Non-Hermitian Hamiltonian in $P T$-symmetric Quantum System*

Xiao-Yu Li, Yi-Fan Han, Xin-Lei Yong, Xue Gong and Yuan-Hong Tao ${ }^{\dagger}$
Department of Mathematics, College of Science, Yanbian University, Jilin, 133002, China

Abstract

The specific forms of $P T$-symmetric Hamiltonians in 2×2 quantum system are studied in this paper. Depending on the relationship between the non-Hermitian and Hermitian matrices and the special property of the Hamiltonian satisfying $P T$ symmetry, the specific forms of the nonHermitian but $P T$ symmetric Hamiltonian are presented, and thus a general method for discussing such problems in higher dimension systems is established.

Mathematics Subject Classification: Quantum theory
Keywords: PT-symmetry, Hamiltonian, Hermitian matrix

1 Introduction

In classical quantum system, the observables are represented by Hermitian operators, however, non-Hermitian observables also play vital roles in physics[110], which is contrary to classical quantum mechanics. In order to solve the complex situation, Bender C. M. et al[1]. put forward $P T$ symmetric quantum theory in 1998, which pointed out that non-Hermitian Hamiltonians had real eigenvalues provided they respect unbroken $P T$ symmetry. $P T$ symmetry is refers to the parity-time symmetry, where P and T stand for parity and time reversal respectively.

In quantum mechanics, \hat{x} and \hat{p} stand for coordinate operator and momentum operator, respectively. Their algorithm is as follows[1]:

$$
(\hat{x} f)(x, t)=x f(x, t), \quad(\hat{p} f)(x, t)=-i \frac{\partial}{\partial x} f(x, t) .
$$

[^0]If an operator P satisfies the following equality

$$
\begin{equation*}
P \hat{x} P=-\hat{x}, \quad P \hat{p} P=-\hat{p}, \tag{1}
\end{equation*}
$$

Then P is called parity operator (or space inversion operator)[1], in short operator P. Obviously, it is a linear operator. If operator T satisfies

$$
\begin{equation*}
T \hat{x} T=-\hat{x}, \quad T \hat{p} T=-\hat{p}, \quad T i T=-i, \tag{2}
\end{equation*}
$$

where $i=\sqrt{-1}$, then T is called time reversal operator[12], in short operator T. Obviously, it is a conjugate-linear operator.

If H is a $n \times n$ matrix satisfying

$$
\begin{equation*}
H=H^{P T} \tag{3}
\end{equation*}
$$

where $H^{P T}=(P T) H(P T)$, then we say that H is $P T$-symmetric.
By the definition of operator T, time reversion operator is anti-linear, namely conjugate linear, therefore, it can be divided into the following two categories in general:

$$
\begin{equation*}
T\binom{x}{y}=\binom{\bar{x}}{\bar{y}} \quad \text { or } \quad T\binom{x}{y}=\binom{-\bar{x}}{-\bar{y}}, \tag{4}
\end{equation*}
$$

where \bar{x} stands for the conjugate of x. We denote the above two kinds of operator T as T_{1} and T_{2}. Obviously, $T_{1}^{2}=T_{2}^{2}=I$ (unit operator).

This paper mainly discusses the specific forms of $P T$-symmetric Hamiltonians in 2×2 and 3×3 quantum system. Using the relationship between the non-Hermitian matrix and Hermitian matrix, and the special property of the Hamiltonian satisfying $P T$ symmetry, it present the specific form of the non - Hermitian Hamiltonian satisfying PT symmetric conditions is obtained, and thus give a general method for discussing such problems in higher dimension systems.

2 Preliminary Notes

We begin with the relationship between non-Hermitian matrix and Hermitian matrix[11], and the special property of the Hamiltonian satisfying $P T$ symmetry[12].

Lemma 2.1 [11] Every non-Hermitian matrix N can be expressed by two Hermitian matrices as follows:

$$
\begin{equation*}
N=\frac{1}{2}\left(H_{1}+i H_{2}\right), \tag{5}
\end{equation*}
$$

where H_{1}, H_{2} are both Hermitian matrix, which are not zero matrices. Corresponding, the transpose conjugate matrix N^{\dagger} of N has the following expression

$$
\begin{equation*}
N^{\dagger}=\frac{1}{2}\left(H_{1}-i H_{2}\right), \tag{6}
\end{equation*}
$$

If H_{1}, H_{2} are both 2×2 Hermitian matrices, then they must be the following forms:

$$
H_{1}=\left(\begin{array}{cc}
a_{1} & b_{1} \tag{7}\\
\overline{b_{1}} & c_{1}
\end{array}\right) ; \quad H_{2}=\left(\begin{array}{cc}
a_{2} & b_{2} \\
\overline{b_{2}} & c_{2}
\end{array}\right)
$$

where $a_{1}, a_{2}, c_{1}, c_{2} \in R, \quad b_{1}, b_{2} \in C$. Note that H_{2} is not a zero matrix, i.e. a_{2}, b_{2}, c_{2} do not equal zero simultaneously.

It is from (5) that any 2×2 non-Hermitian matrix H_{N} can be represent as follows:

$$
H_{N}=\left(\begin{array}{ll}
\frac{a_{1}+i a_{2}}{2} & \frac{b_{1}+i b_{2}}{2} \tag{8}\\
\frac{b_{1}+i b_{2}}{2} & \frac{c_{1}+i c_{2}}{2}
\end{array}\right),
$$

where $a_{1}, a_{2}, c_{1}, c_{2} \in R, \quad b_{1}, b_{2} \in C$. and a_{2}, b_{2}, c_{2} do not equal zero simultaneously.

Lemma 2.2 [12] Assuming that H is a Hamiltonian of 2×2 quantum system, if H meets PT symmetry, no matter $T=T_{1}$ or $T=T_{2}$, for same operator P, they all have $P \bar{H}=H P$.

Lemma 2.3 [12] In finite dimensional space, any operator P, which is commutate to operator T, is a real matrix.

According to the above lemmas, we have established the forms of operator P in 2×2 quantum system[12], in this paper we choose the following form of operator P :

$$
P=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \tag{9}\\
\sin \alpha & -\cos \alpha
\end{array}\right), \alpha \in R .
$$

3 Main Results

In this section, let operator T be complex conjugate operator P, operator take form (9). We then present the concrete form of non-Hermitian Hamiltonian H_{N} which satisfies the $P T$ symmetry in 2×2 quantum system.

It follows from Lemma 1 that any 2×2 non-Hermitian matrix H_{N} can be represented as (8). If H_{N} satisfies $P T$ symmetry, then we can calculate the following two quantities:

$$
P \overline{H_{N}}=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array}\right)\left(\begin{array}{cc}
\frac{a_{1}-i a_{2}}{2} & \frac{\overline{b_{1}}-i \overline{b_{2}}}{2} \\
\frac{b_{1}-i b_{2}}{2} & \frac{c_{1}-i c_{2}}{2}
\end{array}\right)
$$

$$
\begin{gather*}
=\frac{1}{2}\left(\begin{array}{cc}
\cos \alpha\left(a_{1}-i a_{2}\right)+\sin \alpha\left(b_{1}-i b_{2}\right) & \cos \alpha\left(\overline{\bar{x}_{1}}-i \overline{b_{2}}\right)+\sin \alpha\left(c_{1}-i c_{2}\right) \\
\sin \alpha\left(a_{1}-i a_{2}\right)-\cos \alpha\left(b_{1}-i b_{2}\right) & \sin \alpha\left(\overline{b_{1}}-i \overline{b_{2}}\right)-\cos \alpha\left(c_{1}-i c_{2}\right)
\end{array}\right), \\
H_{N} P=\left(\begin{array}{lll}
\frac{a_{1}+i a_{2}}{} & \frac{b_{1}+i b_{2}}{2} \\
\frac{\overline{b_{1}+i \overline{b_{2}}}}{2} & \frac{c_{1}+i c_{2}}{2}
\end{array}\right)\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array}\right) \tag{10}\\
=\frac{1}{2}\left(\begin{array}{cc}
\cos \alpha\left(a_{1}+i a_{2}\right)+\sin \alpha\left(b_{1}+i b_{2}\right) & \sin \alpha\left(a_{1}+i a_{2}\right)-\cos \alpha\left(b_{1}+i b_{2}\right) \\
\cos \alpha\left(\overline{b_{1}}+i \overline{b_{2}}\right)+\cos \alpha\left(c_{1}+i c_{2}\right) & \sin \alpha\left(\overline{b_{1}}+i \overline{b_{2}}\right)-\cos \alpha\left(c_{1}+i c_{2}\right)
\end{array}\right) . \tag{11}
\end{gather*}
$$

Note that $P \overline{H_{N}}=H_{N} P$ by Lemma 2, so from (10) and (11) we have

$$
\left\{\begin{array}{r}
a_{2} \cos \alpha+b_{2} \sin \alpha=0 \tag{12}\\
\left(b_{1}+\overline{b_{1}}\right) \cos \alpha=\left(a_{1}-c_{1}\right) \sin \alpha \\
\left(b_{2}-\overline{b_{2}}\right) \cos \alpha=\left(a_{2}+c_{2}\right) \sin \alpha \\
c_{2} \cos \alpha=\overline{b_{2}} \sin \alpha
\end{array}\right.
$$

where $a_{1}, a_{2}, c_{1}, c_{2} \in R, \quad b_{1}, b_{2} \in C$. and a_{2}, b_{2}, c_{2} do not equal zero simultaneously. We can easily get that $b_{2} \in R$ from the fourth equality in (12).

In order to fully ensure the relationship between various parameters in (12), and further specific the forms of H_{N}, we analyze (12) in two cases: I, $\cos \alpha=0$; II, $\cos \alpha \neq 0$.

I, If $\cos \alpha=0$, then $\sin \alpha \neq 0$, so

$$
b_{2}=0, \quad a_{1}=c_{1}, \quad a_{2}=-c_{2},
$$

, then we have $0 \neq a_{2} \in R, b_{1} \in C$, thus

$$
H_{N}=\frac{1}{2}\left(\begin{array}{cc}
a_{1}+i a_{2} & b_{1} \tag{13}\\
\overline{b_{1}} & a_{1}-i a_{2}
\end{array}\right), 0 \neq a_{1}, a_{2} \in R, b_{1} \in C .
$$

For example, we can take H_{N} as follows,

$$
\left(\begin{array}{cc}
1+i & i \tag{14}\\
-i & 1-i
\end{array}\right)
$$

II, If $\cos \alpha \neq 0$, then (12) can be changed into

$$
\left\{\begin{array}{r}
a_{1}+b_{2} \tan \alpha=0 \tag{15}\\
\left(b_{1}+\overline{b_{1}}\right)=\left(a_{1}-c_{1}\right) \tan \alpha \\
\left(b_{2}-\overline{b_{2}}\right)=\left(a_{2}+c_{2}\right) \tan \alpha \\
c_{2}=\overline{b_{2}} \tan \alpha
\end{array}\right.
$$

1) If $\tan \alpha=0$, then

$$
b_{1} \in R, \quad 0 \neq b_{2} \in R, \quad a_{1}, c_{1} \in R, \quad a_{2}=c_{2}=0
$$

hence

$$
H_{N}=\frac{1}{2}\left(\begin{array}{cc}
a_{1} & b_{1}+i b_{2} \tag{16}\\
-b_{1}+i b_{2} & c_{1}
\end{array}\right), b_{1} \in R, 0 \neq b_{2} \in R, a_{1}, c_{1} \in R
$$

For example, we can take H_{N} as follows .

$$
\left(\begin{array}{cc}
2 & 2+i \tag{17}\\
-2+i & 1
\end{array}\right)
$$

2)If $\tan \alpha \neq 0$, then (12) can be changed into

$$
\left\{\begin{array}{r}
-c_{2}=a_{2} \tag{18}\\
b_{2}=-\frac{1}{\tan \alpha} a_{2} \\
\left(b_{1}+\overline{b_{1}}\right)=\left(a_{1}-c_{1}\right) \tan \alpha
\end{array}\right.
$$

So

$$
H_{N}=\frac{1}{2}\left(\begin{array}{cc}
a_{1}+i a_{2} & b_{1}-i \frac{a_{2}}{\tan \alpha} \tag{19}\\
\overline{b_{1}}-i \frac{a_{2}}{\tan \alpha} & a_{2}-i \frac{\overline{b_{1}}+b_{1}}{\tan \alpha}-i a_{2}
\end{array}\right), 0 \neq a_{1}, a_{2} \in R, b_{1} \in C
$$

For example, we may take H_{N} as follows

$$
\left(\begin{array}{cc}
1+i & 0 \tag{20}\\
-2 i & 1-i
\end{array}\right)
$$

ACKNOWLEDGEMENTS.

This paper mainly discussed the concrete form of non-Hermitian Hamiltonian satisfying $P T$ symmetry condition in 2×2 quantum system. Depending on the relationship between the non-Hermitian and Hermitian matrices and the special property of the Hamiltonian satisfying $P T$ symmetry, $P \overline{H_{N}}=H_{N} P$, it analyzed the specific forms of the non-Hermitian under different conditions. It also presented a general method for discussing such problems in higher dimension systems.

References

[1] C. M. Bender, S. Boettcher, Real spectra in non-Hamiltonians having PT-symmetry[J]. Phys. Rev. Let. 1998(80), 24: 5243-5246.
[2] C. M. Bender, V. D. Gerald, Large-order Perturbation Theory for a Non-Hermitian PT-symmetric Hamiltonian[J]. Journal of Mathematical Physics, 1999, 40(10): 4616-4621.
[3] Q. H. Wang, 2×2 PT symmetric matrices and their applications[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 2013, 371(1989): 20120045-20120045.
[4] M. H. Cho, J. D. Wu, PT-symmetry Scientific[J]. Mathematics of Operations Research, 2012(2): 1-6
[5] Z. Christian, Q. H. Wang, Entanglement efficiencies in PT-Symmetric quantum mechanics[J]. International Journal of Theoretical Physics, 2012, 51: 2648-2655
[6] C. M. Bender, P. D. Mannheim, PT-Symmetry and necessary and sufficient conditions for the reality of energy eigenvalues $[\mathrm{J}]$. Phys. Rev. Lett. A, 2010, 374: 1616-1620.
[7] C. M. Bender, D. W. Hook, Exact isospectral pairs of PT-symmetric Hamiltonians [J]. J. Phys. A, 2008, 41244005-244002.
[8] C. M. Bender, D. W. Hook, L. R. Mead, Conjecture on the analyticity of PT-symmetric potentials and the reality of their spectra[J]. Phys. A, 2008, 41: 392005-392014.
[9] C. M. Bender, Making sense of non-Hermitian Hamiltonians[J]. IOP Publishing, Rep. Prog. Phys. 70 (2007): 947C1018.
[10] H. X. Cao, Z. H. Guo, Z. L. Chen, CPT-Frames for non-Hermitian Hamiltonians[J]. Communications in Theoretical Physics, 2013, 60(9): 328-334.
[11] S. J. Wang, Discussion about some properties of non Hermitian operator[J], Journal of Lanzhou University, 1979, 3: 90-97.
[12] X. Y. Li, Z. C. Xu, S. L. Li, X. Gong,Y. H. Tao. Operators P and T in PTsymmetric quantum theory $[\mathrm{J}]$. International Journal of Modern Physics: Advances in Theory and Application. 2017, 2(1): 1-9.

Received: August 30, 2017

[^0]: *Supported by Natural Science Foundation of China (11361065,11761073)
 ${ }^{\dagger}$ Corresponding Author: Tao Yuanhong (1973 -), female, Yanbian University, Department of mathematics, Ph.D., Associate Professor, Major in functional analysis and its application. E-mail: taoyuanhong12@126.com

