n-Lie algebras with idempotent derivations

BAI Ruipu

College of Mathematics and Information Science Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn

GAO Yansha

College of Mathematics and Information Science Science, Hebei University, Baoding, 071002, China

ZHANG Yinghua

College of Mathematics and Information Science Hebei University, Baoding, 071002, China

Abstract

The identities on idempotent derivations of n-Lie algebras are provided, and the structure of n-Lie algebras which have idempotent derivations is discussed. The method of constructing n-Lie algebras which with idempotent derivations by n-Lie algebras and modules over the complex field is introduced.

Mathematics Subject Classification: 17B05, 17B30.

Keywords: n-Lie algebra, derivation, idempotent derivation

1 Fundamental notion

In this paper we investigate the structure of n-Lie algebras [1] with idempotent derivations over the complex field for $n \geq 3$. First we introduce some basic notions [2, 3].

An *n*-Lie algebra is a vector space A endowed with an *n*-ary multi-linear skew-symmetric operation $[\ ,\cdots,\]$ satisfying the *n*-Jacobi identity, that is, for all $x_1,\cdots,x_n,\ y_2,\cdots,y_n\in A,$

$$[[x_1, \dots, x_n], y_2, \dots, y_n] = \sum_{i=1}^n [x_1, \dots, [x_i, y_2, \dots, y_n], \dots, x_n].$$
 (1)

Let I be a subspace of n-Lie algebra A, if I satisfies $[I, \dots, I] \subseteq I$ ($[I, A, \dots, A] \subseteq I$) then I is called a subalgebra (an ideal) of A. If an ideal I satisfies $[I, I, A, \dots, A] = 0$, then I is called an abelian ideal.

A derivation of A is a linear map D of A satisfying for all $x_1, \dots, x_n \in A$,

$$D([x_1, \dots, x_n]) = \sum_{i=1}^n [x_1, \dots, D(x_i), \dots, x_n].$$
 (2)

If a derivation D satisfies $D^2 = D$, then D is called an idempotent derivation of A.

2 Main results

In the following, we suppose A is a finite dimensional n-Lie algebra over the complex field F ($n \ge 3$). We first prove some identities on idempotent derivations.

Lemma 1 Let A be an n-Lie algebra, and D be an idempotent derivation, then for all $x_1, \dots, x_n \in A$, we have

1)
$$\sum_{1 \le i \le j \le n} [x_1, \dots, D(x_i), \dots, D(x_j), \dots, x_n] = 0.$$

2)
$$D([x_1, \dots, D(x_i), \dots, x_n]) = [x_1, \dots, D(x_i), \dots, x_n].$$

3)
$$\sum_{i=1}^{n} [D(x_1), \dots, D(x_{i-1}), x_i, D(x_{i+1}), \dots, D(x_n)] = 0.$$

4)
$$[D(x_1), \dots, D(x_n)] = 0.$$

5)
$$[x_1, \dots, x_i, D(x_{i+1}), \dots, D(x_n)] = 0, 1 \le i \le n-2.$$

Proof By identity (2) and $D = D^2$, for all $x_1, \dots, x_n \in A$,

$$D([x_1, \dots, x_n]) = D^2([x_1, \dots, x_n])$$

$$= \sum_{i=1}^n [x_1, \dots, D^2(x_i), \dots, x_n] + \sum_{1 \le i < j \le n} [x_1, \dots, D(x_i), \dots, D(x_j), \dots, x_n]$$

$$= D([x_1, \dots, x_n]) + \sum_{1 \le i < j \le n} [x_1, \dots, D(x_i), \dots, D(x_j), \dots, x_n].$$

It follows the result 1).

Thanks to the result 1) and

$$D([x_1, \dots, D(x_i), \dots, x_n])$$
= $[x_1, \dots, D^2(x_i), \dots, x_n] + \sum_{1 \le i < j \le n} [x_1, \dots, D(x_i), \dots, D(x_j), \dots, x_n]$

$$= [x_1, \cdots, D^2(x_i), \cdots, x_n] = [x_1, \cdots, D(x_i), \cdots, x_n],$$

we obtain the result 2).

By the result 1), we have

$$\sum_{1 \le i < j \le n} D([x_1, \cdots, D(x_i), \cdots, D(x_j), \cdots, x_n])$$

$$= 2 \sum_{1 \le i < j \le n} [x_1, \cdots, D(x_i), \cdots, D(x_j), \cdots, x_n]$$

$$+ \sum_{\substack{1 \le i < j < k \le n}} [x_1, \dots, D(x_i), \dots, D(x_j), \dots, D(x_k), \dots, x_n] = 0.$$
Similarly, we have
$$\sum_{\substack{1 \le i < j < k \le n}} [x_1, \dots, D(x_i), \dots, D(x_j), \dots, D(x_k), \dots, x_n] = 0.$$

The result 3) follows from the induction.

By the identity (2) and the above discussion,

$$[D(x_1), \dots, D(x_n)]$$
= $[x_1, D(x_2), \dots, D(x_n)] - (n-1)[x_1, D(x_2), \dots, D(x_n)]$
= $D([D(x_1), x_2, D(x_3), \dots, D(x_n)]) - (n-1)[D(x_1), x_2, D(x_3), \dots, D(x_n)]$
= $D([D(x_1), \dots, D(x_{i-1}), x_i, D(x_{i+1}), \dots, D(x_n)])$
 $-(n-1)[D(x_1), \dots, D(x_{i-1}), x_i, D(x_{i+1}), \dots, D(x_n)]$
= $D([D(x_1), \dots, D(x_{n-1}), x_n]) - (n-1)[D(x_1), \dots, D(x_{n-1}), x_n].$
Again by the result 3), we have
 $n[D(x_1), \dots, D(x_n)]$
= $D(\sum_{i=1}^{n} [D(x_i), \dots, D(x_n)]$

$$= D(\sum_{i=1}^{n} [D(x_1), \cdots, D(x_{i-1}), x_i, D(x_{i+1}), \cdots, D(x_n)])$$

$$-(n-1) \sum_{i=1}^{n} [D(x_1), \cdots, D(x_{i-1}), x_i, D(x_{i+1}), \cdots, D(x_n)] = 0.$$

The result 4) holds.

Thanks to the result 4) and result 2),

$$D([x_1, D(x_2), \dots, D(x_n)])$$
= $[D(x_1), \dots, D(x_n)] + (n-1)[x_1, D(x_2), \dots, D(x_n)]$
= $(n-1)[x_1, D(x_2), \dots, D(x_n)].$

Thanks to chF = 0, $[x_1, D(x_2), \dots, D(x_n)] = 0$.

Now suppose $[x_1, \dots, x_{i-1}, D(x_i), \dots, D(x_n)] = 0$ holds for i, where $1 \le i \le n-1$. Then

$$D([x_1, \dots, x_{i-1}, x_i, D(x_{i+1}), \dots, D(x_n)])$$

$$= \sum_{j=1}^{i} [x_1, \dots, D(x_j), \dots, x_i, D(x_{i+1}), \dots, D(x_n)]$$

$$+ (n-i)[x_1, \dots, x_{i-1}, x_i, D(x_{i+1}), \dots, D(x_n)]$$

$$= (n-i)[x_1, \dots, x_{i-1}, x_i, D(x_{i+1}), \dots, D(x_n)].$$

We obtain $[x_1, \dots, x_{i-1}, x_i, D(x_{i+1}), \dots, D(x_n)] = 0$ for all $1 \le i \le n-2$. The proof is completed.

Lemma 2 Let A be an n-Lie algebra, and D be an idempotent derivation, then there exists a basis $\{v_1, \dots, v_r, u_1, \dots, u_s\}$ of A such that

$$\begin{cases}
D(v_i) = v_i, 1 \le i \le r, \\
D(u_i) = 0, 1 \le j \le s;
\end{cases}$$
(3)

and the image $D(A) = I = \sum_{i=1}^{r} Fv_i$ is an ideal, and the kernel K = KerD = I

 $\sum_{i=1}^{s} Fu_i$ is a subalgebra of A.

Proof By properties of linear idempotent map on a finite dimensional vector space, there exists a basis $\{v_1, \dots, v_r, u_1, \dots, u_s\}$ of A such that D satisfies (3). Therefore, the restriction $D|_I: I \to I$ is identity, and $D|_K: K \to K$ is zero. By Lemma 1, for all $x_1, \dots, x_n, y_1, \dots, y_n \in A$,

$$[x_1, \dots, D(x_i), \dots, x_n] = D([x_1, \dots, Dx_i, \dots, x_n]) \in D(A) = I,$$

then $[DA, A, \dots, A] \subseteq DA$, it implies that I is an ideal of A. For all $y_1, \dots, y_n \in A$,

$$D([y_1, \dots, y_n]) = \sum_{i=1}^n [y_1, \dots, D(y_i), \dots, y_n] = 0,$$

that is, $[y_1, \dots, y_n] \in K$. Then K is a subalgebra of A.

Theorem 1 Let A be an n-Lie algebra. Then there exists an idempotent derivation on A if and only if $A = I \oplus K$, where I is an abelian ideal and K is a subalgebra.

Proof If there exists an idempotent derivation D on the n-Lie algebra A, thanks to Lemma 2, $A = I \oplus K$, where I = D(A) is an ideal and K = KerD is a subalgebra. For all $x_1, \dots, x_r \in I$, $y_1, \dots, y_{n-r} \in K$, where $r \geq 2$, since $[x_1, \dots, x_r, y_1, \dots, y_{n-r}] \in I$, by identities (2) and (3) and Lemma 2,

$$\begin{aligned} &[x_1, \cdots, x_r, y_1, \cdots, y_{n-r}] = D([x_1, \cdots, x_r, y_1, \cdots, y_{n-r}]) \\ &= \sum_{i=1}^r [x_1, \cdots, D(x_i), \cdots, x_r, y_1, \cdots, y_{n-r}] \\ &+ \sum_{j=1}^{n-r} [x_1, \cdots, x_r, y_1, \cdots, D(y_j), \cdots, y_{n-r}] \\ &= r[x_1, \cdots, x_r, y_1, \cdots, y_{n-r}]. \end{aligned}$$

Since $r \geq 2$ and chF = 0, we have $[x_1, \dots, x_r, y_1, \dots, y_{n-r}] = 0$. Therefore, I = D(A) is an abelian ideal.

Conversely, define $D: A \to A$ as follows,

$$D(x) = x$$
, $D(y) = 0$, for all $x \in I$, $y \in K$.

Obviously, D satisfies $D^2 = D$, and for all $x_1, \dots, x_n \in I, y_1, \dots, y_n \in K$, and $2 \le r \le n-1$,

$$D([y_1, \dots, y_n]) = \sum_{i=1}^n [y_1, \dots, D(y_i), \dots, y_n] = 0,$$

$$D([x_1, \dots, x_n]) = [x_1, \dots, x_n] = n[x_1, \dots, x_n] = \sum_{i=1}^n [x_1, \dots, D(x_i), \dots, x_n] = 0,$$

$$D([x_1, \dots, x_r, y_1, \dots, y_{n-r}]) = [x_1, \dots, x_r, y_1, \dots, y_{n-r}] = 0,$$

$$\sum_{i=1}^r [x_1, \dots, D(x_i), \dots, x_r, y_1, \dots, y_{n-r}]$$

$$+\sum_{j=1}^{n-r}[x_1,\dots,x_r,y_1,\dots,D(y_j),\dots,y_{n-r}]$$

 $= r[x_1, \cdots, x_r, y_1, \cdots, y_{n-r}] = 0.$

Therefore, D is an idempotent derivation of A. The proof is completed.

From Theorem 1, for all n-Lie algebra $(A, [, \dots,]_A)$ and an A-module (M, ρ) . We can construct an n-Lie algebra B such that B with an idempotent derivation. Set $B = A \oplus M$. By paper [4], B is an n-Lie algebra such that $(A, [, \dots,]_A)$ is a subalgebra of B and M is an abelian ideal, and for all $x_1, \dots, x_{n-1} \in A$, $m \in M$, $[x_1, \dots, x_{n-1}, m]_B = \rho(x_1, \dots, x_{n-1})(m)$. Then $D: B \to B$ defined by D(x) = 0, D(m) = m for all $x \in A$ and $m \in M$, is an idempotent derivation of B.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

- [1] V. FILIPPOV, n-Lie algebras, Sib. Mat. Zh., 1985, 26 (6), 126-140.
- [2] R. BAI, Q. Li, R. Cheng, 3-Lie Algebras and Cubic Matrices, *Mathematica Aeterna*, 2014, 4(1): 169 C 174.
- [3] R. BAI, L. GUO, J. LI, and Y. WU, Rota-Baxter 3-Lie algebras, *J. Math. Phys* 2013, 54, 063504.
- [4] S. KASYMOV, On a theory of n-Lie algebras, Algebra Logika, 1987, 26(3): 277-297

Received: January, 2015