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Abstract

In this article, the He’s Homotopy Perturbation Method (HHPM) [8,
9, 10] is used to study the fuzzy differential inclusion [4, 7]. The obtained
discrete solutions using the He’s Homotopy Perturbation Method are
compared with the exact solutions of the fuzzy differential inclusion
and are found to be very accurate. Error graphs for discrete and exact
solutions are presented in a graphical form to show the efficiency of this
method.

Mathematics Subject Classification: 65L80, 65L05.

Keywords: Leapfrog method, He’s Homotopy Perturbation Method, dif-
ferential inclusions; fuzzy differential equations; fuzzy differential inclusions.

1 Introduction

The reachable set of a differential inclusion (the latter interpreted as a uncer-
tain system) is the minimal guaranteed estimation of the current state. There-
fore, to calculate reachable sets is a cornerstone of the estimation and control
of uncertain systems [3]. A lot of work has been done for developing numerical
approximation methods, see the surveys. Since the geometry of the reachable
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sets could be rather complicated, specific subclasses of sets are usually used
as approximation tools: boxes, polyhedral sets, ellipsoids, box or polyhedral
complexes, etc. In some cases convergence results are obtained, but usually to
achieve a good approximation one has to use rather complex approximating
sets. Even when analytical solutions can be found, they are not always useful
in practice since the computational cost involved is very high. [1, 2, 5, 6]

Recently, E. Babolian, S. Abbasbandy and M. Alavi [4] presented the nu-
merical solution of fuzzy differential inclusion by Euler method. S. Sekar and
K. Prabhavathi [7] solved the same fuzzy differential inclusion using Leapfrog
method. The objective of this article is to use the He’s Homotopy Perturbation
Method to solve the fuzzy differential inclusions (discussed by S. Sekar and K.
Prabhavathi [7]).

2 He’s Homotopy Perturbation Method

In this section, we briefly review the main points of the powerful method,
known as the He’s homotopy perturbation method [8, 9, 10]. To illustrate the
basic ideas of this method, we consider the following differential equation:

A(u)− f(t) = 0, u(0) = u0, t ∈ Ω (1)

where A is a general differential operator, u0 is an initial approximation of
Eq. (1), and f(t) is a known analytical function on the domain of Ω. The
operator A can be divided into two parts, which are L and N , where L is a
linear operator, but N is nonlinear. Eq. (1) can be, therefore, rewritten as
follows:

L(u) +N(u)− f(t) = 0

By the homotopy technique, we construct a homotopy U(t, p) : Ω× [0, 1]→ <,
which satisfies:

H(U, p) = (1− p)[LU(t)− Lu0(t)] + p[AU(t)− f(t)] = 0, p ∈ [0, 1], t ∈ Ω (2)

or

H(U, p) = LU(t)−Lu0(t)+pLu0(t)+p[NU(t)−f(t)] = 0, p ∈ [0, 1], t ∈ Ω (3)

where p ∈ [0, 1] is an embedding parameter, which satisfies the boundary
conditions. Obviously, from Eqs. (2) or (3) we will have H(U, 0) = LU(t) −
Lu0(t) = 0, H(U, 1) = AU(t)− f(t) = 0.

The changing process of p from zero to unity is just that of U(t, p) from
u0(t) to u(t). In topology, this is called homotopy. According to the He’s
Homotopy Perturbation method, we can first use the embedding parameter p
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as a small parameter, and assume that the solution of Eqs. (2) or (3) can be
written as a power series in p :

U =
∞∑
n=0

pnUn = U0 + pU1 + p2U2 + p3U3 + ... (4)

Setting p = 1, results in the approximate solution of Eq.(1)

U(t) = lim
p→1

U = U0 + U1 + U2 + U3 + ...

Applying the inverse operator L−1 =
∫ t
0
(.)dt to both sides of Eq. (3), we

obtain

U(t) = U(0) +

∫ t

0

Lu0(t)dt− p
∫ t

0

Lu0(t)dt− p[
∫ t

0

(NU(t)− f(t))dt] (5)

where U(0) = u0.
Now, suppose that the initial approximations to the solutions, Lu0(t), have

the form

Lu0(t) =
∞∑
n=0

αnPn(t) (6)

where αn are unknown coefficients, and P0(t), P1(t), P2(t), ... are specific func-
tions. Substituting (4) and (6) into (5) and equating the coefficients of p with
the same power leads to

p0 : U0(t) = u0 +
∑∞

n=0 αn
∫ t
0
Pn(t)dt

p1 : U1(t) = −
∑∞

n=0 αn
∫ t
0
Pn(t)dt−

∫ t
0
(NU0(t)− f(t))dt

p2 : U2(t) = −
∫ t
0
NU1(t)dt

...

pj : Uj(t) = −
∫ t
0
NUj−1(t)dt


(7)

Now, if these equations are solved in such a way that U1(t) = 0, then Eq.
(7) results in U1(t) = U2(t) = U3(t) = . . . = 0 and therefore the exact solution
can be obtained by using

U(t) = U0(t) = u0 +
∞∑
n=0

αn

∫ t

0

Pn(t)dt (8)

It is worth noting that, if U(t) is analytic at t = t0, then their Taylor series

U(t) =
∞∑
n=0

an(t− t0)n

can be used in Eq. (8), where a0, a1, a2, ... are known coefficients and αn are
unknown ones, which must be computed.
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3 Fuzzy differential inclusions

Prior to introduce fuzzy differential inclusion we must denote fuzzy sets and
fuzzy numbers as follows. We place a tilde over a symbol to denote a fuzzy set
so X̃, Ã, ..., all represent fuzzy subsets in R. We write X̃(t) for the membership
function of X̃ evaluated at t ∈ R. An α - cut of X̃ written [X̃]α , is defined
as {t : X̃(t) ≥ α} , for 0 < α < 1 and [X̃]0 =

⋃
α∈(0,1][X̃]α. A triangular

fuzzy number Ñ is defined by three numbers a1 < a2 < a3 where the graph of
Ñ(t) is triangle with base on the interval [a1, a3] and vertex at t = a2 where
Ñ(a1) = Ñ(a3) = 0, Ñ(a2) = 1, and We write Ñ = (a1/a2/a3), For x ∈ Rn

and A,B ⊂ rn let
ρ(x,A) = inf{|x− a|, a ∈ A}

β(A,B) = sup{ρ(a,B), a, a ∈ A}

dH(A,B) = max{β(A,B), β(B,A)}

The Hausdorff distance dH defines a metric on the non empty and compact
subsets of Rn. For two fuzzy sets Ã, B̃ the Hausdorff metric is defined as
d̃H(Ã, B̃) = supα∈[0,1]dH([Ã]α, [B̃]α).

We can replace functions and initial values in the problem

x′(t) = f(t, x(t))
x(0) = x0

}
(9)

by (7.4) set-valued functions which leads to the following differential inclu-
sion (DI),

x′(t) = F (t, x(t))
x(0) = X0

}
(10)

Where F : [0, T ]×Rn → 2R
n
/{φ} is a set-valued function and X0 ⊂ Rn is

compact and convex. A function x : [0, T ]→ Rn is a solution of (7.5) if it is an
absolutely continuous and satisfies (7.5) almost everywhere. Let χ denote the
set of all solutions of (7.5), the reachable set X(t) at time t ∈ [0, T ] is defined
as,

X(t) = {x(t)/x ∈ χ}

The set X(t) is the set of all possible solutions of (7.4) at time t. A rea-
sonable generalization of this approach which takes vagueness into account is
to replace sets by fuzzy sets, i.e. (7.5) becomes the fuzzy differential inclusion,

x′(t) = F̃ (t, x(t))

x(0) = X̃0

}
(11)

On [0, T ] with a fuzzy function F̃ : [0, T ] × Rn → En, where fuzzy set
X̃0 ∈ En and En is the set of normal, upper semi-continuous, fuzzy convex and
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compactly supported fuzzy sets on Rn. Also x′(t) is the usual crisp derivative
of the crisp differentiable function x(t) with respect to t. In this section we
introduce a Leapfrog method for finding reachable set X̃(t) that are based on
the theoretical consideration of the following theorem.

Theorem 3.1. Suppose the fuzzy function F̃ : [0, T ] × Rn → En to be
continuous in t and also satisfies Lipschitz condition d̃H(F̃ (t, x), F̃ (t, y)) ≤
L|x− y| on Rn with Lipschitz L > 0. Consider the set χ̃ of solutions to (7.6).
The reachable set X̃(t) associated with χ̃ is a normal, upper semi-continuous
and compactly supported fuzzy set for all t ∈ [0, T ]. If F̃ is also concave, i.e.,
αF̃ (t, x)+βF̃ (t, y) ⊂ F̃ (t, αx+βy), For all α, β > 0,α+β = 1 then X̃(t) ∈ En.

Now, consider the initial value problem (7.6) with n = 1, i.e.

x′(t) = F̃ (t, x(t))

x(0) = X̃0

}
(12)

On J = [0, T ] with a fuzzy concave function F̃ : J×R→ E, where fuzzy set
X̃ ∈ E and the hypotheses of Theorem 7.9.1 are satisfied. We call a function
xα : J → R an α - solution to (7.7), if it is absolutely continuous and satisfies

x′α(t) = F̃α(t, x(t))

xα(0) = [X̃0]α

}
(13)

Almost everywhere on J , where Fα(t, x(t)) is the α - cut of the fuzzy set
F̃ (t, x(t)). The set of all α - solution to (7.8) is denoted by χα, and the α
-reachable set Xα(t) is defined as Xα(t) = {x(t) : x ∈ χα} . In this section,
the α -reachable set Xα(t) is approximated by Leapfrog method.

4 Numerical Example for the fuzzy differen-

tial inclusions

In this section, we apply He’s Homotopy Perturbation Method to solve one
dimensional fuzzy differential inclusion. The main objective here is to solve this
example using the He’s Homotopy Perturbation Method given in Section 2 and
compare our results with the presented results in S. Sekar and K. Prabhavathi
[7].

The discrete solutions obtained by the two methods, He’s Homotopy Per-
turbation Method and Leapfrog method. The absolute errors between them
are tabulated and are presented in Figures 1 – 2. To distinguish the effect
of the errors in accordance with the exact solutions, graphical representations
are given for selected values of ′r′ and are presented in Figure 1 to Figure 2
for the following problem, using three dimensional effects.
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Figure 1: Error estimation of 0 -reachable set [X̃0]0 of Example 4.1

4.1 Example

Consider the fuzzy differential inclusions on R+,

x′(t) ∈ −x(t) + ẽcost

x(0) ∈ X̃0

}
(14)

where ẽ and X̃0 are symmetric triangular fuzzy numbers with level sets [ẽ]α =
[0.05(α−1), 0.05(1−α)] and [X̃0]α = [0.05(α−1), 0.05(1−α)]. The α–solution
set is given for t ≥ 0 by

xα(t) ∈ 1

2
(sint+ cost)[ẽ]α + [[X̃0]α −

1

2
[ẽ]α]e−t

Now, we obtain the approximation using single-term Haar wavelet series
and Leapfrog method of 0-reachable set and calculated error in Figure 1 and
X̃(5) in Figure 2 with 4t = 0.01.

From the graphical representation is given for the one dimensional fuzzy
differential equation based on fuzzy differential inclusion shows that single-
term Haar wavelet series solutions [S. Sekar and K. Prabhavathi [7]] have little
error in the all the stages but Leapfrog method approximate solutions match
well in all stages.

5 Conclusion

The obtained approximate solutions for the one dimensional fuzzy differential
equation based on fuzzy differential inclusion using the He’s Homotopy Per-
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Figure 2: Error estimation of X̃(5) of Example 4.1

turbation Method give more accurate values when compared to the Leapfrog
method discussed by [S. Sekar and K. Prabhavathi [7]]. From the error graph
presented in Figures 1 - 2, an elaborate, well composed comparison has been
carried out with the aid of the obtained results and graphs. One can observe
that the He’s Homotopy Perturbation Method yields very less error when com-
pared to Leapfrog method and hence this He’s Homotopy Perturbation Method
is more suitable for studying the one dimensional fuzzy differential equation
based on fuzzy differential inclusion.
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