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Abstract

This paper presents a broad perspective on traffic flow modeling at
a spectrum of four scales. Modeling objectives and model properties at
each scale are discussed and existing efforts are reviewed. In order to
ensure modeling consistency and provide a microscopic basis for macro-
scopic models, it is critical to address the coupling among models at
different scales, i.e. how less detailed models are derived from more de-
tailed models and, conversely, how more detailed models are aggregated
to less detailed models. With this understanding, a consistent modeling
approach is proposed based on field theory and modeling strategies at
each of the four scales are discussed. In addition, a few special cases are
formulated at both microscopic and macroscopic scales. Numerical and
empirical results suggest that these special cases perform satisfactorily
and aggregate to realistic macroscopic behavior. By ensuring model
coupling and modeling consistency, the proposed approach is able to
establish the theoretical foundation for traffic modeling and simulation
at multiple scales seamlessly within a single system.
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1 Introduction

Anyone who used maps probably developed the following experience. Fifteen
years ago, a 1:10,000 paper map was needed to view a city (e.g. Amherst, MA),
while a 1:1,000,000 paper map was needed to view a state (e.g. Massachusetts).
If the scale was changed, a new map was needed. Today, using digital maps
(e.g. Google maps), one is able to overview the entire country, and then
progressively zoom in to view Massachusetts, Amherst, and even the UMass
Ambherst campus, all seamlessly and within a single system.
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Figure 1: Multiscale traffic low modeling

Similarly, it is desirable that traffic simulation would allow an analyst to
zoom in to examine low-level details and zoom out to overview system-wide
performance within the same simulation process. Figure 1 illustrates such a
paradigm. The background represents a macroscopic view of traffic operation
in an entire region. This is analogous to viewing traffic 10,000 m above the
ground and the traffic appears to be a compressible fluid whose states (speed,
flow, and density, etc.) propagate like waves. As one zooms in to a local area
of the region, a mesoscopic view is obtained. This is like viewing traffic 3,000
m above the ground where the sense of waves recedes and a scene of particles
emerges. As one further zooms in to a segment of the roadway, a microscopic
view is resulted. Similar to watching traffic 1,000 m above the ground, the
scene is dominated by moving particles that interact with each other so as
to maintain safe positions in traffic stream. Finally, if one focuses on a few
neighboring vehicles, a picoscopic view is achieved as if one were operating
one of the vehicles. As such, one has to interact with the driving environment
(e.g. roadway, signs, signals, etc.), make control decisions, and manage vehicle
dynamic respond to travel safely. If such a “zoomable” simulation becomes
available, one would be able to translate traffic flow representation among
multiple scales, e.g. to trace a low-level event all the way to a high-level
representation and, conversely, to decompose a global problem down to one or
more local deficiencies. As such, the “zoomable” simulation will transform the
way that traffic flow is analyzed and transportation problems are addressed.
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The objective of this paper is to address multiscale traffic flow modeling
with inherent consistency. The term consistency here concerns the coupling
among models at different scales, i.e. how less detailed models are derived from
more detailed models and, conversely, how more detailed models are aggregated
to less detailed models. Only consistent multiscale models are able to provide
the theoretical foundation for the above “zoomable” traffic simulation. The
paper is organized as follows. Section 2 takes a broad perspective on a spectrum
of four modeling scales. Modeling objectives and model properties at each scale
are discussed and existing efforts are reviewed. Section 3 presents the proposed
multiscale approach based on field theory. Modeling strategy at each scale is
discussed and some special cases are formulated at both the microscopic and
macroscopic scales. The emphasis of this multiscale approach is to ensure
coupling among different modeling scales. Section 4 presents numerical and
empirical results in support of the special cases developed in the previous
section. Concluding remarks and future directions are presented in Section 5.

2 The Spectrum of Modeling Scales

The modeling of traffic flow can be performed at, but is not limited to, a spec-
trum of four scales, namely picoscopic, microscopic, mesoscopic, and macro-
scopic from the most to the least detailed in that order. Considering that
the definition of these modeling scales are rather vague, implicit, or absent in
the literature, this section attempts to provide an explicit definition so that
existing and future models are easily classified and related. Such a definition
is tabulated in Figure 2 for each of the four modeling scales based on their
properties (i.e. rows in the table) and literature related to each modeling scale
is reviewed in subsequent subsections. The first three rows (“State variable”,
“Variable description”, and “State diagram”) are discussed in this section and
the remaining three rows (“Underlying principle”, “Modeling approach”, and
“Model coupling”) pertain to the proposed multiscale approach with inherent
consistency which are to be elaborated in the next section.

2.1 The picoscopic scale

Picoscopic modeling should be able to represent traffic low so that the tra-
jectory of each vehicle, (z;(t),y;(t)) where i € {1,2,3,...,1} denotes vehicle
ID, can be tracked in both longitudinal x and lateral y directions over time
t > 0. Knowing these vehicle trajectories, the state and dynamics of the traf-
fic system can be completely determined. Therefore, (z;(t),y;(t)) is the state
variable (one or a set of variables that characterizes the state of a system).
The corresponding state diagram (a graphical representation that illustrates
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Figure 2: The spectrum of modeling scales

the dynamics or evolution of system state) consists of these vehicle trajectories
in a three-dimensional domain (x,y,t).

Picoscopic models are mainly of interest in automotive engineering. Dy-
namic vehicle models with varying degrees of freedom have been proposed
[1, 2]. A myriad of driver models have been reported to assist various aspects
of automotive engineering including vehicle handling and stability. Control
Theory was widely applied in modeling vehicle control [3, 4]. Models in this
category typically incorporate one or more feedback loops. These loops are
used by the controller to adjust its output to minimize control error. Human
drivers can better perform reasoning using vague terms than controllers. This
observation allows the use of fuzzy logic [5, 6], which controls vehicles based
on some predefined rules. To allow implicit driving rules, Artificial Neural
Networks [7, 8] learn ”driving experiences” from training processes and then
apply the learned experiences in future driving. Several literature surveys of
driver models are available [9, 10, 11].
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2.2 The microscopic scale

Microscopic modeling should be able to represent traffic flow so that the tra-
jectory of each vehicle can be tracked in the longitudinal direction z;(t) with
the lateral direction being discretized by lanes LN;(¢) where LN € {1,2,...,n}.
Hence, (x;(t), LN;(t)) is state variable that describe the sate and dynamics of
traffic flow at this scale and the corresponding state diagram consists of vehicle
trajectories in a two-dimensional domain (z, ).

Within traffic flow community, microscopic models treat driver-vehicle units
as massless particles with personalities. The behavior of these particles is
governed by car-following models in the longitudinal direction and discrete
choice (e.g. lane-changing and gap-acceptance) models in the lateral direc-
tion. Car-following models describe how a vehicle (the follower) responds to
the vehicle in front of it (the leader). For example, stimulus-response mod-
els [12, 13] assume that the follower’s response (e.g. desired acceleration)
is the result of stimuli (e.g. spacing and relative speed) from the leader,
desired measure models [14, 15] assume that the follower always attempts
to achieve his desired gains (e.g. speed and safety), psycho-physical mod-
els [16, 17] introduce perception thresholds that trigger driver reactions, and
rule-based models [18] apply "IF-THEN” rules to mimic driver decision mak-
ing. Lane-changing and gap-acceptance models describe how a driver arrives
at a lane change decision and how the driver executes such a decision, re-
spectively. Approaches to lane-changing include mandatory and discretionary
lane-changing (MLC/DLC) [19, 20], adaptive acceleration MLC/DLC |21, 22],
and autonomous vehicle control [23]. The following have been attempted to
model gap acceptance: deterministic models [24, 25, 26], probabilistic models
[27, 28, 29], and neuro-fuzzy hybrid models [30]. More surveys on microscopic
models can be found in the literature[31, 32].

2.3 The mesoscopic scale

Mesoscopic modeling should be able to represent traffic flow so that the prob-
ability of the presence of a vehicle at a longitudinal location x with speed v
at time t is tracked. The lateral direction is only of interest if it provides
passing opportunities. The state diagram typically involves a two-dimensional
domain (z,v) at an instant ¢ and the domain is partitioned into cells with
space increment dr and speed increment dv. The state variable is a distri-
bution function f(x,v,t) such that f(x,v,t)dzdv denotes the probability of
having a vehicle within space range (z,x + dz) and speed range (v,v + dv)
at time . Knowing the distribution function f(z,v,t), the dynamics of the
system can be determined statistically.

Conventional mesoscopic traffic flow models come with three flavors. First,
models such as the one in TRANSIMS [33] take a Cellular Automata approach



32 Daiheng Ni

where the space domain (representing the longitudinal direction of a highway)
is partitioned in to short segments typically 7.5 meters long. If occupied, a
segment is only able to store one vehicle. Vehicles are then modeled as hopping
from one segment to another, so their movement and speed are discretized and
can only take some predetermined values. Second, models such as those im-
plemented in DynaMIT [34] and DYNASMART [35] use macroscopic models
(such as speed-density relationship), as oppose to microscopic car-following
models, to determine vehicle speed and movement. Third, truly mesoscopic
models such as the one postulated by Prigogine and his co-workers [36] are
based on non-equilibrium statistical mechanics or kinetic theory which draw
analogy between classical particles and highway vehicles. Prigogine’s model
criticized [37] for (1) lacking theoretical basis, (2) lacking realism (e.g. car
following, driver preferences, and vehicle lengths), and (3) lacking satisfactory
agreement with empirical data. Many efforts have been made to improve Pri-
gogine’s model by addressing critiques 2 and 3. For example, Paveri-Fontana
[38] considered a driver’s desired speeds, Helbing [39] adapted the desired
speeds to speed limits and road conditions, Phillips [40, 41] incorporated vehi-
cle lengths, Nelson [42] accounted for vehicle acceleration behavior, and Klar
and Wegener [43, 44] included a stochastic microscopic model. Surveys of
previous approaches are available in the literature[45].

2.4 The macroscopic scale

Macroscopic modeling should be able to represent traffic flow so that only local
aggregation of traffic flow (e.g. density k, speed u, and flow ¢) over space (lon-
gitudinal) = and time ¢ is tracked. Traffic density k(zx,t) is a good candidate
of state variable because, unlike flow and speed, density is an unambiguous
indicator of traffic condition. The state diagram typically involves a two di-
mensional domain (z,t). Knowing k(x,t), the dynamics of the system can be
determined macroscopically.

Conventional macroscopic traffic flow models describe the propagation of
traffic disturbances as waves. A fundamental basis for formulating wave propa-
gation is the law of conservation. The first-order form of the law is mass/vehicle
conservation, which is used to create first-order models[46, 47]. In addi-
tion, momentum and energy may also be conserved. A model is of a higher
order if it incorporates the latter forms of conservation[48, 49]. Since the
limited benefit offered by higher-order models often does not justify their
added complexity[50], numerical approximation and macroscopic simulation
have been centered on first-order models, e.g. KRONOS[51], KWaves[52],
CTM]I53, 54], FREQI55], and CORQ [56]. More surveys of macroscopic mod-
els can be found in the literature[31].
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2.5 Issues of multiscale modeling

Remarkably, existing models at the same scale typically follow different mod-
eling approaches and, hence, it is difficult to relate these models to each other.
In addition, models at different modeling scales are rarely coupled. For exam-
ple, a macroscopic model typically lacks a microscopic basis and a microscopic
model does not have its macroscopic counterpart.

Therefore, an ideal multiscale modeling approach should emphasize not
only model quality at each individual scale but also the coupling between dif-
ferent scales. Only models formulated following such an approach is able to
support the “zoomzble” traffic simulation discussed in Section 1. As such,
the resulting state diagram at a more detailed scale contains the necessary
information to reproduce a less detailed diagram, as illustrated in Figure 2.
For example, the microscopic diagram is simply a projection of the picoscopic
diagram onto the x — ¢ plane and the macroscopic state diagram can be com-
pletely reconstructed from the microscopic diagram using Eddie’s definition of
traffic flow characteristics [57, 58].

3 The Proposed Multiscale Approach

The objective of this section is to pursue the above multiscale modeling ap-
proach and develop strategies to formulate a spectrum of models with inher-
ent consistency. The approach starts at the picoscopic scale by formulating
a model that is mathematically amenable to representing the natural way of
human thinking while comply to physical principles; the microscopic model
can be simplified from the picoscopic model yet still capturing the essential
mechanisms of vehicle motion and interaction; the mesoscopic model can be
derived from the microscopic model based on principles of non-equilibrium sta-
tistical mechanics; the macroscopic model can be derived from the mesoscopic
model by applying principles of fluid dynamics. See a summary of underlying
principle, modeling approach, and modeling coupling in Figure 2.

3.1 Picoscopic modeling

In order to conform to real-world driving experiences, the proposed model
should mimic the way that a driver operates his/her vehicle and responds
to the driving environment. Based on principles of control theory, a driver-
vehicle-environment closed-loop control (DVECLC) system [59, 60, 61] has
been developed. Figure 3 illustrates the components of the system and its
control flow including feedback loops.

This system consists of a driver model and a vehicle model which interact
with each other as well as with the driving environment. the driver receives
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Figure 3: The closed-loop system

information from the environment such as roadways, traffic control devices,
and the presence of other vehicles. The driver also receives information from
his/her own vehicle such as speed, acceleration, and yaw rate. These sources of
information, together with driver properties and goals, are used to determine
driving strategies (such as steering and gas/brake). The driving strategies
are fed forward to the vehicle which also receives input from roadways. These
sources of information, together with vehicle properties, determine the vehicle’s
dynamic responses based on vehicle dynamic equations. Moving longitudinally
and laterally, the vehicle constitute part of the environment. Other vehicle
dynamic responses such as speed, acceleration, and yaw rate are fed back to
the driver for determining driving strategies in the next step. Thus traffic
operation is the collection of movement and interaction of all vehicles in the
environment.

By applying principles of System Dynamics, a dynamic vehicle model has
also been developed [62, 63] that is able to describe the dynamic response of a
vehicle to its driver’s control. The acceleration performance of which is shown
in Figure 4. The bold line is the model output and the points are empirical
data. In addition, a simple yet accurate engine model[64] was proposed to
describe vehicle acceleration performance.

The driver model can be formulated by applying principles of field theory.
Basically, objects in a traffic system (e.g. roadways, vehicles, and traffic control
devices) are perceived by a subject driver as component fields. The driver
interacts with an object at a distance and the interaction is mediated by the
field associated with the object. The superposition of these component fields
represents the overall hazard encountered by the subject driver. Hence, the
objective of vehicle motion is to seek the least hazardous route by navigating
through the field along its valley and traffic flow consists of the motion and
interaction of all vehicles. With this understanding, the driver model at the
picoscopic scale is formulated as follows.
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3.1.1 Roadways

Roadways can be represented as a gravity field in the longitudinal x direction
so that vehicles are accelerated forward just like free objects fall to the ground.
The gravity G; acting on a driver-vehicle unit ¢ can be expressed as

Gi=m; X g

where m; is the vehicle’s mass and ¢; is the acceleration of roadway gravity
perceived by driver . Meanwhile, such a gravity is counteracted by a resistance
R; perceived by the driver due to her willingness to observe traffic rules (e.g.
speed limit). As such, the net force

explains the driver’s unsatisfied desire for mobility which vanishes when her
desired speed v; is achieved, see an illustration in Figure 5.

In the lateral y direction, cross-section elements (e.g. lane lines, edge lines,
and center lines) are perceived by the driver as a roadway potential field U/
When the unit deviates from its lane, the unit is subject to a correction force
N; which can be interpreted as the stress on the driver to keep her lane. The
effect of such a force is to push the vehicle back to the center of the current
lane. Such a force can be derived from the roadway field as

R
dy

3.1.2 Vehicle interaction

Vehicles can each be represented as a potential field. Figure 5 illustrates two
such fields perceived by driver i (the dot), one for unit j and the other for unit
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Figure 5: The illustration of a perceived field

k (the hills above and associated bases on the ground). Unit 7 interacts with j
and k at a distance mediated by their associated fields, e.g. unit j slows down
i by a repelling force I}, while k motivates i to shy away by another force F}f
where F/ and FF can be each be derived from their corresponding fields:

: ou? Uk
Fl=_""t pk_ _“701
! ox ! dy

3.1.3 Traffic control devices

A red light can be represented as a potential field that appears periodically at
a fixed location. When it appears, an approaching vehicle will decelerate to
a stop. When the signal turns green, its field disappears and the vehicle will
be accelerated by the roadway gravity. Similar technique applies to stop and
yield signs with modifications accordingly. The representation of pavement
markings such as lane lines, center lines, and road edges have been discussed
above in representing roadways.

3.1.4 Driver’s responsiveness

The above forces may or may not take effect on the subject driver depending
on her responsiveness, 7. Consequently, a force that actually acts on the driver
F; is the product of her responsiveness 7 and the force that she might have
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been perceived if she had paid full attention to it, Fj, i.e. I, = F; x 7. The
PI’s studies on human factors [61, 65] found that the driver’s responsiveness
to her surroundings vary with her viewing angle o € [—m, 7] and scanning
frequency v, see Figure 6. For example, the front area typically receives her
most attention, side areas are noted by the driver’s fair or peripheral vision, and
the rear area is only scanned occasionally. As such, if one chooses v(0) = 1 and
~v(m) = 0, the driver responds to F; in full if it comes from a leading vehicle
(i.e., @« = 0) and she ignores F; when it comes from a trailing vehicle (i.e.,
a = ), respectively.

3.1.5 Driver’s operational control

The driver’s strategy of moving on roadways is to achieve gains (mobility
and safety) and avoid losses (collisions and violation of traffic rules). Such a
strategy can be represented as navigating through the valley of an overall field
U; which consists of component fields such as those due to moving units UZ,
roadways Uft, and traffic control devices U, i.e.

U =UP+Uf +UF

For example, Figure 5 illustrates two sections the overall field, U;, and
Uiy. The subject unit 7 is represented as a ball which rides on the tail of curve
Ui . since the vehicle is within unit j’s field. Therefore, unit ¢ is subject to a
repelling force Fij which is derived from U, , as:

i — _Yis
! ox

The effect of Fij is to push unit ¢ back to keep safe distance. By incorpo-
rating the driver’s unsatisfied desire for mobility (G; — R;), the net force in the
x direction can be determined as:
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oU, ,
Ox

The section of U in the lateral y direction, U;, (the bold curve), is the sum
of two components: the cross section of the field due to unit & (the dashed
curve) and that due to the roadway field (the dotted curve). The former results
in a repelling force F¥ which makes unit i to shy away from k& and the latter
generates a correction force N; if ¢ deviates its lane center. Therefore, the net
effect can be expressed as:

mifi‘i:ZFi,z:Gi—Rz’—Fg:(Gi—Rz’)‘i‘

oU,
Oy

By incorporating time ¢, unit i’s perception-reaction time 7;, and driver ’s
directional response 7, the above equations can be expressed as:

mi?)i:ZFi,y:Fik—Ni:—

8U7,z

m;Z; t""Tz ZFzm _rYzG()_R()]_F’Y( ) o
oU;
E )
Zylt+Tl Z ,y z) ay

where 77 € [0,1] represents the unit’s attention to its unsatisfied desire for
mobility (typically 79 = 1), of, oF, and ol are viewing angles which are also
functions of time.

3.2 Microscopic modeling

The microscopic model can be formulated by simplifying the above picoscopic
model as follows: (a) ignoring interactions inside a driver-vehicle unit allowing
it to be modeled as an active particle, (b) representing a driver’s longitudinal
and lateral control using separate but simpler models, (c¢) reducing the vehi-
cle dynamic system to a particle, and (d) simplifying roadway surfaces to a
collection of lines.

3.2.1 Modeling longitudinal control

With the above simplifications, the two-dimensional (3D) potential field U
in Figure 5 reduces to a 2D potential function. The upper part of Figure 7
illustrates an example where a subject driver ¢ (the middle one) is traveling
behind a leading vehicle j and followed by a third vehicle p in the adjacent
lane. The potential field U; perceived by the driver is shaded in the lower part
of the figure and is represented by a curve in the upper part. Since the trailing
vehicle in the adjacent lane does not affect the subject driver’s longitudinal
motion, the ”stress” on the subject driver to keep safe distance only comes
from the leading vehicle and can be represented as:
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Figure 7: Microscopic modeling

J
FI = _ou;
‘ ox
By incorporating roadway gravity G, roadway resistance R;, and interac-

tion between vehicles FY, the net force on i can be expressed more specifically
as:

Departing from the above equation, a few special cases deserve particular
attention:

{L‘i(t + Ti) = gz[l — ( ,U( )) —e sii® ] (1)
. (1) |
it + 1) = gi[1 — ( ) —2(1— = ® )] (3)

Yi 14 ¢ wini/ZFL;

where it is assumed that G; = m;xg;, R; = m; % (IU—?)), Ff = m; X f (s, 8i5(t)"),
g; i1s the maximum acceleration that driver ¢ is willing to apply when starting
from stand still, &;(¢) is the actual speed of vehicle i, v; is the desired speed
of driver i, s;; = x; — z; is the actual spacing between vehicles ¢ and j, z;
is the position of vehicle i, z; is the position of vehicle j, sj; is the desired
spacing between vehicles ¢ and j. L; is the nominal length of vehicle j and
is conveniently used as the spacing between two vehicles in jammed traffic.

The the difference (sj; — s;;) represents how far vehicle 4 intrudes beyond sj;.
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The rationale of representing the interaction force Fij between vehicles ¢ and
J using an exponential function is to set the desired spacing s}; as a base line,
beyond which the intrusion by unit ¢ is translated exponentially to the repelling
force acting on the unit. The desired spacing s;; can be further determined as
follows.

According to [15], the desired spacing should allow vehicle ¢ to stop behind
its leading vehicle j after a perception-reaction time 7; and a deceleration
process at a comfortable level b; > 0 should vehicle j applies an emergency
brake at rate B; > 0. This rule results in

i3 (t) @7 (t)
) = g (1) — () > LT — 57
650 = aial0) = ait) = S50 i - G2

+ L

Alternatively, one may choose to set the desired spacing as a simplified
function of the relative speed of the two vehicles:

sij(t) = Ly + Ly(@:(t) — 2;(1))

3.2.2 Modeling lateral control

The driver’s lateral control concerns changing lanes to seek a speed gain or to
use an exit. The shaded areas in the bottom part of Figure 7 can be interpreted
as drivers j and p’s personal spaces after accounting for lane barrier. A lane
change decision is reached whenever driver i intrudes into another driver’s
personal space. With such a decision, driver 7 begins to search for open spaces
in adjacent lanes. In this particular case, such an open space happens to be
available in the left lane barely allowing the center of vehicle ¢ to move in.
Consequently, the result of the gap acceptance decision is to abruptly switch
vehicle i to the left lane.

3.3 Mesoscopic modeling

Mesoscopic modeling applies principles of Non-Equilibrium Statistical Mechan-
ics or kinetic theory to model traffic flow. Essential to the modeling is the
determination of a distribution function f(z,v,t) such that f(z,v,t)dzdv de-
notes the probability of having a vehicle within space range (z,z + dx) and
speed range (v,v + dv) at time ¢ (see Figure 8). The time evolution of traffic
flow is described by an evolution equation

G _0f  ofde

dt Ot = Oz dt

whose right-hand side is to be determined. Therefore, the central question is
how to rigorously derive the evolution equation. This can be done by following
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a procedure similar to deriving the Boltzmann equation [66, 67] from basic
principles. The classical Boltzmann equation describes particles moving in
a 3D domain, so the first step is to reduce the 3D case to a 1D case which
represents traffic moving on a unidirectional highway.

®
ok e O
@

x x+dx Space

Traffic direction —
ED

v vidv Speed
Figure 8: The x-v diagram

Existing models, in particular those based on Prigogine’s work, are postu-
lated. In order to derive the 1D Boltzmann equation from basic principles, a
sound understanding of the mechanism of traffic evolution is required. Exist-
ing models, including a derived model [43, 44|, assumed that the mechanism
is vehicle “collision”. For example, the fast follower i in the left panel of Fig-
ure 9) keeps its speed up to the collision point and then abruptly changes its
speed. To be realistic, the speed change of vehicle i needs to be smooth as it
approaches its leader j as illustrated in the right panel of Figure 9). This is
possible only if car following is incorporated as the mechanism of particle in-
teraction. As such, the longitudinal control model presented above can be used
to derive the 1D Boltzmann equation and, thus, ensures micro-meso coupling.

4

Vehicle j Vehicle j

Space x
Space x

Vehicle i Vehicle i

Time t Time t

Figure 9: Car following

The derivation of the 1D Boltzmann equation starts by applying conser-
vation law (e.g vehicles entering and exiting the highlighted cell in Figure 8
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should be conserved). Existing models considered only one direction (i.e. di-
rection 1 below) in which vehicles exit the cell, and a similar treatment applies
to vehicles entering the cell. This approach causes modeling errors. Actually,
vehicles may exit the cell in four directions: (1) vehicles slowed down (and
hence exited the cell) due to a sluggish leader, (2) vehicles physically moved
out of the cell, (3) vehicles accelerated by an aggressive follower, and (4) ve-
hicles reversed, which is unlikely. The opposite applies to vehicles entering
the cell. Therefore, applying the law to include all directions is the correct
approach. Since deriving the 1D Boltzmann equation is mathematically com-
plicated, this paper only presents potential directions of exploration, leaving
the actual derivation to be addressed in future research.

Once the 1D Boltzmann equation is formulated, one may solve it based
on initial and boundary conditions to study how traffic evolves over time and
space. However, solving the equation can be quite involved, as is the case for
any classical Boltzmann equation. Fortunately, some important results can be
inferred without fully solving the equation. For example, a hydrodynamical
formulation, which is essential to macroscopic modeling, can be derived from
the equation. In addition, the equation contains an equilibrium relationship
between vehicle speed and traffic density, which is also essential to macroscopic
modeling. Such a relationship is analogous to the Maxwell-Boltzmann distri-
bution (the distribution of molecular speed under different temperature) which

is the stationary (i.e. % = 0) solution to a classical Boltzmann equation.

3.4 Macroscopic modeling

Macroscopic modeling applies principles of Fluid Dynamics to model traffic
flow as a 1D compressible continuum fluid. While the above mesoscopic mod-
eling describes the distribution of vehicles in a highway segment, macroscopic
modeling represents only the average state. Therefore, traffic density k(x,t)
can be related to the distribution f(x,v,t) as its zeroth moment k(x,t) =
[ f(z,v,t)dv and traffic speed as the first moment u(z,t) = ¢ [vf(z,v,t)dv.
Based on this understanding, it becomes clear that it is feasible to derive a
hydrodynamical formulation from the mesoscopic model. The 1D Boltzmann
equation discussed above can be expressed in a general form as

of + vg =C

ot Ox
where C' denotes the rate of change of f(x,v,t). Multiplying both sides of
this equation by 1, v, and %1}2 and integrating over v will give hydrodynamical
equations of mass, momentum, and energy conservation. The mass conserva-
tion equation

ok O(ku)
St = / Cdv
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is of particular interest because it describes the time evolution of traffic density
k(x,t). In order to solve the equation, a speed-density relationship must be
introduced into the macroscopic model. This relationship can be derived from
the mesoscopic model under stationary conditions or, alternatively, obtained
directly from the microscopic model by assuming equilibrium conditions. Pre-
sented below are a set of equilibrium v-k relationships derived from the special
cases of the microscopic model, respectively:

*

v =uvg[l — el F] (4)
C1/kj—1/k
vyl =) 8
2
v = vfl—— = — 1 (6)

1 + 6vf7'/2+1/kj

where k* = Tve “ + kij, vy is free-flow speed, k; = 1/L, L is the bumper-
to-bumper distance between vehicles when traffic is jammed, 7 is average
perception-reaction time of drivers.

Therefore, the macroscopic model consists of a system of equations in-
cluding the hydrodynamical formulation and one of the above speed-density
relationships.

ok  Oku

v="V(k)

The the system of equations can be solved using a finite difference method.
A typical finite difference method is illustrated in Figure 10 where one parti-
tions the time-space domain into cells and keeps track of traffic flowing into
and out of each cell [68, 51, 69].

4 Empirical and Numerical Results

This section provides some empirical and numerical evidences in support of
the proposed multiscale approach. Particular attention is devoted to micro-
scopic models such as the special cases proposed in Subsection 3.2 and their
corresponding speed-density relationships presented in Subsection 3.4.

At the microscopic level, the emphasis is to check if a model makes sense
since it is not reasonable to expect the same result out of a simulated run and
a real one due to randomness. A physically meaningful scenario is set up as
follows which consists of multiple regimes typically encountered during driv-
ing. The scenario involves two vehicles, a leader and a follower. The leader
moves according to predetermined rules, while the motion of the follower is
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Figure 10: The finite difference method

stipulated by a microscopic model. More specifically, the follower ¢ is initially
stand still at x;(0) = 0. The motion of the leader j is defined as follows:

when 0 <¢ < 100: z; = 5000,%; = 0,2; =0
when ¢ = 100: z; = 2800, z; = 25

when 100 <t < 200: ; =0

when 200 <t < 210: Z; = 2

when 210 <t < 300: ; =0

when 300 <t < 315: &; = —3

when ¢ > 315: &; =0

where time ¢ is in seconds (s), displacement z is in meters (m), speed  is in
m/s, and acceleration Z is in m/s®>. The above set up essentially means the
following. Initially, both vehicles are stand still with the follower at z;(0) = 0
m and the leader in front at z;(0) = 5000 m. At time ¢t = 100 s, a third
vehicle in the adjacent lane traveling at 25 m/s cuts in front of the follower i
at = 2800 m. As such, this third vehicle takes over as the leader j and it
keeps its speed constant up to ¢ = 200 s. Then, the leader begins to accelerate
at a constant rate of 2 m/s? for 10 seconds, which results in an ending speed
of 45 m/s. After this, the leader cruises at that speed up to ¢t = 300 s. Next,
the leader applies a constant deceleration at a rate of —3 m/s? for 15 seconds,
which essentially brings the vehicle to a stop.

The following analysis assumes a normal driver who responds based on
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common sense. When the process starts, vehicle ¢ begins to move according
to the logic stipulated in the microscopic model. Since vehicle j is far away,
it essentially has no influence on vehicle ¢ who is entitled to accelerate to its
desired speed #;(t) — v; = 25 m/s. This process constitutes a free-flow regime.
Right before ¢ = 100 s, the follower is at somewhere around z = 2745 m and
the leader is 2255 m ahead. However, at ¢ = 100 s, the third vehicle cuts in
right in front at = 2800 m taking over as the new leader and shortening
the inter-vehicle distance (i.e. spacing s;;) to 55 m. The sudden change in
spacing causes the the follower to take emergency brake in order to maintain
safe distance away from its leader. This process constitutes a braking regime.
The emergency brake slows down the follower and the spacing between the
two vehicles increases. When safe distance is achieved, the follower begins
catch up with the leader’s speed and maintain the safe distance thereafter.
This constitutes a car-following regime. Starting from ¢t = 200 s, the leader
begins to accelerate and eventually cruises at 45 m/s. As the leader speeds
up, the spacing increases allowing the follower to accelerate as well. Since the
leader travels much faster than the follower and the gap is opening, the follower
is entitled to accelerate as desired and eventually settles at its desired speed
v; = 30 m/s. This returns to the free-flow regime again. Note that the leader’s
cruise speed is an exaggeration which is made on purpose to highlight the effect
that the follower does not blindly follow its leader beyond its desired speed. At
t = 300 s, the leader begins to decelerate at comes to a stop at z; = 10000 m
after 15 seconds. As the follower approaches the stopped leader, the follower
begins to decelerate, too, at a comfortable rate and finally rests right behind
the leader. This process constitutes a transition from a approaching regime to
the braking regime.

Figure 11 shows the performance of the special case 1 formulated in Eq. (1).
Three profiles are illustrated: displacement, speed, and acceleration. Broken
red lines are for the leader whose motion is predetermined as above, while
solid blue lines are for the follower whose motion is stipulated by the model.
Examination of the follower’s performances in the free-flow, approaching, car-
following, braking regimes reveals that the model does conform to the above
common sense analysis. Special cases 2 (Eq. (2)) and 3 (Eq. (3)) yield similar
results and are not repeated here.

At the macroscopic level, the emphasis is to compare the simulated re-
sults against empirical observations across many vehicles and over time. The
empirical data is collected from GA 400 by Georgia NAVIGATOR system.
The resulting speed vs density, flow vs density, and speed vs flow plots are
illustrated as dots in Figure 12. Solid blue lines show the performance of
macroscopic special case 1 (Eq. (4)) which is derived from Eq. (1) with the
following parameters: free-flow speed vy = 29 m/s, average perception-reaction
time 7 = 1.3 s, and jam density k; = 1/5 veh/m. The plots show that the
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Figure 11: Performance of microscopic model special case 1 (Eq. (1))

model agrees empirical observations very well. The other two special cases
performs similarly and are not repeated here.

5 Conclusion and Future Directions

This paper presents a broad perspective on traffic flow modeling at a spectrum
of four scales: picoscopic, microscopic, mesoscopic, and macroscopic from the
most to the least detailed level in that order. Modeling objectives and model
properties at each scale are discussed and existing efforts are reviewed.

In order to ensure modeling consistency and provide a microscopic basis
for macroscopic models, it is critical to address the coupling among models at
different scales, i.e. how less detailed models are derived from more detailed
models and, conversely, how more detailed models are aggregated to less de-
tailed models. With this understanding, a consistent modeling approach is
proposed based on field theory. Basically, in this approach, physical world
objects (e.g. roadways, vehicles, and traffic control devices) are perceived by
the subject driver as component fields. The driver interacts with an object
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Figure 12: Performance of macroscopic model special case 1 (Eq. (4))

at a distance and the interaction is mediated by the field associated with the
object. In addition, the field may vary when perceived by different drivers de-
pending on their characteristics such as responsiveness and perception-reaction
time. The superposition of these component fields represents the overall haz-
ard encountered by the subject driver. Hence, the objective of vehicle motion
is to seek the least hazardous route by navigating through the field along its
valley. Consequently, traffic flow is modeled as the motion and interaction of
all vehicles.

Modeling strategies at each of the four scales are discussed. More specif-
ically, the field theory serves as the basis of picoscopic modeling which rep-
resents a driver-vehicle unit as driver-vehicle-environment closed-loop control
system. The system is able to capture vehicle motion in longitudinal and lat-
eral directions. The microscopic model is obtained from the picoscopic model
by simplifying its driver-vehicle interactions, vehicle dynamics, and vehicle lat-
eral motion. The mesoscopic model is derived from basic principles using the
microscopic model as the mechanism of traffic evolution. The macroscopic
model includes an evolution equation (which is derived by taking moments of
the mesoscopic model) and an equilibrium speed-density relationship (which



48 Daiheng Ni

is the stationary solution to the mesoscopic model or derived from the mi-
croscopic model directly). Therefore, the proposed approach ensures model
coupling and modeling consistency. As such, consistent models drived from
this approach are able to provide the theoretical foundation to develop the
“zoomable” traffic simulation tool discussed in Section 1.

A few special cases of the microscopic model are formulated. Further,
their corresponding equilibrium speed-density relationships are derived. A
numerical test is devised to verify if these microscopic special cases make any
sense. In addition, the equilibrium relationships are validated against empirical
data. Both numerical and empirical results suggest that these special cases
perform satisfactorily and aggregate to realistic macroscopic behavior.

This paper emphasizes modeling strategies at the four scales. Though
a family of special cases are formulated at the microscopic and macroscopic
scales, further efforts are needed to complete the spectrum by adding specific
models at the picoscopic and mesoscopic scales. In addition, with the rapid
development of wireless technologies and the deployment of IntelliDrive®™ ini-
tiative, the effects of vehicle-vehicle and vehicle-roadside communications will
transform the way a transportation system operates. Therefore, it is desir-
able that traffic flow models are able to incorporate such effects to realistically
simulate IntelliDrive®™-enabled transportation systems.
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