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Abstract

This paper is concerned the using of biorthogonal Flatlet oblique
multiwavelet system to solve linear Fredholm integral equations. The
biorthogonality and high vanishing moments properties of this system
result in efficient and accurate solutions. Finally, numerical results and
the absolute errors for some test problems with known solutions are
presented.
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1 Introduction

Wavelet theory is relatively new and is an emerging area in mathematical re-
search. In recent years, wavelets have found their way into different fields of
science and engineering. Wavelet analysis assumed significance due to the suc-
cessful applications in signal and image processing during the eighties. The
smooth orthonormal basis obtained by the translation and dilation of a single
function in a hierarchical fashion proved very useful to develop compression al-
gorithms for signals and images up to a chosen threshold of relevant amplitudes
[9, 10].

The advantages of multiwavelets, as extensions form scalar wavelets and
their promising features have resulted in an increasing trend to study them.
Features such as orthogonality, compact support, symmetry, high order van-
ishing moments and simple structure make multiwavelets useful both in theory
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and in applications such as signal compression and denoising [11, 12, 14, 15].
The use of multiwavelet basis leads to sparse representation for a wide class
of differential, integral and integro-differential equations due to moments of
the simple functions involved. In some works such as [3], representations of
operators are constructed by using multiwavelets with the goal of develop-
ing adaptive solvers for linear and nonlinear partial differential equations. The
use of operator modeling converts differential equations to systems of algebraic
equations. It is known that short support and high vanishing moments are the
two most important features of a biorthogonal Multiwavelet System(BMS).
The dual multiwavelets used in this paper provide a high order of polyno-
mial reproduction and offer specified approximation order near the borders.
Moreover, their important smoothness properties transform into polynomial
reproductions in the discrete setting. Since the true solution of the examples
are power series, a higher m might allow for a higher order Taylor approxima-
tion of the solution. We refer the readers to [13, 11, 7] for more information
about constructions and samples of BMS and wavelets. Using multiwavelets
basis provides a better approximation for problems having smooth solutions.
It should be noted that despite the fact that smoothness is a suitable feature
for problems such as signal processing and image decomposition, thus far, non-
smooth wavelets have provided desirable results in certain numerical methods
[3, 8].

In this paper, we use Flatlet multiwavelets system [5] with multiplicity m
and derive an algorithm to solving linear Fredholm integral equation of the
form

y(x)−
∫ 1

0

K(x, t)y(t)dt = f(x), 0 ≤ x ≤ 1 (1)

where f and K, are known functions and y is the unknown function to be
found.

This paper is organized as follows: In Section 2, we describe the formulation
of the biorthogonal Flatlet Multiwavelet System on [0, 1]. In Section 3, the
proposed method is used to solve the Fredholm integral equations (FIE). In
section 4, we report our computational results and demonstrate the accuracy
of the proposed numerical scheme by presenting numerical examples. Section
5, ends this paper with a brief conclusion.

2 Flatlet Multiwavelet System

A flatlet multiwavelet system [5, 13] with multiplicity m+ 1 consist of m+ 1
scaling functions and m + 1 wavelet defined on [0, 1]. The simplest example
(m = 0) for the flatlet family is identical to the Haar wavelets. To construct
higher order flatlet multiwavelet system, we can follow the same procedures
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as Haar wavelets. The scaling functions in this system are defined as a set
of (m+ 1) unit constant functions φ0(x), ..., φm(x) divided equally into m+ 1
intervals on [0, 1] by

φi(x) =







1 i
m+1

≤ x < i+1
m+1

,

, i = 0, 1, ..., m.
0 otherwise

(2)

Let m+1 functions ψ0(x), ..., ψm(x) be flatlet wavelets corresponding to flatlet
scaling functions defined on [0, 1]. We construct corresponding wavelet by
using a two-scale relation which will be introduced next. First for simplicity,
we put flatlet scaling functions and wavelets into two vector functions

Φ(x) =















φ0(x)
...

φi(x)
...

φm(x)















,Ψ(x) =















ψ0(x)
...

ψi(x)
...

ψm(x)















. (3)

Now the two-scale relations for the flatlet multiwavelet system may be ex-
pressed as

Φ(x) = P

[

Φ(2x)
Φ(2x− 1)

]

,Ψ(x) = Q

[

Φ(2x)
Φ(2x− 1)

]

. (4)

where P and Q are (m + 1) × 2(m + 1) matrices. Rewriting the two-scale
relations (2.3) in the matrix form, yields

[

Φ(x)
Ψ(x)

]

=

[

P
Q

] [

Φ(2x)
Φ(2x− 1)

]

, (5)

which is called the reconstruction relation. Also the coefficients matrix in
(5) is called reconstruction matrix(RCM) which is invertible[5]. Because of
the simplicity of the flatlet scaling functions, the matrix P in the two-scale
relations (4) is obtained as

P =











1 1 0
1 1

. . .

0 1 1











. (6)

For computing the 2(m+1)2 entries of matrix Q we need 2(m+1)2 independent
conditions. There are many possibilities in choosing the conditions to be used
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that different flatlet multiwavelet systems with different properties. In this
sequel, we use the (m+1)(m+2)

2
orthonormality conditions

∫ 1

0

ψi(x)ψj(x)dx = δi,j, i, j = 0, 1, ..., m, (7)

and also (m+1)(3m+2)
2

vanishing moment conditions

∫ ∞

−∞
ψi(x)x

jdx = 0, i = 0, 1, ..., m, j = 0, 1, ..., m+ i. (8)

By using (2) and (4), equation (8) can be written to the following system of
linear equations

2(m+1)
∑

k=0

{(k + 1)j+1 − (k)j+1}qj,k = 0, j = 0, ..., m+ i. (9)

By solving (7)− (9), the unknown matrix Q and so Ψ(x) are obtained. As an
example, for the first order flatlet basis functions

φ0(x) =

{

1, 0 ≤ x < 1
2
,

0, otherwise,

φ1(x) =

{

1, 1
2
≤ x < 1,

0, otherwise.
(10)

The matrix Q is computed as

Q = ±
[

1√
2

− 1√
2

− 1√
2

1√
2

1√
10

− 3√
10

3√
10

− 1√
10

]

. (11)

Which implies that the associated multiwavelets, are not unique. A simple
form of multiwavelets for the above example may be given as

ψ0(x) =
√
2







































1
2

0 ≤ x < 1
4
,

−1
2

1
4
≤ x < 3

4
,

1
2

3
4
≤ x < 1,

0 otherwise

,
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ψ1(x) =
√
10























































1
10

0 ≤ x < 1
4
,

− 3
10

1
4
≤ x < 1

2
,

3
10

1
2
≤ x < 3

4
,

− 1
10

3
4
≤ x < 1,

0 otherwise

(12)

Also the second order flatlet multiwavelets system are

φi(x) =







1 i
3
≤ x < i+1

3
,
, i = 0, 1, 2,

0 otherwise

ψ0(x) =
√
10























































































1
6

0 ≤ x < 1
6
,

− 7
30

1
6
≤ x < 1

3
,

− 2
15

1
3
≤ x < 1

2
,

2
15

1
2
≤ x < 2

3
,

7
30

2
3
≤ x < 5

6
,

−1
6

5
6
≤ x < 1,

0 otherwise

,

ψ1(x) =
√
14







































































1
14

0 ≤ x < 1
6
,

− 3
14

1
6
≤ x < 1

3
,

1
7

1
3
≤ x < 2

3
,

− 3
14

2
3
≤ x < 5

6
,

1
14

5
6
≤ x < 1,

0 otherwise

,
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ψ0(x) =
√
14























































































− 1
42

0 ≤ x < 1
6
,

5
42

1
6
≤ x < 1

3
,

− 5
21

1
3
≤ x < 1

2
,

5
21

1
2
≤ x < 2

3
,

− 5
42

2
3
≤ x < 5

6
,

1
42

5
6
≤ x < 1,

0 otherwise

. (13)

3 Biorthogonal Flatlet Multiwavelet System

The Φ̃(x) and Ψ̃(x) be dual scaling and wavelet vector functions in biorthogonal
flatlet multiwavelet system(BFMS), respectively as

Φ̃(x) =

















φ̃0(x)
...

φ̃i(x)
...

φ̃m(x)

















, Ψ̃(x) =

















ψ̃0(x)
...

ψ̃i(x)
...

ψ̃m(x)

















. (14)

Note that according to the biorthogonality conditions in BFMS we must have

〈φ̃i, φj〉 =
∫ 1

0

φ̃i(x)φj(x)dx = δi,j, (15)

〈ψ̃i, ψj〉 =
∫ 1

0

ψ̃i(x)ψj(x)dx = δi,j, (16)

〈ψ̃i, φj〉 =
∫ 1

0

ψ̃i(x)φj(x)dx = 0, (17)

i, j = 0, 1, ..., m.
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Now we introduce φ̃i(x) and ψ̃i(x) as polynomials and piecewise polynomi-
als of degree m respectively, by

φ̃i(x) =

{

ai1 + ai2x+ ... + ai,m+1x
m 0 ≤ x < 1,

0 otherwise
(18)

ψ̃i(x) =







b1i1 + b1i2x+ ... + b1i,m+1x
m 0 ≤ x < 1

2
,

b2i1 + b2i2x+ ... + b2i,m+1x
m 1

2
≤ x < 1,

0 otherwise
(19)

Based on biorthogonal conditions (15)− (17), we show that coefficients ai,j, b
1
i,j

and b2i,j , i = 0, ..., m, and j = 1, ..., m+ 1, in (18) and (19) are uniquely deter-
mined.

Lemma 3.1. (See [5]) Let A = [ai,j]n×n be a square matrix with ai,j =
pi−1(j), a polynomial of exact degree i− 1, then A is invertible.

Theorem 3.2. (See[5]) For oblique flatlet multiwavelets, The dual functions
defined in (18) and (19) are uniquely determined.

For example, the dual multiwavelets corresponding to (10) and (12) are
computed as

φ̃0(x) =

{

3− 4x, 0 ≤ x < 1,
0, otherwise,

φ̃1(x) =

{

−1 + 4x, 0 ≤ x < 1,
0, otherwise,

ψ̃0(x) =







2
√
2(1− 4x), 0 ≤ x < 1

2
,

−2
√
2(3− 4x), 1

2
≤ x < 1,

0, otherwise,

ψ̃1(x) =







√
10(1− 4x), 0 ≤ x < 1

2
,√

10(3− 4x), 1
2
≤ x < 1,

0, otherwise.

(20)
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Also the dual multiwavelets corresponding to (13) are computed as

φ̃0(x) =

{

11
2
− 18x+ 27

2
x2, 0 ≤ x < 1,

0, otherwise,

φ̃1(x) =

{

−7
2
− 27x+ 27x2, 0 ≤ x < 1,

0, otherwise,

φ̃2(x) =

{

1− 9x+ 27
2
x2, 0 ≤ x < 1,

0, otherwise,

ψ̃0(x) =







√
10(7

4
− 33

2
x+ 27x2), 0 ≤ x < 1

2
,

−
√
10(49

4
− 75

2
x+ 27x2), 1

2
≤ x < 1,

0, otherwise,

ψ̃1(x) =







√
14(9

4
− 45

2
x+ 81

2
x2), 0 ≤ x < 1

2
,√

14(81
4
− 117

2
x+ 81

2
x2), 1

2
≤ x < 1,

0 otherwise

ψ̃3(x) =







−
√
14(1− 12x+ 27x2), 0 ≤ x < 1

2
,√

14(16− 42x+ 27x2), 1
2
≤ x < 1,

0, otherwise,

(21)

A function f(x) defined in [0, 1] may be approximated by the flatlet multi-
wavelets [11] as

f(x) ≃ ΘT .f , (22)

or

f(x) ≃ Θ̃T .f̃ , (23)

where

Θ(x) =





























φ0(x)
...

φm(x)
ψ0(x)

...
ψi(2

lx− k)
...

ψm(2
Jx− 2J + 1)





























, Θ̃(x) =































φ̃0(x)
...

φ̃m(x)

ψ̃0(x)
...

ψ̃i(2
lx− k)
...

ψ̃m(2
Jx− 2J + 1)































, (24)

and f, f̃ are N -vectors as

f = [c′0, ..., c
′
m, d0,0,0, ..., di,l,k, ..., dm,J,2J−1]

T ,

f̃ = [c̃′0, ..., c̃
′
m, d̃0,0,0, ..., d̃i,l,k, ..., d̃m,J,2J−1]

T ,
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in which N = 2J(m+ 1). Also, a two variable function g(x, y) can be approx-
imated by flatlet multiwavelets [11] as

g(x, y) ≃ ΘT (y).G.Θ(x), (25)

where

[G]i,j =

∫ 1

0

∫ 1

0

g(x, y)θ̃i(x)θ̃j(y)dxdy, i, j = 1, 2, ..., N.

Note that from (14), the vector Θ̃(x) in (24) can express as

Θ̃(x) =































Φ̃(x)

Ψ̃(x)
...

Ψ̃(2ix)
...

Ψ̃(2ix− 2i + 1)
...

Ψ̃(2J+1x− 2J+1 + 1)































, (26)

and from (24), it can express as

Θ̃(x) = QΛ(x), (27)

where

Λ(x) =















































Φ̃(x)

Φ̃(2x)

Φ̃(2x− 1)
...

Φ̃(2ix)

Φ̃(2ix− 1)
...

Φ̃(2i+1x− 2i+1 + 2)

Φ̃(2i+1x− 2i+1 + 1)
...

Φ̃(2J+1x− 2J+1 + 2)

Φ̃(2J+1x− 2J+1 + 1)















































,

and Q′ is a block matrix of the form
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



























I 0 · · · 0 · · · 0 · · · 0

0 Q̃ · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
...

...

0 0 · · · Q̃ · · · 0 · · · 0
...

...
...

...
. . . · · · · · · ...

0 0 · · · 0 · · · Q̃ · · · 0
...

...
...

...
...

...
. . .

...

0 0 · · · 0 · · · 0 · · · Q̃





























where I is the identity matrix of rank m + 1, the 0th in the below I are
(m + 1) × (m + 1) zero matrices and the other 0s are (m + 1) × 2(m + 1)
zero matrices. Note that this block matrix can be separated as 2J+1 − 1 block
column and block rows. So using (27), we can rewrite (22) as

f(x) ≃ ΛT .QT .f . (28)

4 Solving The Fredholm Integral Equations(FIE)

In this section we solve the linear integral equation (1) by utilizing BFMS. For
this purpose, we give two methods as following.

The First method

By using (22) and (25), we approximate the functions involved by

y(x) ≃ yT .Θ̃(x),

k(x, t) ≃ Θ̃T (t).K.Θ̃(x),

f(x) ≃ fT .Θ̃(x), (29)

where y is unknown vector and f is a known vector with 2j+1 entries and K is
a known 2j+1 × 2j+1 matrix as

fi =

∫ 1

0

f(x)Θ(x)dx, (30)

and

Ki,j =

∫ 1

0

(
∫ 1

0

k(x, t)Θ(t)dt

)

Θ(x)dx. (31)

By substituting (29) into (1),we get

yT .Θ̃(x)−
∫ 1

0

Θ̃T (t).K.Θ̃(x).yT .Θ̃(t)dt = fT .Θ̃(x), (32)
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or

yT Θ̃(x)− yT

[
∫ 1

0

Θ̃(t)Θ̃(t)dt

]

KΘ̃(x)− fT Θ̃(x) = 0. (33)

Let

P =

∫ 1

0

Θ̃(t)Θ̃(t)dt, (34)

so P is a 2j+1 × 2j+1 matrix. By substituting (34) into (33), we get

yT − yTPK− fT = 0, (35)

Eq. (35) gives a system of linear equations with 2j+1 equations and 2j+1

unknowns as

yT (I−PK) = fT , (36)

which can be solved to find the vector y, so the unknown function y(x) can be
found using Eq. (29).

The Second method

In this method we calculate the coefficients using dual (FOM) and approximate
y(x) by flatlet multiwavelets, as bellow.

y(x) ≃ yT .Θ(x),

k(x, t) ≃ ΘT (t).K.Θ(x),

f(x) ≃ fT .Θ(x), (37)

where y is unknown vector and f is a known vector with 2j+1 entries and K is
a known 2j+1 × 2j+1 matrix as

fi =

∫ 1

0

f(x).Θ̃i(x)dx, (38)

and

Ki,j =

∫ 1

0

(
∫ 1

0

k(x, t).Θ̃i(t)dt

)

Θ̃j(x)dx. (39)

By substituting (37) in (1), we get

yT .Θ(x)−
∫ 1

0

ΘT (t).K.Θ(x).yT .Θ(t)dt = fT .Θ(x). (40)
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or

yTΘ(x)− yT

[
∫ 1

0

Θ(t)Θ(t)dt

]

KΘ(x)− fTΘ(x) = 0, (41)

Let

P =

∫ 1

0

Θ(t)Θ(t)dt, (42)

so we have

yT − yTPK− fT = 0, (43)

Eq.(43) gives a system of linear equations with 2j+1 equations and 2j+1 un-
knowns as

yT (I−PK) = fT , (44)

which can be solved to find the unknown function y(x).

5 Computational results and test problems

In this section, some numerical examples are presented to illustrate the validity
and the merits of BFMS technique. One main merit of this technique is the
generation of a sparse matrix. This advantage is illustrated in Examples 1−4.
Suppose T = (I − PK)T and U = yT and F = fT , then Eqs. (35) and (44)
result the linear system TU = F . We approximate T with a matrix Tε whose
elements are difined by formula

Tεi,j =

{

Ti,j, |Ti,j| ≥ ε
0 otherwise

, (45)

where the threshold ε is chosen so that a desired precision τ is maintained
[2, 17]

‖Tε − T‖ ≤ τ‖T‖. (46)

Here the norm ‖.‖ is the row-sum norm. The threshold ε is given by
ε = τ‖T‖/n. In this paper we use the threshold parameter ε = 10−2, ε = 10−3

and ε = 10−4 and see that by increasing the value of the threshold parameter,
the sparsity and error values are increased regarding Eqs. (45) and (46).

The percent sparsity (Sε) of matrix Tε is then defined by [16, 17]

Sε =
N0 −Nε

N0

× 100%, (47)
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Table 1: Sparsity and MaxError for m = 2 (The first method)

Thresholdparameter(ε) Sparsity(Sε)(%) MaxError
0 91.8 8.4× 10−5

J = 4 10−4 91.8 8.4× 10−5

10−3 94.01 9.1× 10−5

10−2 97.0 1.1× 10−3

0 95.8 1.1× 10−5

J = 5 10−4 96.5 1.1× 10−5

10−3 97.9 1.3× 10−5

10−2 98.7 1.0× 10−3

where N0 is the total number of elements Tε and Nε is the number of the
nonzero elements Tε. We define the maximum error asMaxError = max|yexact−
yapp| to calculate the errors in Tables 1 − 6. Now two presented methods are
applied to some examples with known exact solutions. The computations were
carried out for different values of m and J . Comparing the value of MaxErrors
for tow presented methods we can observe that the first method have bet-
ter results than the second method. Futhermore, the other advantages of the
method are its simplicity and small computations costs which result from the
sparsity of the associated matrices.

Example 5.1. Consider the following integral equation,






y(x)−
∫ 1

0
(x2 + t2)y(t)dt = f(x),

y(0) = 1,
f(x) = x5 + 5x4 − 7

6
x2 − 2x+ 55

168
.

(48)

The exact solution of this equation is

y(x) = x5 + 5x4 − 2x+ 1.

Tables 1 and 2 show the sparsity and MaxError for m = 2, J = 4, 5 for different
values of thresholding parameter, for the first and the second presented methods
respectively. Figure 1 shows the plots of errors for two presented methods for
m = 2 and J = 4 and Figure 2 shows the plots of the matrix elements for
m = 2 and J = 4 after thresholding for the first method.

Example 5.2. Consider the following integral equation,

{

y(x)−
∫ 1

0
(x2 + t2)y(t)dt = f(x),

y(0) = 4,
(49)
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Table 2: Sparsity and MaxError for m = 2 (The second method)

Thresholdparameter(ε) Sparsity(Sε)(%) MaxError
0 0 9.3× 10−2

J = 4 10−4 88.5 9.3× 10−2

10−3 94.01 9.5× 10−2

10−2 97.0 5.6× 10−2

0 0 3.8× 10−2

J = 5 10−4 95.5 3.7× 10−2

10−3 97.9 4.8× 10−2

10−2 98.7 8.2× 10−2
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Figure 1: Plots of error for the first method(left) and the second method(right) for
Example 1.
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Figure 2: Plots of spars matrix after thresholding with ε = 10−3(left) ε =
10−2(right) for Example 1.
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Table 3: Sparsity and MaxError for m = 2 for Example 2.

Thresholdparameter(ε) Sparsity(Sε)(%) MaxError
0 95.8 5.7× 10−6

J = 5 10−4 96.5 5.7× 10−6

10−3 97.9 3.3× 10−5

10−2 98.7 1.4× 10−4

0 97.9 7.1× 10−7

J = 6 10−4 98.5 7.9× 10−7

10−3 99.2 3.3× 10−5

10−2 98.7 1.4× 10−5

Here the forcing function f is selected such that

y(x) =
√
x+

1

1 + x
+ 2x

√
x+ 3,

is the exact solution of problem (5.5). Table 3 shows the sparsity and MaxError
for m = 2, J = 5, 6 for different values of thresholding parameter, using the
first method presented in the previous section. Figure 3 shows the plot of error
for two presented methods for m = 2 and J = 5.
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Figure 3: Plots of error for the first method(left) and the second method(right) for
m = 2 and J = 5 for Example 2.

Example 5.3. Consider the following integral equation,

{

y(x)−
∫ 1

0
(x+ t)y(t)dt = f(x),

y(0) = e+ 1,
(50)
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Table 4: Sparsity and MaxError for m = 2 for Example 3.

Thresholdparameter(ε) Sparsity(Sε)(%) MaxError
0 95.8 9.8× 10−6

J = 5 10−4 96.8 9.8× 10−6

10−3 97.9 1.2× 10−5

10−2 98.9 1.0× 10−3

0 97.9 1.1× 10−6

J = 6 10−4 98.4 1.1× 10−6

10−3 99.2 3.7× 10−6

10−2 98.7 1.0× 10−3

Here the forcing function f is selected such that

y(x) = e2x+1 +
1

x+ 1
,

is the exact solution of problem (5.6). Table 4 shows the sparsity and MaxError
for m = 2, J = 5, 6 for different values of thresholding parameter, using the
first method presented in the previous section. Figure 4 shows the plot of error
for two presented methods for m = 2 and J = 5 and Figure 5, and 6 show the
plots of the matrix elements for m = 2 and J = 5 after thresholding.
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Figure 4: Plots of error for first method(left) and second method(right) for (m = 2)
and (J = 5) for Example 3.

Example 5.4. Consider the following integral equation,






y(x) −
∫ 1

0
(t− x)3y(t)dt = f(x),

y(0) = 1,
f(x) = x2(1− x2) + 2

15
x3 − 1

4
x2 + 6

35
x− 1

24
.

(51)
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Figure 5: Plots of spars matrix(first method) after thresholding withm = 2, J = 5
and ε = 10−3(left) ε = 10−2(right) for Example 3.
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Figure 6: Plots of spars matrix(second method) after thresholding withm = 2, J = 5
and ε = 10−3(left) ε = 10−2(right) for Example 3.

The exact solution of this equation is

y(x) = x2(1− x2).

Table 5,6 shows the sparsity and MaxError for m = 2, J = 5, 6 for different
values of thresholding parameter, using tow method presented in the previous
section. Figure 7 shows the plot of error in tow methods and Figure 8, and 9
show the plots of the matrix elements for m = 2 and J = 5 after thresholding.

6 Conclusion

In this paper the Flatlet oblique multiwavelets are employed to solve the Fred-
holm integral equations. Considering the properties of these wavelets and
using dual functions, the solution of the integral equations is converted to the
solution of a sparse linear system of algebraic equations. Using the spare struc-
ture of this linear system, the given problem is solved and memory times are
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Table 5: Sparsity and MaxError for m = 2 for Example 4(the first method).

Thresholdparameter(ε) Sparsity(Sε)(%) MaxError
0 63.9 1.5× 10−6

J = 5 10−4 97.0 2.8× 10−5

10−3 98.2 2.7× 10−5

10−2 98.7 1.8× 10−3

0 65.3 1.7× 10−7

J = 6 10−4 98.8 3.0× 10−5

10−3 97.9 3.1× 10−5

10−2 98.7 1.8× 10−3

Table 6: Sparsity and MaxError for m = 2 for Example 4(the second method).

Thresholdparameter(ε) Sparsity(Sε)(%) MaxError
0 0 5.5× 10−2

J = 5 10−4 96.4 7.5× 10−2

10−3 98.7 8.1× 10−2

10−2 98.7 7.4× 10−2
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Figure 7: Plots of error for first method(left) and second method(right) for m = 2
and J = 5 for Example 4.
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Figure 8: Plots of spars matrix(first method) after thresholding with ε = 10−5(left)
ε = 10−4(right) for Example 4.
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Figure 9: Plots of spars matrix(first method) after thresholding with ε = 10−5(left)
ε = 10−4(right) for Example 4.

reduced. Several test examples are used to observe the efficiency and applica-
bility of the new method.
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