let T be a densely defined linear operator on X. Then
T is hypercyclic if
i) Tm is closed operator for all positive integers m.
ii) There exist a dense subset Y of the domain D(T ) of T and a (possibly
nonlinear and discontinuous) mapping S : Y −→ Y so that TS = I|Y (I|Y is
identity on Y ) and T n, Sn −→ 0 pointwise on Y as n −→∞.

Let us now formulate and prove the main result of the paper.

Theorem 3.2 Let Fβ be the generalized Fock-Bargmann space with or-
thonormal basis en(z) = zn√

[mn]!
and Hp = zpDp+1 with domain

ID(Hp) = {φ ∈ Fβ;Hpφ ∈ Fβ}

Then Hp is chaotic operator in Fβ.

We present the proof of chaoticity of Hp (i.e. Hp satisfies the conditions (1)
and (2) of Definition (1.1)) under lemmas form.

Lemma 3.3 Let Hpen = ωn−1en−1 where en(z) = zn√
[mn]!

and ωn =

√
mn+1

[mn]!
[m(n−p)]!

for n ≥ p ≥ 0, then for each positive integer m, the opera-

tor (Hp)
m, with domain D((Hp)

m) = {φ ∈ Fβ; (Hp)
mφ ∈ Fβ}, is a closed

operator

Proof
As (Hp)

m is closed if and only if the graph G((Hp)
m) is closed linear manifold
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of Fβ ×Fβ then let (φn, (Hp)
mφn) be a sequence in G((Hp)

m) which converges
to (φ, ψ) in Fβ × Fβ.

As φn converges to φ in Fβ then zpDp+1φn converges to zpDp+1φ pointwise
on IC and (Hp)

m)φn converges to (Hp)
m)φ pointwise on IC.

As (Hp)
mφn converges to ψ we deduce that (Hp)

m)φ = ψ and φ ∈ ID((Hp)
m)

hence the G((Hp)
m) is closed.

Remark 3.4 The above proof of the closeness of the operator (Hp)
m is

analogous to proof of lemma (2.3) from [5] or lemma (2.5) from [12]

Lemma 3.5 Let Hp = zpDp+1 with domain ID(Hp) = {φ ∈ Fβ;Hpφ ∈
Fβ}where Hpen = ωn−1en−1, en(z) = zn√

[mn]!
and ωn =

√
mn+1

[mn]!
[m(n−p)]!

for

n ≥ p ≥ 0
Then Hp is hypercyclic.

Proof

Let Y = {φk(z) =
k∑

n=p

anen(z)} This space is dense in Fβ.

Let Sp : Y −→ Y and Spen = 1
ωn
en+1;n ≥ p ≥ 0. Then HpSpφk(z) = φk(z),i.e

HpSp = I|Y .

By virtue of the property i) of lemma (1.1) [Hp]
ken = 0 for all k > n ≥ p

then we deduce that any element of Y can be annihilated by a finite power kn

of Hp since as [
kn+n∏
j=n

ωj]
−1 −→ 0; kn −→∞ we have

Sknp en = [
kn+n∏
j=n

ωj]
−1ek+n −→ 0 in Fβ.

Now the hyperciclycity of Hp follows from the theorem of Bès and al. recalled
above.

Lemma 3.6 Let Hp = zpDp+1 with domain ID(Hp) = {φ ∈ Fβ;Hpφ ∈
Fβ} where Hpen = ωn−1en−1 , en(z) = zn√

[mn]!
and ωn =

√
n+ 1 [mn]!

[m(n−p)]!
for

n ≥ p ≥ 0
Then there exist k > 0 and g ∈ ID(Hk

p ) such that Hk
p g(z) = g(z).
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Proof

Let λ ∈ IC and

Gλ(z) = ep(z) +
∞∑

n=p+1

λn−p

ωpωp+1.....ωn−1

.en(z) (3.1)

then by virtue of lemma (2.1) Gλ is an generalized eigenvector for Hp

corresponding to eigenvalue λ so it is therefore a periodic point of Hp where λ
is a root of unity.

We will check that Gλ is in the domain of Hp. In fact let r > 0 and | λ |< r.
As mn →∞;n→∞ then

lim
n−1∏
j=p

ωj =∞ ; n −→∞ (3.2)

and there exist n0 > 0 and q < 1 such that

r

(ωpωp+1.......ωn−1)
1
n

≤ q for n ≥ n0 (3.3)

Since for | λ |< r we have

| λ |(n−p)

(ωpωp+1.......ωn−1)2
≤ q2n;n ≥ n0 (3.4)

and Gλ is in generalized Fock-Bargmann space.

Now as

< Gλ, ep >= 1 (3.5)

and

< Gλ, en+1 > =
λn−p+1

ωpωp+1.......ωn
(3.6)

we get

|< Gλ, en+1 >|2 =
λ2(n−p+1)

(ωpωp+1.......ωn)2
(3.7)

and
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|< Gλ, en+1 >|2 (ωn)2 =
λ2(n−p+1)

(ωpωp+1.......ωn−1)2
≤ q2n | λ |2 for n ≥ n0 (3.8)

we result that

∞∑
n=p

|< Gλ, en+1 >|2 (ωn)2 <∞ (3.9)

i.e. Gλ ∈ ID(Hp).

Let us prove that operator Hp satisfies the condition (2) of the definition
(1.1)

Lemma 3.7 The set of periodic points of Hp is dense in Fβ.

Proof

let λk,m = e
2ikπ
m ,m ∈ IN, k = 0, 1, ....,m− 1 is a root of unity and

G = Span{Gλk,m(z)}
By virtue of the property (2.4), we deduce that the system Gλk,m is complete
in Fβ and the linear span G of this system is dense in Fβ.
Or for a direct proof, we assume that there exist a nonzero vector g ∈ Fβ which
is orthogonal to G.

Let

g(z) =
∞∑
n=p

bnen(z) (3.10)

such that

< g,Gλ >= 0 for each Gλ ∈ G (3.11).

and

φ(λ) =< g, gλ > for | λ |< 1 and φ(λ) = 0 for | λ |= 1 (3.12)
φ(λ) is continuous function on the closed units disc that is holomorphic on

the interior.φ(λ) vaniches at each root of unity, hence on the entire unit circle
hence φ(λ) vaniches for all λ |≤ 1.

We deduce that bn = 0 for n ≥ p then G is dense in Fβ.

Remark 3.8 The lemmas (3.3), (3.5) , (3.6) and (3.7) show the chaotic-
ity of Hp.
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We conclude that main results of this work can be considered as a general-
ization of the result in [12] on operator Hp acting in classic Fock-Bargmann
space F2.
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