Note to an Open Problem

LADISLAV MATEJÍČKA

Faculty of Industrial Technologies in Púchov, Trenčín University of Alexander Dubček in Trenčín, I. Krasku 491/30, 02001 Púchov, Slovakia e-mail: ladislav.matejicka@tnuni.sk

Abstract

In this paper, we give an answer to an open problem posed in the paper [Qinglong Huang, Improved Answers to an Open Problem Concerning an Integral Inequality, Mathematica Aeterna, Volume 2, 2012, number 4, 321-324].

Mathematics Subject Classification: 26D15

Keywords: Integral inequality

1 Introduction

In the paper [4], Quinglong Huang has posted the following open problem.

Open Problem 1.1 Assume constant $\gamma > 0$. Let $f(x) \ge 0$ be a continuous function on [0, 1] satisfying the inequality

$$\int_{t}^{1} f^{\gamma}(x) dx \ge \int_{t}^{1} x^{\gamma} dx \quad \forall t \in [0, 1].$$

$$\tag{1}$$

Does the inequality

$$\int_{0}^{1} f^{\alpha+\beta}(x)dx \ge \int_{0}^{1} x^{\alpha}f^{\beta}(x)dx$$
(2)

hold for $\alpha \geq 0$, $\beta \geq 0$ and $\alpha + \beta < \gamma$.

We note that in [1] the following Theorem 1.2 was proved.

Theorem 1.2 Let $f(x) \ge 0$ be a continuous function on [0, 1] satisfying

$$\int_{t}^{1} f(x)dx \ge \int_{t}^{1} xdx \quad \forall t \in [0, 1],$$

then

$$\int_{0}^{1} f^{\alpha+\beta}(x)dx \ge \int_{0}^{1} x^{\alpha}f^{\beta}(x)dx$$

holds for every real number $\alpha > 1$ and $\beta > 0$.

This theorem was an answer to the open problem posed in [2]. Improved answers to the problem were obtained by Quinglong Huang in [4].

2 Solution of an Open Problem

In this paper we give a negative answer to the Quinlog Huang's problem posed in [4]. We find two functions satisfying (1) for which the inequality

$$\int_{0}^{1} f^{\alpha+\beta}(x) dx \ge \int_{0}^{1} x^{\alpha} f^{\beta}(x) dx$$

is fulfilled for one function but is not fulfilled for another one. Let $\gamma > 0$. Put $f_1(x) \equiv 1, x \in [0, 1]$, then (1) can be written as

$$1 - t \ge \frac{1}{\gamma + 1}(1 - t^{\gamma + 1}).$$

Denote $g(t) = (1-t)(\gamma+1) - 1 + t^{\gamma+1}$ for $t \in [0,1]$. From g(1) = 0, $g'(t) = (\gamma+1)(t^{\gamma}-1) < 0$ we have (1) is fulfilled for $t \in [0,1]$. The inequality (2) can be written as $1 \ge \frac{1}{\alpha+1}$, which is hold for all $0 < \alpha < \gamma$ and $\beta > 0$.

Now, we construct the second function.

Denote $s_0(t) = \frac{1}{\gamma+1}(1-t^{\gamma+1})$ for $t \in [0,1]$. From $s'_0(t) = -t^{\gamma} < 0$, $s''_0(t) = -\gamma t^{\gamma-1} < 0$ it follows $s_0(t)$ is a decreasing concave function on [0,1]. Denote $t^* = \frac{\gamma}{\gamma+1}$ then $A = [t^*, 1-t^*]$ is the intersection point of three lines $p_1: y = 1-t, p_2: y = \frac{1}{\gamma+1}, p_3: y = a - bt = \frac{1+\gamma b}{1+\gamma} - bt$, where 0 < b < 1. Denote $A_1 = [t_1, y_1], A_2 = [t_2, y_2]$ the intersection points of p_1, p_4 and p_2, p_4 lines, where $p_4: y = s_0(t^*) + s'_0(t^*)(t-t^*)$. $(A_1, A_2$ exist, because of $p'_1(t) = -1, p'_2(t) = 0, p'_4(t) = s'_0(t^*) = -t^{*\gamma} \neq 0, \neq 1$). We show that $0 < p_4(1) < \frac{1}{1+\gamma}$ and $\frac{1}{1+\gamma} < p_4(0) < 1$. It implies $t^* < t_1 < 1$ and $t_0 < t_2 < t^*$. Really.

$$p_4(1) = s_0(t^*) + s'_0(t^*)(1 - t^*) = \frac{1}{1 + \gamma} \left(1 - \left(\frac{\gamma}{1 + \gamma}\right)^{1 + \gamma} - \left(\frac{\gamma}{1 + \gamma}\right)^{\gamma} \right) = \frac{1}{1 + \gamma} h(\gamma).$$

 $h(\gamma) > 0$ is equivalent to $(2\gamma + 1)\gamma^{\gamma} < (1 + \gamma)^{1+\gamma}$ for $\gamma > 0$. Denote

$$H(\gamma) = \ln(2\gamma + 1) + \gamma \ln(\gamma) - (1 + \gamma) \ln(1 + \gamma),$$

then $h(\gamma) > 0$ is equivalent to $H(\gamma) < 0$ for $\gamma > 0$. Elementary calculations give H(0) = 0, $\lim_{t \to 0^+} H'(t) = -\infty$,

$$H'(\gamma) = \frac{2}{2\gamma + 1} + \ln(\gamma) - \ln(1 + \gamma),$$
$$H''(\gamma) = \frac{-4}{(2\gamma + 1)^2} + \frac{1}{\gamma(1 + \gamma)} = \frac{1}{\gamma(1 + \gamma)(2\gamma + 1)^2} > 0.$$

It implies $H(\gamma) < 0$ for $\gamma > 0$, so $p_4(1) > 0$. The second inequality $p_4(1) < \frac{1}{1+\gamma}h(\gamma)$ is evident. From

$$p_4(0) = s_0(t^*) - t^* s_0'(t^*) = \frac{1}{1+\gamma} \left(1 - \left(\frac{\gamma}{1+\gamma}\right)^{1+\gamma} \right) + \left(\frac{\gamma}{1+\gamma}\right)^{1+\gamma} = \frac{1}{1+\gamma} - \frac{\gamma^{1+\gamma}}{(1+\gamma)^{2+\gamma}} + \frac{\gamma^{1+\gamma}}{(1+\gamma)^{1+\gamma}}$$

we have $p_4(0) > \frac{1}{1+\gamma}$ is equivalent to $1 + \gamma > 1$, which is evident. Similarly, $p_4(0) < 1$ is equivalent to $\gamma < 1 + \gamma$. Let $y = r_{\epsilon,b}(t)$ is a function given by

$$(t - t_3)^2 + (y - y_3)^2 = d^2([t_3, y_3], [t^* - \epsilon, a - b(t^* - \epsilon)]),$$

where

$$0 < \varepsilon < \min\left\{t^{\star} - t_2, t_1 - t^{\star}, \frac{(t_1 - t^{\star})\sqrt{2}}{\sqrt{1 + b^2}}\right\} = \min\left\{t^{\star} - t_2, t_1 - t^{\star}\right\}$$
(3)

and $S = [t_3, y_3]$ is the intersection point of two lines $q_1 : y = 1 - 2t^* - 2f + t$, $q_3 : y = a - (t^* - \epsilon)(b + \frac{1}{b}) + \frac{1}{b}t$ $(q_1, q_3 \text{ are perpendiculars to the lines } p_1, p_3$ in the points B_1, B_2 , where $B_1 = [t^* + f, 1 - t^* - f]$, $B_2 = [t^* - \epsilon, a - b(t^* - \epsilon)]$,

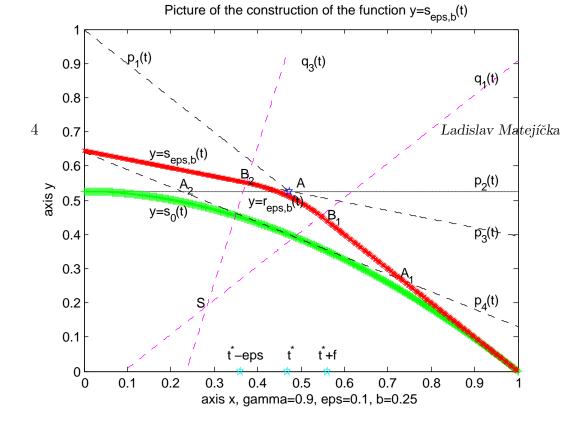


Figure 1:

$$f = \frac{\sqrt{2}}{2}\epsilon\sqrt{1+b^2}$$

(d(A, B_1) = d(A, B_2), f = $\sqrt{\frac{\epsilon^2 + (a-b(t^*-\epsilon))^2}{2}} = \frac{\sqrt{2}}{2}\epsilon\sqrt{1+b^2}$) and d is a distance of two points.

We note that S exist because p_1 , p_3 are intersecting lines, and thus also q_1 , q_3 are intersecting lines. From $B_1 \in p_1$ we have $s_0(t^* + f) < 1 - t^* - f$. From $s_0(t) \leq \frac{1}{1+\gamma}$ and $p_3(t) > \frac{1}{1+\gamma}$ for $0 \leq t < t^*$ we have $s_0(t^* - \epsilon) < a - b(t^* - \epsilon)$. From this we have $s_0(t) < r_{\epsilon,b}(t)$ for $t^* - \epsilon \leq t \leq t^* + f$ (the line segment B_1, B_2 is above the the line p_4 because of $y = s_0(t)$ is a concave function). It is easy to show that the function (Figure 1)

$$s_{\epsilon,b}(t) = \begin{cases} a - bt & \text{for } t \in [0, t^* - \epsilon];\\ r_{\epsilon,b}(t) & \text{for } t \in [t^* - \epsilon, t^* + f];\\ 1 - t & \text{for } t \in [t^* + f, 1]; \end{cases}$$

is a continuous function with a continuous derivative such that $s'_{\epsilon,b}(t) < 0$, $s_{\epsilon,b}(1) = 0$, $s_{\epsilon,b}(0) = a$, $|s'_{\epsilon,b}(t)| \le 1$ for $t \in [t^* - \epsilon, t^* + f]$, $s_{\epsilon,b}(t) \ge s_0(t)$ for $t \in [0, 1]$. Now, we put

$$f^{\star}(t) = (-s'_{\epsilon,b}(t))^{\frac{1}{\gamma}} \quad \text{for} \quad t \in [0,1], \quad \gamma > 0.$$
 (4)

It is evident that from $s_{\epsilon,b}(t) \ge s_0(t)$ for $t \in [0,1]$ we have that $f^*(t)$ fulfils (1). Let $\gamma > 0$ and $0 < \lambda < \gamma$. We take $\epsilon < \frac{\gamma - \lambda}{3(1+\gamma)(1+\lambda)}$, satisfying (3) and b such that $0 < b < \left(\left(1 + \frac{1}{\gamma}\right)\epsilon\right)^{\frac{\gamma}{\lambda}}$. Then we have

$$\int_{0}^{1} f^{\star\lambda}(t)dt = \int_{0}^{t^{\star}-\epsilon} (-s'_{\epsilon,b}(t))^{\frac{1}{\gamma}}dt + \int_{t^{\star}-\epsilon}^{t^{\star}+\epsilon} (-s'_{\epsilon,b}(t))^{\frac{1}{\gamma}}dt + \int_{t^{\star}+\epsilon}^{1} (-s'_{\epsilon,b}(t))^{\frac{1}{\gamma}}dt < b^{\frac{\lambda}{\gamma}}t^{\star} + 2\epsilon + \frac{1}{\gamma+1} < 3\epsilon + \frac{1}{\gamma+1} < \frac{1}{\lambda+1}.$$
So

$$\int_{0}^{1} f^{\star\lambda}(t)dt < \int_{0}^{1} t^{\lambda}dt$$

It is easy to show that

$$h(\beta) = g(f, \alpha, \beta) = \int_{0}^{1} f^{\alpha+\beta}(t) - t^{\alpha} f^{\beta}(t) dt$$

is a continuous function for fixed $f = f^*$ and $\alpha = \lambda > 0$. $(b^{\frac{1}{\gamma}} \leq f^* \leq 1.)$ From $h(0) = \int_{0}^{1} f^{\alpha}(t) - t^{\alpha} dt < 0$ for $\alpha = \lambda$ and $f = f^*$ there is $\beta_0 > 0$ such that $g(f^*, \lambda, \beta) < 0$ for $0 \leq \beta < \beta_0$. So, there is a function fulfilling (1) and $\beta_0(\lambda) > 0$, such that for arbitrary $\lambda, \beta > 0, \lambda < \gamma$, and $\beta < \beta_0(\lambda)$ the inequality (2) is not fulfilled.

Lastly we propose the following open problem.

3 Open Problem

What conditions have to be added to the condition (1), so that the inequality

$$\int_{0}^{1} f^{\alpha+\beta}(x)dx \ge \int_{0}^{1} x^{\alpha}f^{\beta}(x)dx$$

was fulfilled for $\alpha \ge 0$, $\beta \ge 0$ and $\alpha + \beta < \gamma$.

ACKNOWLEDGEMENTS. This work was supported by VEGA No. 1/0530/11. The author thanks to the Department of numerical methods and computational modeling, FPT TnUAD in Púchov, Slovakia for its kind support.

References

- K. Boukerriova and Guezane-Lakoud: On an Open Question Regarding an Integral Inequality, JIPAM, 8 (3) (2007), Art. 77. [Online:http://jipam.vu.edu.au/article.php?sid=885].
- [2] Q. A. NGO, D. D. Thang and D. A. Tuan: Notes on an Integral Inequality, JIPAM, 7 (4) (2006), Art. 120. [Online:http://jipam.vu.edu.au/article.php?sid=737].
- [3] J. Ch. Kuang: Applied Inequalities, 3rd edition, Shanglong Science and Technology Press, Jinan, China, (2004), (Chinese).
- [4] Q. Huang: Improved Answers to an Open Problem Concerning an Integral Inequality, Mathematica Aeterna, Vol. 2, (2012), No. 4, (321-324).

Received: March, 2013