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Abstract

The present paper deals with families of new exact non-traveling wave
solutions of Burgers equations with variable coefficients. By using ex-
tended hyperbolic function expansion method, we find two types of non-
traveling wave solutions.
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1 Introduction

In this paper, we consider the extended Burgers equation:
U + a(t)é(x)uux + ﬁ(t)’y(x)u:c:c =0, (1)

where «(t) and (t) are functions of argument ¢ only, 6(z) and v(x) are func-
tions of x only. u = u(z,t) : RX R — R is an unknown function. The diffusion
coefficient fv and the convection effect ad not only change with time ¢, but
also change with spatial location x.

Burgers equation is very important in the study of solitary wave theory. It
appears in many fields, such as fluid mechanics, traffic flows, acoustic transmis-
sion and the structure of shock waves, see [1] and the references therein. Many
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systematic methods are used for studying the nonlinear evolution equations
which give rise to new exact solutions, such as Homogeneous balance method
2], the extended (%)—expansion method [3], Hyperbolic function method [4].
But there is no unified method can be used to deal with all types of nonlinear
evolution equations, so it is especially important to select appropriate method
to solve exact solutions for specific equations. When «a(t), 5(t),d(z),v(z) are
all constants, Wang et al. [5] used auxiliary equation method to obtain the
hyperbolic tangent type and the tangent type solutions. Zhang [6] used sym-
bolic computation to obtain the two-soliton solution and periodic solution of
the Burgers equation. With the help of the Backlund transformation and the
Cole-Hopf transformation, Abdul-Majid [7] used singular popular method to
solve the (2+41)-dimensional Burgers equation and (2+1)-dimensional higher
order Burgers equation, and obtain kink-type solution .

When «(t), B(t),d(x),v(x) are not all constants, under appropriate condi-
tions through the non-traveling wave transformation & = k(x) + ¢(t), Shi [§]
used the hyperbolic function expansion method and homotopy analysis method
to obtain the corresponding kink-type solitary wave solutions and periodic so-
lutions. In addition, for exact non-traveling wave solutions, we refer readers
to [9,10] and the references therein.

Motivated by the above works, our goal is to construct exact non-travelling
wave solutions of Burgers equations (1) with variable coefficients. By using
extended hyperbolic function expansion method, we find two types of non-
traveling wave solutions.

2 The hyperbolic function expansion method

To determine u = wu(xy, xo, x3, -, t) explicitly, we take the following three
steps:
Step 1: The general form of nonlinear evolution equations can be written
as:
F(u, wgy gy Ug, Uy -..) = 0, (2)

where u = u(xy, 9, x3, ..., t) is an unknown function, and F' is a polynomial of
U = U(Zlfl, Lo, T3, "+, t)
We use the transformation

U(I,t) = u<£)7 §= g(wiv

, we can convert the partial differential equation into standard ordinary differ-
ential equations only on the argument €.

F(u,u',u”,...) = 0. (3)
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Step 2: In order to get the exact analytical solutions of the equation, we
introduce two basic functions:

1 sinh
fm g = O (1)
cosh(&) +r cosh(&) +r
which are called the expanded functions. They satisfy the following coupling
conditions:
daf
d_g - _.fg>

Step 3: Assume that the equation (1) has the following solution:

dg

d_le—gz—rf,9221—27“f+(7’2—1)f2~ ()

o= af +> flg, (6)

i=0 i=1
here ag, a;, b;(i = 1,2,...n) are real constants to be determined, n is a positive
integer which can be determined by balancing the highest order derivative
terms with the highest power nonlinear terms. Then substituting equation (6)
into equation (2), and using equation (5), one can simplify the equation which
satisfies the following conditions:

I: only having the power of f and g;

II: the power of ¢ is not greater than 1.

Merging the same power of f and ¢, and taking the coefficients to zero, we
can get a set of nonlinear algebraic equations with undetermined coefficients.
By solving these equations, we get the exact solutions of nonlinear evolution
equations eventually.

Notes that, in this paper, we do not consider the common traveling wave
solutions in the form: u(x,t) = u(§), & = v — wt. In converse, we consider
non-traveling wave solutions in the form & = k(t)z + ¢(t) and & = k(x)c(t).
According to computation, we find two major categories of non-traveling wave
solutions and the method we used can be applied to other equations with
variable coefficients.

3 Non-traveling wave solutions

We will use the method introduced above to solve the Burgers equation with
variable coefficients as follows:

Uy + O‘(t)é(x)uux + ﬁ(t)’y(x)ux:c = 0. (7)

According to the homogeneous balance principle for n = 1, so the solutions
of above equation can be written as:

u(§) = ap + a1 f(§) + brg(§). (8)
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Type I: The transformation is: & = k(t)x + c(t).

When f(¢) and g(§) are given by equation (4), substituting equation (8)
into equation (7) to simplify the obtained equation with the help of equation
(5), and collecting the coefficients of f*(£)g’(¢)(: = 0,1,2,3;5 = 0,1), then
setting each coefficient to zero, we can derive a set of over-determined ordinary
differential equations for ag, a1, b; and &.

by(agr — ark(t)o(x)a(t) + a k> (1) B(t)y(z) 4+ bir(d(t) + zk'(t)) =0,  (9a)

by (ao(1—7*)+3ayr)k(t)6(z)a(t) —3arrk®(t) B(t)y(z)+by (1—1r?)(d (t)+ak (t)) = 0,

(90)

2a1b1 (1 — rHk(t)d(x)a(t) — 2a, (1 — r*)k*(t)B(t)y(x) = 0, (9¢)
—apark(t)d(x)a(t) + birk? () B(t)y(2) — ai (¢ (t) + xk'(t)) = O, (9d)
—2a1k(t)8(z)a(t) — 261 (1 — r?)K*(t) B(t)y(z) = 0. (9e)

By using Mathematica to simplify the above equations, we can get the
following results:

a; = £V1—1r2b, (10a)
_, alt)d(x)
4k(t) = blﬁ(t)v(:ﬂ)’ (100)
—apark(t)d(z)a(t) + byrk*(t)B(t)y(x) — al

d(t) =

Then by solving k(t) and ¢(t), the relationship that coefficients in equation
(7) is satisfied.

Equation (10b) shows that only when % is a constant it can be satisfied.
Assuming the constant is C, we get:

K (t)a. (10¢)

X

5(2) = Cry(a), k(1) = —bi 0, 2D (1)

B(t)
Substituting equation (6) into equation (5c), it follows that:

() + 2k (t) _ —apark(t)Cro(t) + birk?(t)B(t)
v() a1 .

(12)

The left of equation (12) is a function of x and ¢, the right is a function
of b, then the equation is equivalent to a constant to ensure that the left and
right sides of (12) are equivalent, so we have

d(t) + zk'(t) = Cyy(x), (13)

—aga k(t)Cra(t) + birk?(t)B(t)

= . (14)
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Substituting (11) into (14), we get

(aparby + b3r)Cia(t)
D) = (Cs. (15)

Assume that (aga by + b3r)C% = C, then

Ca?(t)
B(t)

When ¢(t) and k(t) are both linear functions, according to equation (13),
we know that the above equation can be satisfied, and y(x) is also a linear
function.

Assume that

= C. (16)

c(t) = c1(t) + o,
k(t) = ki(t) + ko,

where k; and ¢; are both arbitrary non-constant functions, ky and ¢y are both
arbitrary constants.
Then the non-traveling wave solution of equation

w + a(t)o(x)uuy + B(t)y(z)uz =0

18:

VI=r?h  bisinh(k()e + (1)
t

u(2,1) = ap £ r+ cosh(k(t)x +c(t))  r+ cosh(k(t)x + c(t))’

(17)

where k(t) = ki(t)+ka, c(t) = c1(t)+ca, k1, ka, c1, o are all arbitrary constants.
Type II: The transformation is £ = k(x)c(t).
By using Mathematica, we get the following over-determined ordinary dif-
ferential equations:

a10(x)a(t) + birk(x)d (t) + c(t)B(t)y(x)[arc(t)k (z)? + birk”(z) = 0, (18a)

bi(1—7*)k(z)c (t) +c(t) B(t)y(x)[—3ayre(t) K (x)* + b (1—7r*)k" (z)] = 0, (18b)
b1d(x)a(t) — bi(t)y(2)k (x)*c(t) =0, (18¢)
—ark(x)c (t) + c(t)B(t)y(x)[brre(t) K (2)* — ark” (z)] = 0. (184d)

With the aid of Mathematica, simplifying the above equations, we can get
the following results:
ay = by (r* = 1), (19a)

K () = %, (190)
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2ty = 28 (19¢)
According to k(z) and c(t) satisfying:

—(r* = Dk(2)c'(t) + c() B(t)y(2) (re(®)F (x)* — (r* = DE"(z)) =0,

next, we discuss all the possible values of k(x) and c(t).
Case 1: k(z) is a linear function.
We can get the condition that c(t) satisfies: ¢(t) = [ «(t)dt
So the solution of equation u; + a(t)d(x)uu, + B(t)y(T) Uz = 0 is:

bi(r? —1) by sinh(k(z)c(t))
r+ cosh(k(x)c(t))  r+ cosh(k(z)e(t))’

UQ(SL’, t) = Qo + (20)
where k(z) = kix + ko, c(t) = [«(t)dt, ki is a arbitrary non-zero constant, ko
is a arbitrary constant.

Case 2: k(z) is a trigonometric function.

Assume that k(z) = k; sin z, so ¢(t) is a linear function, and ¢(t) = ( )+co.
Then the solution of equation u; + a(t)d(x)uu, + B(t)y(2)uy, = 0 is
bi(r? —1) by sinh(k(z)c(t))
=agt 21
us(@,1) = a0 T ) T o+ cosh k(@) (21)

where k(x) = kysin(x), c(t) = c1(t) + co, here ki, ¢; are arbitrary non-zero
constants, ¢ is a arbitrary constant.

Case 3: k(z) is a exponential function (y(z) is not a constant).

Assume that k(x) = ke, so ¢(t) is a linear function, and ¢(t) = ¢;(t) + ca.
Then the solution of equation u; + a(t)d(x)uu, + B(t)y(2)uy, = 0 is:

bi(r? —1) by sinh(k(x)e(t))
t

u4(£L’, t) = Go + r -+ COSh(l{Z(LL’)C(t)) r+ COSh(k(x)C( >>

(22)

where k(z) = k1e”, c(t) = cit+co, ki, ¢1 are both arbitrary non-zero constants,
Co is a arbitrary constant.

4 Conclusion

In this paper, we use the hyperbolic function expansion method to find the
exact non-traveling wave solutions of Burgers equation (1) with variable coeffi-
cients. We do not consider the common traveling wave solutions, but consider
the non-traveling wave solutions. Under appropriate conditions, we obtain two
categories of non-traveling wave solutions. The method we use can be applied
to the evaluation of the exact solution of a large category of nonlinear evolution
equations with variable coefficients.
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