On (α, β, γ)-derivations of Lie color algebras

Bing Sun
School of Mathematics and Statistics
Northeast Normal University

Abstract

This paper is primarily concerned with (α, β, γ)-derivations of finite dimensional Lie color algebras over the field of complex numbers. Some properties of (α, β, γ)-derivations of the Lie color algebras are obtained. In particular, an example for (α, β, γ)-derivations of low dimensional non-simple Lie color algebras are presented.

Mathematics Subject Classification: 17B40, 17B75
Keywords: Lie color algebras, (α, β, γ)-derivations

1 Introduction

As a natural generalization of Lie algebras and Lie superalgebras [3], Lie color algebras play an important role in theoretical physics [4]. Ree introduced generalized Lie algebras, which are called Lie color algebras today [6]. In recent years, Lie color algebras have become an interesting subject of mathematics $[2,6]$. The search for a new concept of invariant characteristics of Lie algebras led to the definition of (α, β, γ)-derivations in [5]. The aim of this paper is to partially generalize some beautiful results about (α, β, γ)-derivations in [5, 7].

This paper is organized as follows. we introduce (α, β, γ)-derivations and show their pertinent properties. In particular, an example for (α, β, γ)-derivations of low dimensional non-simple Lie color algebras are presented.

In [1] the readers could find all notations and notions of Lie color algebras which are not precisely defined in this paper.

2 Main Results

Definition 2.1 A linear transformation $A \in \mathrm{Pl}_{\theta}(L)$ is called an (α, β, γ) derivation of degree θ if there exist $\alpha, \beta, \gamma \in \mathbb{C}$ such that

$$
\alpha A([x, y])=\beta[A(x), y]+\varepsilon(\theta, x) \gamma[x, A(y)],
$$

for all $x, y \in \operatorname{hg}(L)$. For given $\alpha, \beta, \gamma \in \mathbb{C}$, the set of all (α, β, γ)-derivations of degree θ is denoted by $\mathfrak{D}(\alpha, \beta, \gamma)_{\theta}$, i.e. $\mathfrak{D}(\alpha, \beta, \gamma)_{\theta}$ is equal to the set

$$
\left\{A \in \mathrm{Pl}_{\theta}(L) \mid \alpha A([x, y])=\beta[A(x), y]+\varepsilon(\theta, x) \gamma[x, A(y)], \forall x, y \in \operatorname{hg}(L)\right\} .
$$

Denote by $\mathfrak{D}(\alpha, \beta, \gamma)=\bigoplus_{\theta \in G} \mathfrak{D}(\alpha, \beta, \gamma)_{\theta}$ the set of all (α, β, γ)-derivations of L.

In particular, $\mathfrak{D}(\alpha, \beta, \gamma)$ coincides with the centroid if $\alpha=\beta$ and $\gamma=0$ (or $\alpha=$ γ and $\beta=0$). Therefore, (α, β, γ)-derivations are the natural generalization of centroids.

Proposition 2.2 For any $\alpha, \beta, \gamma \in \mathbb{C}$ and $k \in \mathbb{C} \backslash\{0\}$,

$$
\begin{equation*}
\mathfrak{D}(\alpha, \beta, \gamma)=\mathfrak{D}(\alpha k, \beta k, \gamma k)=\mathfrak{D}(\alpha, \gamma, \beta) . \tag{1}
\end{equation*}
$$

Proof. In fact, it is sufficient to check the homogeneous elements of $\mathfrak{D}(\alpha, \beta, \gamma)$. For any $x, y \in \mathrm{hg}(L)$, we have

$$
\begin{aligned}
& A \in \mathfrak{D}(\alpha, \beta, \gamma)_{\theta} \Leftrightarrow \alpha A([x, y])=\beta[A(x), y]+\varepsilon(\theta, x) \gamma[x, A(y)] \\
\Leftrightarrow & \alpha k A([x, y])=\beta k[A(x), y]+\varepsilon(\theta, x) \gamma k[x, A(y)] \Leftrightarrow A \in \mathfrak{D}(\alpha k, \beta k, \gamma k)_{\theta}
\end{aligned}
$$

and

$$
\begin{aligned}
& A \in \mathfrak{D}(\alpha, \beta, \gamma)_{\theta} \Leftrightarrow \alpha A([x, y])=\beta[A(x), y]+\varepsilon(\theta, x) \gamma[x, A(y)] \\
\Leftrightarrow & -\varepsilon(x, y) \alpha A([y, x])=-\varepsilon(\theta+x, y) \beta[y, A(x)]-\varepsilon(\theta, x) \varepsilon(x, \theta+y) \gamma[A(y), x] \\
\Leftrightarrow & \alpha A([y, x])=\gamma[A(y), x]+\varepsilon(\theta, y) \beta[y, A(x)] \Leftrightarrow A \in \mathfrak{D}(\alpha, \gamma, \beta)_{\theta} .
\end{aligned}
$$

Thus (1) holds.
Lemma 2.3 For any $\alpha, \beta, \gamma \in \mathbb{C}$,

$$
\mathfrak{D}(\alpha, \beta, \gamma)=\mathfrak{D}(0, \beta-\gamma, \gamma-\beta) \cap \mathfrak{D}(2 \alpha, \gamma+\beta, \gamma+\beta) .
$$

Proof. Suppose that $A \in \mathfrak{D}(\alpha, \beta, \gamma)_{\theta}$, for given $\alpha, \beta, \gamma \in \mathbb{C}$ and arbitrary $x, y \in \operatorname{hg}(L)$, then we have

$$
\begin{align*}
& \alpha A([x, y])=\beta[A(x), y]+\varepsilon(\theta, x) \gamma[x, A(y)], \tag{2}\\
& \alpha A([y, x])=\beta[A(y), x]+\varepsilon(\theta, y) \gamma[y, A(x)] . \tag{3}
\end{align*}
$$

By subtracting Eq. (3) from Eq. (2), we obtain

$$
\begin{equation*}
0=(\beta-\gamma)([A(x), y]-\varepsilon(\theta, x)[x, A(y)]) . \tag{4}
\end{equation*}
$$

By suming Eqs. (2) and (3), we have

$$
\begin{equation*}
2 \alpha A([y, x])=(\beta+\gamma)([A(y), x]+\varepsilon(\theta, y)[y, A(x)]) . \tag{5}
\end{equation*}
$$

Thus $\mathfrak{D}(\alpha, \beta, \gamma) \subseteq \mathfrak{D}(0, \beta-\gamma, \gamma-\beta) \cap \mathfrak{D}(2 \alpha, \beta+\gamma, \beta+\gamma)$.
Conversely, Eq. (2) can also be obtained by Eqs. (4) and (5). Therefore, the proof is completed.

Theorem 2.4 For any $\alpha, \beta, \gamma \in \mathbb{C}$, there exists $\delta \in \mathbb{C}$ such that the space $\mathfrak{D}(\alpha, \beta, \gamma)$ is equal to one of the four following spaces:

1. $\mathfrak{D}(\delta, 0,0), 2$. $\mathfrak{D}(\delta, 1,-1), 3$. $\mathfrak{D}(\delta, 1,0), 4$. $\mathfrak{D}(\delta, 1,1)$.

Proof.

1. Suppose that $\beta+\gamma=0$. Then either $\beta=\gamma=0$ or $\beta=-\gamma \neq 0$.
(i) For $\beta=\gamma=0$, we can easily obtain $\mathfrak{D}(\alpha, \beta, \gamma)=\mathfrak{D}(\alpha, 0,0)$.
(ii) For $\beta=-\gamma \neq 0$, it follows from Eq. (1) and Lemma 2.3 that

$$
\begin{aligned}
\mathfrak{D}(\alpha, \beta, \gamma) & =\mathfrak{D}(0, \beta-\gamma, \gamma-\beta) \cap \mathfrak{D}(2 \alpha, 0,0) \\
& =\mathfrak{D}(0,1,-1) \cap \mathfrak{D}(\alpha, 0,0) .
\end{aligned}
$$

On the other hand, it shows that

$$
\mathfrak{D}(\alpha, 1,-1)=\mathfrak{D}(0,2,-2) \cap \mathfrak{D}(2 \alpha, 0,0)=\mathfrak{D}(0,1,-1) \cap \mathfrak{D}(\alpha, 0,0) .
$$

Therefore, we have $\mathfrak{D}(\alpha, \beta, \gamma)=\mathfrak{D}(\alpha, 1,-1)$.
2. Suppose that $\beta+\gamma \neq 0$. Then either $\beta-\gamma \neq 0$ or $\beta=\gamma \neq 0$.
(i) For $\beta-\gamma \neq 0$, it also follows from Eq. (1) and Lemma 2.3 that

$$
\begin{aligned}
\mathfrak{D}(\alpha, \beta, \gamma) & =\mathfrak{D}(0, \beta-\gamma, \gamma-\beta) \cap \mathfrak{D}(2 \alpha, \beta+\gamma, \beta+\gamma) \\
& =\mathfrak{D}(0,1,-1) \cap \mathfrak{D}\left(\frac{2 \alpha}{\beta+\gamma}, 1,1\right) .
\end{aligned}
$$

According to Lemma 2.3, we have

$$
\mathfrak{D}\left(\frac{\alpha}{\beta+\gamma}, 1,0\right)=\mathfrak{D}(0,1,-1) \cap \mathfrak{D}\left(\frac{2 \alpha}{\beta+\gamma}, 1,1\right) .
$$

Then we have $\mathfrak{D}(\alpha, \beta, \gamma)=\mathfrak{D}\left(\frac{\alpha}{\beta+\gamma}, 1,0\right)$.
(ii) For $\beta=\gamma \neq 0$, it easily shows $\mathfrak{D}(\alpha, \beta, \gamma)=\mathfrak{D}\left(\frac{\alpha}{\beta}, 1,1\right)$.

In conclusion, the proof is completed.
Next we will discuss in detail the possible (α, β, γ)-derivations of L which only depends on the value of the parameter $\delta \in \mathbb{C}$.

1. $\mathfrak{D}(\delta, 0,0)$:
(i) For $\delta=0$, it is clear to show that $\mathfrak{D}(0,0,0)=\operatorname{Pl}(L)$.
(ii) For $\delta \neq 0$, the space $\mathfrak{D}(\delta, 0,0)$ sends derived algebras to the zero vector:

$$
\mathfrak{D}(\delta, 0,0)=\left\{A \in \operatorname{Pl}(L) \mid A\left(L^{2}\right)=0\right\} .
$$

Clearly, its dimension is as follows:

$$
\operatorname{dim}(\mathfrak{D}(\delta, 0,0))=\operatorname{dim}\left(L / L^{2}\right) \operatorname{dim}(L)
$$

2. $\mathfrak{D}(\delta, 1,-1)$:
(i) For $\delta=0$, The space of $\mathfrak{D}(0,1,-1)$ is given by

$$
\begin{aligned}
\mathfrak{D}(0,1,-1) & =\bigoplus_{\theta \in G}\left\{A \in \operatorname{Pl}_{\theta}(L) \mid[A(x), y]=\varepsilon(\theta, x)[x, A(y)], \forall x, y \in \operatorname{hg}(L)\right\} \\
& =\mathrm{QC}(L)
\end{aligned}
$$

(ii) $\delta \neq 0$, we obtain a algebra $\mathfrak{D}(1,1,-1)$ as an intersection of two algebras:

$$
\begin{aligned}
\mathfrak{D}(\delta, 1,-1) & =\mathfrak{D}(0,2,-2) \cap \mathfrak{D}(2 \delta, 0,0) \\
& =\mathfrak{D}(0,2,-2) \cap \mathfrak{D}(2,0,0) \\
& =\mathfrak{D}(1,1,-1) .
\end{aligned}
$$

3. $\mathfrak{D}(\delta, 1,0)$:
(i) For $\delta=0$, we sends the whole L into its center $\mathcal{Z}(L)$:

$$
\mathfrak{D}(0,1,0)=\{A \in \operatorname{Pl}(L) \mid A(L) \subseteq \mathcal{Z}(L)\}
$$

and therefore its dimension is as follows:

$$
\operatorname{dim}(\mathfrak{D}(0,1,0))=\operatorname{dim}(\mathcal{Z}(L)) \operatorname{dim}(L) .
$$

(ii) For $\delta=1$, the space $\mathfrak{D}(1,1,0)$ is given by

$$
\mathfrak{D}(1,1,0)=\bigoplus_{\theta \in G}\left\{A \in \operatorname{Pl}_{\theta}(L) \mid A[x, y]=[A(x), y], \forall x, y \in \operatorname{hg}(L)\right\}
$$

Note that $A \in \mathrm{Pl}_{\theta}(L)$ also satisfies

$$
A[x, y]=-\varepsilon(x, y) A[y, x]=-\varepsilon(x, y)[A(y), x]=\varepsilon(\theta, x)[x, A(y)] .
$$

Hence

$$
\begin{aligned}
\mathfrak{D}(1,1,0) & =\bigoplus_{\theta \in G}\left\{A \in \mathrm{Pl}_{\theta}(L) \mid A \circ \operatorname{ad}(x)=\varepsilon(\theta, x) \operatorname{ad}(x) \circ A, \forall x \in \operatorname{hg}(L)\right\} \\
& =\mathcal{C}(L) .
\end{aligned}
$$

(iii) For the remaining values of δ and the general case of Lie color algebra L, the space $\mathfrak{D}(\delta, 1,0)$ is only the vector subspace of $\operatorname{Pl}(L)$. Thus, we have the one-parametric set of vector spaces:

$$
\mathfrak{D}(\delta, 1,0)=\mathfrak{D}(0,1,-1) \cap \mathfrak{D}(2 \delta, 1,1) .
$$

4. $\mathfrak{D}(\delta, 1,1)$:
(i) For $\delta=0$, we have a Lie color algebra $\mathfrak{D}(0,1,1)$ which equals to the set

$$
\bigoplus_{\theta \in G}\left\{A \in \mathrm{Pl}_{\theta}(L) \mid[A(x), y]=-\varepsilon(\theta, x)[x, A(y)], \forall x, y \in \operatorname{hg}(L)\right\} .
$$

(ii) For $\delta=1$, the space $\mathfrak{D}(1,1,1)$ is just the derivation algebra of L in the ordinary sense, i.e. $\mathfrak{D}(1,1,1)=\operatorname{Der}(L)$.
(iii) For the remaining values of δ, the space $\mathfrak{D}(\delta, 1,1)$ is only the vector subspace of $\mathrm{Pl}(L)$ in the general case of Lie color algebra L.

According to the discussions above, we immediately obtain the following proposition.

Proposition 2.5 Let L be a complex Lie color algebra and $\alpha, \beta, \gamma \in \mathbb{C}$. Then $\mathfrak{D}(\alpha, \beta, \gamma)$ equals one of the following subspaces of $\operatorname{Pl}(L)$:
(1) $\mathfrak{D}(0,0,0)=\operatorname{Pl}(L)$,
(2) $\mathfrak{D}(1,0,0)=\left\{A \in \operatorname{End}(L) \mid A\left(L^{2}\right)=0\right\}$,
(3) $\mathfrak{D}(0,1,-1)=\mathrm{QC}(L)$,
(4) $\mathfrak{D}(1,1,-1)=\mathfrak{D}(0,1,-1) \cap \mathfrak{D}(1,0,0)$,
(5) $\mathfrak{D}(\delta, 1,1), \delta \in \mathbb{C}$,
(6) $\mathfrak{D}(\delta, 1,0)=\mathfrak{D}(0,1,-1) \cap \mathfrak{D}(2 \delta, 1,1), \delta \in \mathbb{C}$.

Example 2.6 Consider a non-abelian two-dimensional Lie color algebra L_{2} with a basis $\left\{e_{1}, e_{2}\right\}$ and its only non-zero commutation relation is $\left[e_{1}, e_{2}\right]=e_{2}$, where $\varepsilon\left(\phi, e_{1}\right)=\varepsilon\left(e_{1}, e_{1}\right)=\varepsilon\left(e_{2}, e_{2}\right)=1$. Then all (α, β, γ)-derivations of L_{2} are given as follows:

- $\mathfrak{D}(1,1,1)=\operatorname{span}_{\mathbb{C}}\left\{\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\} \cong L_{2}$.
- $\mathfrak{D}(0,1,1)=\operatorname{span}_{\mathbb{C}}\left\{\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}$.
- $\mathfrak{D}(1,1,0)=\operatorname{span}_{\mathbb{C}}\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$.
- $\mathfrak{D}(0,1,-1)=\operatorname{span}_{\mathbb{C}}\left\{\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$.
- $\mathfrak{D}(1,0,0) \cap \mathfrak{D}(0,1,1)=\operatorname{span}_{\mathbb{C}}\left\{\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right\}$.
- $\mathfrak{D}(\delta, 1,0)=\{0\}$ for $\delta \neq 1$.
- $\mathfrak{D}(\delta, 1,1)=\operatorname{span}_{\mathbb{C}}\left\{\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}\delta-1 & 0 \\ 0 & 1\end{array}\right)\right\}$ for $\delta \neq 0$.
- $\mathfrak{D}(0,1,0)=\mathfrak{D}(1,0,0) \cap \mathfrak{D}(0,1,0)=\{0\}$.
- $\mathfrak{D}(1,0,0)=\operatorname{span}_{\mathbb{C}}\left\{\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right\} \cong L_{2}$.
- $\mathfrak{D}(1,1,-1)=\operatorname{span}_{\mathbb{C}}\left\{\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right\}$.

References

[1] Chen, L.; Ma, Y.; Ni, L., Generalized derivations of Lie color algebras, Results Math., 63 (2013), 923-936.
[2] Feldvoss, J., Representations of Lie colour algebras, Adv. Math., 157 (2001), 95-137.
[3] Kac, V., Lie superalgebras, Adv. Math., 26 (1977), 8-96.
[4] Mcanally, D.; Bracken, A., Uncolouring of Lie colour algebras, Bull. Austral. Math. Soc., 55 (1997), 425-428.
[5] Novotný, P.; Hrivnák, J., On (α, β, γ)-derivation of Lie algebras and corresponding invariant functions, J. Geom. Phys., 58 (2008), 208-217.
[6] Ree, R., Generalized Lie elements, Canad. J. Math., 177 (1995), 740-754.
[7] Zheng, K.; Zhang, Y., On (α, β, γ)-derivations of Lie superalgebras, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1350050, 18 pp.

Received: August, 2014

