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Abstract

The identities on idempotent derivations of n-Lie algebras are pro-
vided, and the structure of n-Lie algebras which have idempotent deriva-
tions is discussed. The method of constructing n-Lie algebras which
with idempotent derivations by n-Lie algebras and modules over the
complex field is introduced.
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1 Fundamental notion

In this paper we investigate the structure of n-Lie algebras [1] with idempotent
derivations over the complex field for n > 3. First we introduce some basic
notions [2, 3|.

An n-Lie algebra is a vector space A endowed with an n-ary multi-linear
skew-symmetric operation | ,-- -, | satisfying the n-Jacobi identity, that is, for
all 1,2, Yo, ,Yn € A,

n

[zn, szl v syl = D [ [, 2 Ynl oo ). (1)

i=1
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Let I be a subspace of n-Lie algebra A, if I satisfies [I,---,I] C I (
[I,A,---,A] C I ) then [ is called a subalgebra ( an ideal ) of A. If an
ideal I satisfies [I,1, A,---, A] =0, then I is called an abelian ideal.

A derivation of A is a linear map D of A satisfying for all z{,---,x, € A,

n

D([Ilv"'vxn]):Z[xlv"'vD(xi)v'”vxn]' (2>

i=1

If a derivation D satisfies D? = D, then D is called an idempotent derivation
of A.

2 Main results

In the following, we suppose A is a finite dimensional n-Lie algebra over the
complex field F' (n > 3). We first prove some identities on idempotent deriva-
tions.

Lemma 1 Let A be an n-Lie algebra, and D be an idempotent derivation,
then for all x1,---,x, € A, we have

]) 3 [113'1,'",D(l'i),"',D(ij),‘",fEn]:0~

2) 5([x; D)), an]) = [, D), .
3) ;[D(xl)a D(zi-1), 2, D(i41), -+, D(z,)] = 0.

5) [Il,"',LUZ‘,D(.Z’Z'+1>,"',D( n)]:0,1§ZSH—2

Proof By identity (2) and D = D?, for all zy,---,x, € A,
D([zla"'axn]) - Dz([xla"'azn])
[xlv 7D2('ri)7"'7'rn]+ Z [xlvaD($Z)77D(xj)77'rn]

1<i<j<n

= D([$1, .. 7$n]) + X [xh .. -,D(%), .. .7D(xj)’ .. .’xn].

1<i<j<n
It follows the result 1).

Thanks to the result 1) and

D([ml7 e D(SL’Z), e xn])

:[x17"'7D2(xi)7"'7xn]+ 3 [1’1,"',D(%),"',D(xj),"',xn]

= [:1:17' ’ '7D2(xi)7 te '7xn] = [;lv'f'vD('ri% te '7'rn]7
we obtain the result 2).
By the result 1), we have

3 D([fl,"',D(IL"Z'),"',D(ZE]'),'",fEn])

1<i<j<n

=2 E [xla"'aD(xi)a"'aD(xj)a'">$n]

1<i<j<n

I
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+ 3 [:L’l,"',D(ZEi),'",D(ZE]'),"',D(l’k),"',l'n]20.

1<i<j<k<n
Similarly, we have
S [wy,oo,D(i), - Dl@g), -, D(ae), - 2] = 0.
1<i<j<k<n
The result 3) follows from the induction.
By the identity (2) and the above discussion,

[D(x1), -+, D(wn)]

= [931>D(932)> o D(an)] = (n = 1]y, D(x2), - -+, D(n)]
D([D (1’1)7352 D(xs), -+, D(zn)]) — (n = D[D(21), 22, D(ws), - - -, D(n)]
D([D(z1),- (Iz 1), Zi, D(@iga), - -+, D(wn)])
—(n—1)[D ( ) 5 D(wio1), i, D(@iga), -+, D(n)]

= D([D(x1),- -, D(In—l),%]) — (n=1)[D(x1), -+, D(@n-1), Tn].
Again by the result 3), we have
n[D(xy),- -+, D(xn)]

— D(X [D(@1), -+, D(w;-1), 25, D(wis), - - -, D(wn)])

i=1
—(n—1) é[D(ifl)a o, D(wi1), 25, D(w441), - - -, D(2,)] = 0.
The result 4)Z_holds.
Thanks to the result 4) and result 2),
D([z1, D(x2), - -+, D(z,)])
= [D(z1), -+, D(xn)] + (n — 1)[z1, D(22), - - -, D(20)]
— (n—V)fer, D(wz), -+, Diwn).
Thanks to chF =0, [x1, D(x3),-- -, D(x,)] = 0.
Now suppose [z1,---,2;—1, D(x;), -+, D(x,)] = 0 holds for i, where 1 <
i1 <n—1. Then
D([xlv Cry X1, Ty, D(xi+1>7 ) D(In)])

1[l’la ) D(xj)a o -,ZL",',D(ZEZ'+1), T >D(IN)]
J
+(n—d)[re, -+, i1, i, D(Tig1), -, D(@n)]

= —9)[z1, -, Ti1, T, D(@iga), -+, D(w,)].
We obtain [z1, -, xi—1,x;, D(Ti41), - -+, D(x,)] =0 for all 1 <i <mn—2. The
proof is completed.

™=

Lemma 2 Let A be an n-Lie algebra, and D be an idempotent derivation,
then there ezists a basis {vy,- -+, v, u1, -+, us} of A such that

D(v;) =v;,1 <i<r, (3)
D(u;) =0,1<j <s;

and the image D(A) = I = ET: Fv; is an ideal, and the kernel K = KerD =
i=1
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XS: Fu; is a subalgebra of A.
j=1

Proof By properties of linear idempotent map on a finite dimensional
vector space, there exists a basis {vy, -+, v.,us, -, us} of A such that D
satisfies (3). Therefore, the restriction D|; : I — I is identity, and D|x : K —
K is zero. By Lemma 1, for all x1,---, 2,41, -, ys € A,

[T, -, D(x;), -, xn] = D([x1, -+, Dy, - -+, x,]) € D(A) =1,

then [DA, A,---,A] C DA, it implies that [ is an ideal of A. Forally,---,y, €
A,

n

D([y1,+ yn)) = D [y D(Wi), -+, yn) = 0,

i=1
that is, [y1,- -+, yn] € K. Then K is a subalgebra of A.

Theorem 1 Let A be an n-Lie algebra. Then there exists an idempotent
derivation on A if and only if A =1& K, where I is an abelian ideal and K
15 a subalgebra.

Proof If there exists an idempotent derivation D on the n-Lie algebra A,
thanks to Lemma 2, A = I @ K, where I = D(A) is an ideal and K = KerD
is a subalgebra. For all xy,---,2,. € I, y1, -+, yn_r € K, where r > 2, since
(1, Tr Y1, Yn—r] € I, by identities (2) and (3) and Lemma 2,

[0, T Y1y Ynee] = DT, Ty Y1, s Y]

- Z:l[xlf"aD(xi)a'">$ray1>"'ayn—r]

+ Zl[$1>"'axrayla"'aD(yj)a"'ayn—r]
]:

e I T |
Since r > 2 and chF = 0, we have [z, -, 2, Y1, *, Yn—r] = 0. Therefore,
I = D(A) is an abelian ideal.

Conversely, define D : A — A as follows,

D(x)=x, D(y)=0, forall z€l, ye K.

Obviously, D satisfies D?> = D, and for all zy,---,2, € I,y1, -+, yn € K, and
2<r<n-—1,

n

D([y1, -, yn]) = ;[yl, o, D(yi), ) = 0,

n

D([zl’...’zn]):[xl’...’:pn]:n[zl’...’zn]:;[xl’...’D(zi)’...’zn]:0’

D(['rlv"'7$7“7y17'"7yn—7‘]) = [$17"'7x7“7y17"'7yn—7‘] :07

[zla"'7D(:L'i)a'"axrayla"'ayn—r]
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+ Zl[$1>"'71'7“7?/1)"'aD(yj)a"'ayn—r]
J:

= T[l’l, oy Ty Y1yt '>yn—r] = 0.
Therefore, D is an idempotent derivation of A. The proof is completed.
From Theorem 1, for all n-Lie algebra (A,[,---,]4) and an A-module

(M, p). We can construct an n-Lie algebra B such that B with an idem-
potent derivation. Set B = A @& M. By paper [4], B is an n-Lie algebra
such that (A, [,---,]4) is a subalgebra of B and M is an abelian ideal, and for
all xp, - 2,1 € A,me M, [xy,---,xp_1,m|g = p(x1,---,2,_1)(m). Then
D : B — B defined by D(z) =0, D(m) = m for all x € A and m € M, is an
idempotent derivation of B.
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