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Numerical Solution of a 2-D Linearised Boussinesq Equation
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Abstract

The numerical solution of a 2-D linearized Boussinesq equation is

presented and predict the spatio-temporal variation of the water table

in a finite aquifer system in response to a transient recharge from rect-

angular basin. The boundary condition of the finite aquifer are taken as

fixed heads, which would apply when the aquifer system is surrounded

by open water bodies. Characteristic behaviours of the solution are il-

lustrated with the help of a numerical example and solution is obtained

by using finite difference method.
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Notations:

A = length of aquifer in the x direction
B = length of aquifer in the y direction
H = h2 − h2

0

h= variable water table height
h0= initial water table height
a = Kh̄

Sy

K= hydraulic conductivity
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h̄= weighted mean of the depth of saturation
Sy= specific yield
P= constant rate of recharge
P1 + P0= initial rate of transient recharge
P1= final rate of transient recharge
t= time of observation since the beginning of recharge
x, y= space coordinates
x2 − x1= length of recharge basin
y2 − y1= width of recharge basin
β= decay constant

1 Introduction

Several types of models have been used to study groundwater flow system.
These can be divided into three broad categories analog model, mathematical
models and analytical and numerical models. Hydrological studies usually
involve mathematical modeling of groundwater flow. Such model consist of a
set of differential equations which govern the flow of groundwater. They have
been in the use since the late 1800’s.

To develop a numerical model of a physical system, it is first necessary
to understand how that system behaves. This understanding takes the form
of Darcy’s law and concept of storage. These concepts and laws are then
translated into mathematical expressions, usually partial differential equation
with initial and boundary conditions. Numerical methods provide a means for
solving these equations in their most general form.

Numerical solution normally involves approximating continuous partial dif-
ferential equation with a set of discrete equations in time period of interest are
divided in some fashion, resulting in an equation or set of equations for each
subregion and time step. These discrete equations are combined to form a
system of algebraic equations that must be solved for each time step. Finite
difference and finite element methods are the major numerical techniques used
in groundwater applications.

The finite difference method one of the oldest, most general applicable
and most easily understood methods of obtaining numerical solution to steady
and unsteady groundwater problems. Also, the finite difference method is
a numerical method that can provide approximate solutions under general
circumstances, when we solving partial differential groundwater equations.

Many 2-D analytical solutions of the Boussinesq equation have been used to
predict water table fluctuations owing to uniform and constant recharge from
basins of different configuration. In 1967, Hantush found analytical solutions
for an infinite unconfined aquifer subject to recharge from rectangular and
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circular basins. Later on Rao and Sarma (1981 a, b) developed analytical
solutions to describe water table fluctuations in finite aquifers to recharge
from a rectangular area. In 1991, Zomorodi showed that solutions based on
the assumption of constant recharge do not predict the decay of the water
table owing to a declining recharge rate in field problem. In theoretical studies
on water table fluctuations in 1-D aquifer systems many workers such as Rai
and Singh (1981, 1992), Singh et al. (1991) have shown that the variation in
recharge rate significantly affects the growth of the water table.

Singh and Rai (1980) have developed an approximate analytical solution
for the fluctuations of the water table in a finite aquifer in response to an
exponentially decaying rate of recharge. Rai and Singh (1995) have presented
an analytical solution of the 2-D Boussinesq equation with an exponentially
decreasing recharge rate which is predict water table fluctuation beneath a
rectangular basin.

Sontakke and Rokade (2014) have developed a numerical solution of a 1-D
linearised Boussinesq equation which describe water table fluctuation in the
presence of time varying recharge from recharge basins for an one canal.

In the present work, a numerical solution of the 2-D linearised Boussinesq
equation with an exponentially decreasing recharge rate is developed to predict
water table fluctuation beneath a rectangular basin. The solution is obtained
by using a finite difference method.

Figure 1. Schematic diagram of the recharge scheme and flow system.

2 Mathematical Formulation and Solution

A schematic diagram of the recharge scheme and a vertical cross section of the
flow system are shown in above Figure 1. An unconfined aquifer with a hor-
izontal impermeable base receives the recharge from an overlying rectangular
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basin. The aquifer is surrounded by open water bodies. It is assumed that,
the water levels of the water bodies remain at a constant height equal to the
initial depth of saturation, and the rate of recharge is so small compared with
the hydraulic conductivity that water flows almost horizontally beneath the
water table.

The groundwater movement in the flow system under consideration as
shown in Figure 1 is represented by the following 2-D Boussinesq equation,

∂2H

∂x2
+

∂2H

∂y2
+ 2

P (t)

K
=

1

a

∂H

∂t
(1)

The initial condition and boundary conditions are

H(x, y, 0) = 0 (2)

H(0, y, t) = H(x, 0, t) = H(A, y, t) = H(x,B, t) = 0 (3)

where H = h2 − h2
0, h is the variable water table height, ho is the initial depth

of saturation, a = Kh̄
Sy

, K is the hydraulic conductivity, Sy is the specific yield,

h̄ is the weighted mean of the depth of saturation and can be evaluated by
using the method of successive approximation, x and y are space coordinates,
t is the time of observation, A and B are the aquifers dimensions in the x and y
directions respectively, and P(t) is the time varying rate of recharge. Here the
rate of recharge is considered as exponentially decreasing with time from an
initial value P1+P0 to a lower value P1 as shown in Figure 2 and is represented
as,

P (t) =

{

P1 + P0e
−βt , for x1 ≤ x ≤ x2, y1 ≤ y ≤ y2

0 , elsewhere
(4)

Figure 2. Time varying recharge rate.

The boundary value problem is solved by using the finite difference method.
Thus using forward difference to the time derivative and central difference to
the space derivative approximation, the linearised Boussinesq equation (1)
yields,
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Now, define r = a∆t
h2 , where ∆x = ∆y = h. Then the above equation reduces

to

Hn+1
i,j = (1− 4r)Hn

i,j + r[Hn
i−1,j +Hn

i+1,j +Hn
i,j+1 +Hn

i,j−1] +
2a∆t

K
P n
i,j (5)

3 Numerical Results and Discussion

The numerical example of Rai and Singh (1995) is considered here to demon-
strate the application of equation (5) which illustrate effect of variation in
recharge rate on the water table fluctuation. In this example the controlling
parameters are A = B = 820cm, x1 = y1 = 390cm, x2 = y2 = 430cm,
K = 0.4cm/s, Sy = 0.15 and h0 = 10cm. Numerical values of other new
parameters are taken as P1 = 0.01cm/s and P0 = 0.02cm/s

Using equation (5), we computed water table variations at the centre of
the recharge basin. Let us choose the value of ∆x = ∆y = 205 i.e h and
∆t = 30, we get a numerically stable solution to satisfy the stability condition,
r = a∆t

h2 ≤
1

2
, so that r = 0.02. Now, we shall find the mesh points. At the

zeroth level(n = 0) the initial condition at t = 0 and boundary conditions are
H0

i,j = 0, i = j = 0, 1, 2, 3, 4.
From given data, h̄ = 10cm, K = 0.4cm/s, Sy = 0.15, ∆t = 30 then a =

Kh̄
Sy

= 26.66 and 2a∆t
K

= 3999. Also, using equation (4) we can find the values

of P n
i,j(t) at different times in response to a constant rate of recharge β = 0

and exponentially decreasing recharge rate for β = 0.01s−1 and β = 0.02s−1.
Using above all values and equation (5) we calculate the water table vari-

ation at the centre of the recharge basin for β = 0.02 at the first level n = 0,
t = 30 for i, j = 1, 2, 3, we get H1

2,2 = 84.
Similarly, we may obtain another values of the second and higher levels for

β = 0.02.
Thus, we can use the simple algorithm described by equation (5) and com-

pute further values of water table variations at the centre of the recharge basin
for subsequent time steps at all nodes for β = 0 and β = 0.01, which are con-
veniently tabulated in following table.
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From Figure 3 variation of the water table at the centre of recharge basin in
response to a constant rate of recharge β = 0 is compared with the variation
in response to the exponentially decreasing recharge rate for β = 0.01s−1

and β = 0.02s−1. From Fig. 3 it can be seen that for constant recharge
rate the water table continuously rises. On the other hand, in the case of
exponentially decreasing recharge rate, it rises in the beginning and, after
attaining a maximum height, it starts declining. As expected the growth of
the water table for smaller values of β is relatively greater than that for larger
values of β.
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Figure 3. Water table variations at the centre of the recharge basin.
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