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Abstract

In this paper, we characterize boundedness of CϕD acting on weighted

Bergman-Nevanlinna spaces, where Cϕ is the composition operator and

D is the differentiation operator. We also provide a necessary condition

and a sufficient condition for CϕD to be compact on weighted Bergman-

Nevanlinna spaces.
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1 Introduction

Let D be the open unit disk in the complex plane C, H(D) be the algebra
of all functions holomorphic on D and λ ∈ (−1,∞) be a real number. Let

dA(z) =
1

π
dxdy =

1

π
rdrdθ be the normalized area measure on D. For each

λ ∈ (−1,∞), we set dνλ(z) = (λ + 1)(1 − |z|2)λdA(z), z ∈ D. Then dνλ is
a probability measure on D. The weighted Bergman Nevanlinna space A0

λ(D)
consists of all f ∈ H(D) such that

||f ||A0

λ
(D) =

∫

D

log+ |f(z)|dνλ(z) < ∞,

where

log+ x =
{

log x if x ≥ 1
0 if x < 1.

In fact, ||f ||A0

λ
(D) fails to be a norm, but (f, g) → ||f − g||A0

λ
(D) defines a

translation invariant metric on A0
λ(D) and this turns A0

λ(D) into a complete
metric space. The space A0

λ(D) appears in the limit as p → 0 of the weighted
Bergman space

Ap
λ(D) =

{

f ∈ H(D) : ||f ||Ap

λ
(D) =

(
∫

D

|f(z)|pdνλ(z)
)1/p

< ∞
}

,

in the sense of

lim
p→0

tp − 1

p
= log+ t, 0 < t < ∞.

The Bergman-Nevanlinna space A0
λ(D) contains all the Bergman spaces Ap

λ(D)
for all p > 0. Obviously, the inequality

log+(x) ≤ log(1 + x) ≤ 1 + log+(x); x ≥ 0

implies that f ∈ A0
λ(D) if and only if

||f ||A0

λ
(D) ≍

∫

D

log(1 + |f(z)|)dνλ(z) < ∞,

where X ≍ Y means that there is a positive constant C such that C−1X ≤
Y ≤ CX. See [3] for more about weighted Bergman spaces and weighted
Bergman-Nevanlinna spaces. By the subharmonicity of log(1 + |f(z)|), we
have

log(1 + |f(z)|) ≤ Cλ

||f ||A0

λ
(D)

(1− |z|2)λ+2
, z ∈ D (1.1)

for all f ∈ A0
λ(D). In particular, (1.1) tells us that if fn → f in A0

λ(D), then
fn → f locally uniformly. Here locally uniform convergence means the uniform
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convergence on every compact subset of D.

Let ϕ be a holomorphic self-map D of itself. The composition operator
Cϕ is defined as follows Cϕ(f)(z) = f(ϕ(z)) for all f ∈ H(D). Let D be
the differentiation operator. We know that on a general space of holomor-
phic functions, the differentiation operator D is typically unbounded. On the
other hand, the composition operator Cϕ is bounded on most of the spaces
of holomorphic functions (see [1] and [6] for details), though the product is
possibly still unbounded there. Hibschweiler and Portnoy [4] defined DCϕ and
CϕD and investigated boundedness and compactness of the operators DCϕ

and CϕD between weighted Bergman spaces. S. Ohno [5] discussed bound-
edness and compactness of CϕD between Hardy spaces. Recently, there are
some papers that deal with these operators from a particular domain space of
holomorphic functions into another space (see for example, [4],[5] and [7]-[18].
In this paper, we characterize boundedness of CϕD : A0

λ(D) → A0
λ(D). We

also provide a necessary condition and a sufficient condition for CϕD to be
compact on weighted Bergman-Nevanlinna spaces.

2 Preliminary Notes

Denote by D(z, r) the pseudohyperbolic disk whose pseudohyperbolic centre
is z and whose pseudo hyperbolic radius is r, that is:

D(z, r) =
{

ω ∈ D :
∣

∣

∣

∣

(z − ω)

(1− zω)

∣

∣

∣ < r
}

.

For z, ω ∈ D with

ρ(z, ω) =
∣

∣

∣

(z − ω)

(1− zω)

∣

∣

∣ < r; 0 < r < 1,

we have

(1− |z|2)

|1− zω|
≍

(1− |z|2)

(1− |ω|2)
≍ 1 and νλ(D(z, r)) ≍ (1− |z|2)(λ+2).

See [1] for more information on pseudohyperbolic disks. The next two lemmas
can also be found in [1] (see [2] also).

Lemma 2.1 Let 0 < r < 1. Then there is a sequence {an} in D and a
positive integer M such that

(i) ∪∞
n=1D(an, r) = D;
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(ii) Each z ∈ D is in atmost M of the
pseudohyperbolic disks D(a1, 2r), D(a2, 2r), D(a3, 2r) · · · ;

(iii) If n 6= m, then ρ(an, am) ≥ r/2.

Lemma 2.2 Let λ ∈ (−1,∞) and β > 0, then there exists a constant
C = C(λ, β) such that

(1− |z|2)β
∫

D

dνλ(ω)

|1− zω|2+λ+β
≍ 1, z ∈ D.

Definition 2.3 A positive Borel measure µ on D is called an λ-Carleson
measure if and only if

sup
z∈D

µ(D(z, r))

(1− |z|2)λ
< ∞,

and it is called a vanishing λ-Carleson measure if

lim
|z|→1

µ(D(z, r))

(1− |z|2)λ
= 0.

The next lemma is proved in [2].

Lemma 2.4 Let λ ∈ (−1,∞) and 0 < r < 1, then there exists a constant
C = C(λ, r) such that the following inequality holds:

log(1 + |f ′(z)|) ≤ C
∫

D(z,r)

log(1 + |f(ω)|)

(1− |ω|)λ+3
dνλ(ω).

Lemma 2.5 Let λ ∈ (−1,∞) and 0 < r < 1, be fixed. If µ is (λ + 3)-
Carleson measure on D, then there exists a constant C = C(λ, r) such that
the following inequality holds:

∫

D

log(1 + |f ′(ω)|)dµ(ω) ≤ C
∫

D

log(1 + |f(ω)|)dµ(ω).

Proof. Let 0 < r < 1, be fixed . Pick a sequence {an} in D satisfying
the conditions of Lemma 2.1. For f ∈ A0

λ(D), we have
∫

D

log(1+|f ′(ω)|)dµ(ω) ≤
∞
∑

n=1

∫

D(an,r)
log(1+|f ′(ω)|)dµ(ω)

≤
∞
∑

n=1

µ(D(an, r)) sup
ω∈D(an,r)

log(1 + |f ′(ω)|)

≤
∞
∑

n=1

µ(D(an, r))

(1− |a|)λ+3

∫

D(an,2r)
log(1 + |f(ω)|)dµ(ω).

Now µ is (λ+ 3) -Carleson measure on D, so we have
∫

D

log(1 + |f ′(ω)|)dµ(ω) ≤ C
∞
∑

n=1

∫

D(an,2r)
log(1 + |f(ω)|)dµ(ω)

= CM
∫

D

log(1 + |f(ω)|)dµ(ω).
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3 Boundedness and compactness of CϕD on

A0
λ(D)

In this section, we characterize boundedness of CϕD : A0
λ(D) → A0

λ(D). We
also provide a necessary condition and a sufficient condition for CϕD to be
compact on A0

λ(D).

Theorem 3.1 Let ϕ be a holomorphic self-map of D. Then the following
are equivalent:

1. CϕD : A0
λ(D) → A0

λ(D) is bounded.

2. The pull-back measure νλ ◦ ϕ
−1 is a (λ+ 3)-Carleson measure on D.

Proof. Suppose that CϕD : A0
λ(D) → A0

λ(D) is bounded. Consider the
function

fz(ω) =
(1− |z|2)λ+4

(1− zω)λ+3
, z ∈ D.

By Lemma 2.2, we have

||fz||A0

λ
(D) ≤ ||fz||A1

λ
(D) ≍ (1− |z|)λ+3

for all z ∈ D. Also

f ′
z(ω) = (λ+ 3)z

(1− |z|2)λ+4

(1− zω)λ+4
.

Therefore ,

|f ′
z(ω)| ≤ |z|(λ+ 3)

(1− |z|2)λ+4

(1− zω)λ+4
,

and so we have |f ′
z(ω)| ≤ C for some constant C = C(λ). Thus log(1 +

|f ′
z(ω)|) ≍ |f ′

z(ω)| for all z, ω ∈ D. In addition, we have

(1− |z|2)

|1− zω|
≍

(1− |z|2)

(1− |ω|2)
≍ 1

for ω ∈ D(z, r). Thus |f ′
z(ω)| ≍ |z| for ω ∈ D(z, r). Since CϕD : A0

λ(D) →
A0

λ(D) is bounded, there exists C > 0 such that

||CϕDfz||A0

λ
(D) ≤ C||fz||A0

λ
(D) ≍ (1− |z|2)λ+3.

That is,

(1− |z|2)λ+3 ≍ ||CϕDfz||A0

λ
(D) ≍

∫

D

log(1 + |f ′
z(ϕ(z)|))dνλ(ω)

≥ C
∫

D

|f ′
z(ω)|d(νλ ◦ ϕ

−1)(ω) ≥ C
∫

D(z,r)
|f ′

z(ω)|d(νλ ◦ ϕ
−1)(ω)
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≍ |z|νλ ◦ ϕ
−1D(z, r),

for all z ∈ D. Consequently,

sup
z∈D

(νλ ◦ ϕ
−1)D(z, r)

(1− |z|2)λ+3
< ∞.

Hence νλ ◦ ϕ
−1 is an (λ+ 3) measure on D. Conversely, suppose that νλ ◦ ϕ

−1

is an (λ+ 3) measure on D. Then by Lemma 2.4, we have for f ∈ A0
λ(D),

||CϕDfz||A0

λ
(D) =

∫

D

log(1 + |f ′(ϕ(ω))|)dνλ(ω)

=
∫

D

log(1 + |f ′(ϕ(ω))|)d(νλ ◦ ϕ
−1)(ω)

≤ C
∫

D

log(1 + |f(ϕ(ω))|)dνλ(ω) ≍ ||f ||A0

λ
(D).

Lemma 3.2 Let ϕ be a holomorphic map of D such that ϕ(D) ⊂ D. Then
CϕD : A0

λ(D) → A0
λ(D) is compact if and only if for every sequence {fn} which

is bounded in A0
λ(D) and converges to zero uniformly on compact subsets of D

as n → ∞, we have ||CϕDfn||A0

λ
(D) → 0.

Proof follows on the same lines as the proof of proposition 3.11 in [1]. We omit
the details.
We now present a sufficient condition for the compactness of of CϕD : A0

λ(D) →
A0

λ(D).

Theorem 3.3 Let ϕ be a holomorphic map of D such that ϕ(D) ⊂ D.
Then CϕD : A0

λ(D) → A0
λ(D) is compact if the pull-back measure νλ ◦ ϕ

−1 is
a vanishing (λ+ 3)-Carleson measure on D.

Proof. Suppose that νλ ◦ ϕ
−1 is a vanishing (λ + 3)-Carleson measure on D.

Then
(νλ ◦ ϕ

−1)D(a, r)

(1− |a|2)λ+3
→ 0 as |a| → 1.

Suppose that {fm} is a bounded sequence in A0
λ(D) that converges to zero

uniformly on compact subsets of D. Let {an} be a sequence as in Lemma 2.1
such that |a1| < |a2| < |a3| · · · . Then for each ǫ > 0 we have

(νλ ◦ ϕ
−1)(D(an, r)) < ǫ(1− |an|

2)λ+3

for all an ∈ D such that |an| > r. Thus

||CϕDfm||A0

λ
(D) ≍

∫

D

log(1 + |f ′
m(ϕ(z))|)dνλ(z)
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=
∫

D

log(1 + |f ′
m(z)|)d(νλ ◦ ϕ

−1)(z)

=
∫

|z|≤r0
log(1 + |f ′

m(z)|)d(νλ ◦ ϕ
−1)(z)

+
∫

|z|>r0
log(1 + |f ′

m(z)|)d(νλ ◦ ϕ
−1)(z).

Since {fm} is a bounded sequence in A0
λ(D) that converges to zero uniformly

on compact subsets of D,

lim
m→∞

∫

|z|≤r0
log(1 + |f ′

m(z)|)d(νλ ◦ ϕ
−1)(z) = 0,

whereas the second term in the above expression is bounded by

∞
∑

n=k+1

∫

D(an,r)
log(1 + |f ′

m(z)|)d(νλ ◦ ϕ
−1)(z)

≤
∞
∑

n=k+1

(νλ ◦ ϕ−1)(D(an, r)) sup
z∈D(an,r)

log(1 + |f ′
m(z)|)

≤
∞
∑

n=k+1

(νλ ◦ ϕ−1)(D(an, r))

(1− |an|2)λ+3

∫

D(an,2r)
log(1 + |fm(z)|)dνλ(z)

≤ ǫCM
∫

D

log(1 + |fm(z)|)dνλ(z) = ǫCM ||fm||A0

λ
.

Since ǫ > 0 is arbitrary, we have ||CϕDfm||A0

λ
(D) → 0 as m → ∞. Hence

CϕD : A0
λ(D) → A0

λ(D) is compact.
Finally, we provide a necessary condition for compactness of CϕD : A0

λ(D) →
A0

λ(D).

Theorem 3.4 Let ϕ be a holomorphic map of D such that ϕ(D) ⊂ D.
Then if CϕD : A0

λ(D) → A0
λ(D) is bounded, then νλ ◦ ϕ−1 is a vanishing

(λ+ 2)-Carleson measure on D.

Proof. Let {an} be a sequence in D such that |an| → 1 as n → ∞.
Consider the family of functions

fn(z) =
(1− |an|)

λ+3

2|an|(λ+ 2)
exp

[

(1− |an|
2)λ+2

(1− anz)2(λ+2)

]

.

Clearly, fn → 0 uniformly on compact subsets of D as n → ∞. Also

||fn||A0

λ
(D) ≤ 1 +

∫

D

log+
∣

∣

∣

∣

(1− |an|)
λ+3

2|an|(λ+ 2)
exp

[ (1− |an|
2)λ+2

(1− anz)2(λ+2)

]∣

∣

∣

∣

dνλ(z)
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≤ 1 + C
∫

D

(1− |an|
2)λ+2

|1− anz|2(λ+2)
dνλ(z) ≤ 1 + C.

Moreover,

f ′
n(z) =

(1− |an|
2)2λ+5

|an|(1− anz)2λ+5
an exp

[

(1− |an|
2)λ+2

(1− anz)2(λ+2)

]

,

and so

|f ′
n(z)| =

(1− |an|
2)2λ+5

|1− anz|2λ+5
exp

[

Re
(

(1− |an|
2)λ+2

(1− anz)2(λ+2)

)]

.

Now

Re
(

(1− |an|
2)λ+2

(1− anz)2(λ+2)

)

≍
1

(1− |an|)λ+2
,

whenever z ∈ D(an, r). Thus

log(1 + |f ′
n(z)|) ≥ log+ |f ′

n(z)| ≥
C

(1− |an|2)λ+2

if z ∈ D(an, r). Therefore,

C

(1− |an|2)λ+2
(νλ ◦ ϕ

−1)(D(an, r))

≤
∫

D(an,r)
log+ |f ′

n(z)|d(νλ ◦ ϕ
−1)(z) ≤ ||CϕDfn||A0

λ
(D).

But compactness of CϕD forces ||CϕDfn||A0

λ
(D) to tend to zero as |an| → 1.

Thus

lim
|an|→1

(νλ ◦ ϕ
−1)(D(an, r))

(1− |an|2)λ+2
= 0,

and so νλ ◦ ϕ
−1 is a vanishing (λ+ 2)-Carleson measure on D.
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