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Abstract

The aim of this paper are to prove existence, uniqueness, and contin-
uous dependence upon the data of solution to a klein gordon equation
with purely nonlocal (integral) conditions. The proofs are based by a
priori estimate and inversion Laplace transform technique. Numerical
results are provided to show the accuracy of the proposed method.
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1 Introduction

The kleain-Gordon equations appear in quantum field theory, relativistic physics,
dispersive wave-phenomena, plasma physics, nonlinear optics and applied and
physical sciences[2, 18, 22] and are of the form

Pu(x,t)  Ou(zx,t)
— - : = 1 <T, (1
Ot2 o2 +au(z,t)=f(z,t), O<z<l, 0<t<T, (1)
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with initial conditions

9, 0
u@0) =@, 200y, 0ca<n 2
and the integral conditions
1 1
/u(m,t)d:czo, /xu(x,t)dxzo, 0<t<T. (3)
0 0

where f,p and ¢ are known functions. 7" and a are known positive constants.

Several techniques including finite difference, collocation, finite element,
inverse scattering, decomposition and variational iteration using Adomian’s
polynomials have been used to handle such equations [2, 18, 22]. We apply the
Laplace transforme method (LTM) to solve Klein-Gordon equations. Numer-
ical results show the compte reliability of the proposed technique.

2 Preliminaries

We introduce the appropriate function spaces that will be used in the rest of
the note. Let H be a Hilbert space with a norm ||-|| .
Let L?*(0,1) be the standard function space.

Definition 2.1 (i) Denote by L*(0,T; H) the set of all measurable abstract
functions u (.,t) from (0,T) into H equiped with the norm

1/2

T
||uHL2<0,T;H>=(/O ||u<.,t>||zdt> < oo, (4)

(i1) Let C'(0,T; H) be the set of all continuous functions u(-,t) : (0,T7) — H
with

We denote by Cy(0,1) the vector space of continuous functions with com-
pact support in (0,1). Since such functions are Lebesque integrable with respect
to dz, we can define on Cy(0,1) the bilinear form given by

1
(w)) = [ STu-Sruds,  m=1, (6)
0
where ( ) )
om T —¢ " )

The bilinear form (6) is considered as a scalar product on Cy (0,1) for which
Co (0,1) is not complete.
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Definition 2.2 Denote by BY' (0,1), the completion of Cy(0,1) for the
scalar product (6), which is denoted (., .) gp (o ), introduced in [6]. By the norm
of function u from By (0,1), m > 1, we understand the nonnegative number :

1/2

1
il = ([ 0P @) =9zl frmzi @
2 0
Lemma 2.3 For all m € N*, the following inequality holds:

2 Lo
||U||Bgl(0,1) < B ||U||B;”—1(071) : (9)
Proof 2.4 See [6].

Corollary 2.5 For all m € N*, we have the elementary inequality

1 m
2 2
lolgan < (3) Tl (10)

Definition 2.6 We denote by L*(0,T; By (0,1)) the space of functions
which are square integrable in the Bochner sense, with the scalar product

T
(u, w)L2(0,T;BgL(0,1)) = /o (u(t) w(., t))Bg”(O,I) dt. (11)

Since the space By(0,1) is a Hilbert space, it can be shown that L*(0,T; By*(0, 1))
is a Hilbert space as well. The set of all continuous abstract functions in [0,T]
equipped with the norm

sup [[u (-, 1)l gy o,1)
0<t<T

is denoted C'(0,T; By*(0,1)).

Corollary 2.7 For every u € L*(0,1), from which we deduce the conti-
nuity of the imbedding L? (0,1) — By (0,1), for m > 1.

Lemma 2.8 (Gronwall Lemma) Let fi(t), fo (t) > 0 be two integrable
functions on [0,T], fo(t) is nondecreasing. If

Ao < hm+e [ At vrep), (12)
where ¢ € RT, then
fi(t) < fo(t)exp(ct), vt e [0,T7]. (13)

Proof 2.9 The proof is the same as that of Lemma 1.5.19 in [17].
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3 Uniqueness and continuous dependence of
the solution

Theorem 3.1 Ifu(x,t) is a solution of problem(1)—(3) and f € C' ((0,1) x [0,T]),
then we have a priori estimates:

2 ! 2 2 2
Ju ('7T>HL2(0,1) <a (/0 If (-at)”B;(o,l) dt + ”90||L2(0,1) + H¢||B%(O,1)> (14)
! 2 2 2
57, = (L1 GOy 4 B+ g ) 09
BY(Q

ou (.7’
where ¢y = exp (1), co=(a+2)exp(T) and0 <7 <T.

Proof 3.2 Taking the scalar product in B (0,1) of both sides of equation(1)

with %, and integrating over (0,7), we have

T 2 T 2
/ 0 u(.,t)’au(.,t) dt—/ 0 u(.,t)78u(.,t) s
0 atQ at B% () 0 (91‘2 at B% ()

a/oT (u (1), w) BL(©Q) "= /oT (f (1), 8uc‘§'t7 t))B;(Q) a1

Integrating by parts of the left-hand sid of (16) we obtain

2

1 1|ou(.,7) 1 a
3 Ju (-J)Hifz(gﬁg ’ ot ... 2 ||<P||iz(9)—||¢\|129;(9)+§ Ju (‘JT)HQB%(Q) -
B3(Q)
a2 T ou (., t)
Slelye = [ (00, 250) a )
2 B;(©) 0 ot B%(Q)
By the Chauchy inequality, the right-hand side of (16) is bounded by
1 /T ) 1 [7|ou(.,t)|”
— IIf ()] 5 dt—l——/ dt. (18)
2 Jo B2 2 Jo ot BL(Q)

Substitution of (18) into (17), yields

ou (., )| T
@+ 2 (o) + |22 < [T 0 g it
) pra 3(©)
2 () 0
"ou (., )]
/ dt -+ (a+2) lpllaoy + 191210 - (19)
o Il 9t iy 2

and by Gronwall Lemma, we have a priori estimates(14)and (15).

Corollary 3.3 If problem (1) — (3) has a solution, then this solution is
unique and depends continously on (f, ¢, ).
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4 Existence of the Solution

In this section we shall apply the Laplace transform technique to find solutions
of partial differential equations, we have the Laplace transform

Ulx,s)= /Ooou (x,t) exp (—st) dt, (20)

where s is positive reel parameter. Taking the Laplace transforms on both sides
of (1), we have

_d*U (,5)

I + (a + 32) Ul(z,s)=F(x,s)+sp(z)+¢(x) (21)

where

F(z,s) = /Ooof(x,t) exp (—st) dt.

Similarly, we have

/ (s de = 0 (22)
/1xU(:L’,s)dx = 0, (23)

Thus, considered equation is reduced in boundary value problem governed by
second order inhomogeneous ordinary differential equation. We obtain a gen-
eral solution of (21) as

a1+82 /0 [F (7,8) + s (7) + 0 (7) |sinh (Va+ [z — 7]) dr

+C (s) exp <—mx> + Cy (s) exp <\/mx> , (24)

Ulx,s) = —

where Cyand Cy are arbitrary functions of s. Substitution of (24) into (22)
-(23), we have

C (s) /01 exp (—mx) dz + Cy (s) /01 exp (Mm) dx

_ ¢(11+7/01 [[F (7.5) + 50 (1) + ¢ (7)] /Tl sinh (Va + 52 [z — 7)) dx] i,
(25)

C (s) /01 T exp <—\/mx> dx + Cy () /01 T exp (Wm) dx
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_ \/aiiﬁ /01 [[F (7,8) +sp (1) + 9 (7)) /Tlxsinh (W[m _ T]) d:z:] dr,
(26)

where
)=l ) =(mE) e

ajp (s) = /01 exp <—ma¢> dz,
exp <mx) dx,

S~ S—

T exp (—\/mx) dx,
as (s) = /01 x exp <\/mgc> dx,

bi(s) = m { (7,8) + s (T )+¢(7)]/Tlsinh<m[x—7]>dx] dr

by (s) = [ (1,8) +sp (T )+¢(7‘)]/Tlxsinh<m[x—r]> dx} dr

=
(28)

It is possible to evaluate the integrals in (24) and (28) exactly. In general,
one may have to resort to numerical integration in order to compute them,
however. For example, the Gauss’s formula (25.4.30) given in Abramowitz
and stequn [1] may be employed to calculate these integrals numerically, we
have

1
/ exp (i\/ﬂf) dx

~ —Zwmxp( a2+82[7;+1]>7

1
/ T exp <:l:\/m:v> dx

0

%iw( )exp (i@[l’iﬁ-ﬂ),

=1
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/: [F (7,5) + s (7) + 0 (7) |sinh (Va+ [z = 7]) dr
%fjwz[ ( [v; +1]; )+ss0<§[ ]>+¢< [xz+1])]

=1

x sinh (\/m [x—g[xi+1]]),

12

/01 [[F (7. 5) + 50 (7) + 1 (7)] /71 sinh (vVa+ 5% [z — 7)) dx] dr

—sz{ ( ; 1];5)—1—8@(%[%4—1])—1—1/1(%[%—1—1])} <1—%[$i+1]>><

xijsmh (m [2 [(1—%[%“]) ;4 <1+%[xi+1]>] —l(xﬁl)]),

2

12

/01 [[F (1,8) + s (1) + 9 (1)] /Tl x sinh (m[x — T]) dx] dr

4112,:1 [FG[:vﬁl];S)ﬂst (%[wﬂ)w(%[mu)} (1—%[%+1]) %
x (é Kl—%[ﬂ?iﬂLl])xpL<1+%[mi+1]>b .

xészinh (m B [(1—%[$i+1]) xj + <1+%[azi+1]>} —%(xﬂrl)D,

(29)

12
|
&

where x; and w; are the abscissa and weights, defined as

z; o 1™ zero of P, (x), w; =2/ (1—a7) [P, (x)]2

n

Their tabulated values can be found in [1] for different values of N.

4.1 Numerical inversion of Laplace transform

Sometimes, an analytical inversion of a Laplace domain solution is difficult to
obtain,; therefore a numerical inversion method must be used. A nice compar-
1son of four frequently used numerical Laplace inversion algorithms is given
by Hassan Hassanzadeh, Mehran Pooladi-Darvish [16]. In this work we use
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the Stehfest’s algorithm [20] that is easy to implement. This numerical tech-
nique was first introduced by Graver [14] and its algorithm then offered by
[20].Stehfest’s algorithm approximates the time domain solution as

In2 <& nln2
u(a:,t)%T;ﬁnU<x; : > )
where, m 1s the positive integer,
B = (1™ m%m 2D (31)
' o [241] (m — k)k! (k—1)! (n — k)! (2k — n)!’

and [q] denotes the integer part of the real number q.

5 Numerical Examples

In this section, we report some results of numerical computations using Laplace
transform method proposed in the previous section. These technique are applied
to solve the problem defined by (1) — (3) for particular functions f, o and 1),
and positive constant a. The method of solution is easily implemented on the
computer, used Matlab 7.9.3 program.

Example 5.1 We take

flr,t)=0,0<2<1,0<t<T,a=1p(x)=0,0<zx<LY(r)=20<z<1,

(32)

in this case exact solution given by
u(z,t) =zsint, O<z<l, 0<t<T. (33)

The method of solution is easily implemented on the computer, numerical
results obtained by N = 8 in (29) and m = 5 in (30), then we compared
the exact solution with numerical solution. For t = 0.10, = € [0.10,0.90], we
calculate u numerically using the proposed method of solution and compare it

with the exact solution in Table 1.

T 0.10 0.30 0.50 0.70

0.90

u exact

0,009983341

0, 029950025

0,049916708

0, 069883391

0, 089850075

u numerical

0, 009983208

0, 029958510

0,049915304

0,069905961

0, 089857454

error

—0,000013322

0, 000283305

—0,000028126

0, 000322966

0,000082157

Table 1
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Example 5.2 We take

fx,t)=2sint,0<x<1,0<t<T, a=1,¢(x)=sinz,0<z<L,¥(z)=1,0<z <1,

i this case exact solution given by

u(z,t) =sinz+sint,0<zx<1,0<t<T.

(33)

Fort =0.10, z € [0.10,0.90] , we calculate u numerically using the proposed
method of solution and compare it with the exact solution in Table 2:

T

0.10

0.30

0.50

0.70

0.90

u exact

0, 199666683

0, 395353623

0, 579258955

0, 744051103

0, 883160326

u numerical

0, 199674896

0, 395256911

0,579266229

0, 744009648

0, 883415305

error

0,000041133

—0,000244621

0,000012557

—0, 000055715

0,000288712

Table 2
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