
Mathematica Aeterna, Vol. 6, 2016, no. 5, 781 - 790

Multiple solutions for a semilinear nonhomogeneous 1

elliptic system

Xiaodong Zhao2

College of Mathematics and Statistics
Yili Normal University

Yining 835000
P.R. of China

Lin Chen

College of Mathematics and Statistics
Yili Normal University

Yining 835000
P.R. of China

Abstract

In this paper, by the Mountain Pass Theory and Ekeland’s varia-
tional principle, we consider the existence and multiplicity of nontrivial
solutions for the nonhomogeneous semilinear elliptic system











−∆u+ u = α
α+β f(x)|u|

α−2u|v|β + l1(x), x ∈ Ω,

−∆v + v = β
α+β f(x)|u|

α|v|β−2v + l2(x), x ∈ Ω,
∂u
∂n = λg(x)|u|q−2u, ∂v

∂n = µh(x)|v|q−2v, x ∈ ∂Ω,

where Ω is a bounded domain in R
N with smooth boundary, α > 1, β >

1 satisfying 2 < α+β < 2∗ (2∗ = 2N
N−2 if N ≥ 3, 2∗ = ∞ if N = 2), 1 <

q < 2, the pair of parameters (λ, µ) ∈ R
2 \ {(0, 0)}.
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1 Introduction

The aim of this paper is to investigate the following semilinear elliptic system







−∆u+ u = α
α+β

f(x)|u|α−2u|v|β + l1(x), x ∈ Ω,

−∆v + v = β
α+β

f(x)|u|α|v|β−2v + l2(x), x ∈ Ω,
∂u
∂n

= λg(x)|u|q−2u, ∂v
∂n

= µh(x)|v|q−2v, x ∈ ∂Ω,

(1)

where Ω is a bounded domain in R
N with smooth boundary, α > 1, β > 1

satisfying 2 < α + β < 2∗ (2∗ = 2N
N−2

if N ≥ 3, 2∗ = ∞ if N = 2), 1 < q < 2,
the pair of parameters (λ, µ) ∈ R

2 \ {(0, 0)}. Existence and multiplicity results
for a semilinear elliptic systems with nonlinear boundary condition are widely
studied. In [1], Tsung-Fang Wu studied a class of semilinear elliptic equations
in R

N
+ with nonlinear boundary condition and sign-changing weight function.

By means of the Lusternik-Schnirelman category, multiple positive solutions
are obtained. In [2], Hu Li, Xing-Ping Wu and Chun-Lei Tang obtained two
positive solutions for a nonlinear homogeneous system with nonlinear homo-
geneous boundary condition via the Nehari manifold approach. We refer to
[3, 4, 5, 6, 7] for additional results on semilinear elliptic problem.

We are motivated by the paper of K.J. Brown and Tsung-Fang Wu [8],
in which the equations are homogeneous. We now extend the analysis to the
nonhomogeneous equations with nonlinear nonhomogeneous boundary condi-
tions. Replacing the Nehari manifold methods, we will use the Mountain Pass
Theory and Ekeland’s variational principle to study the existence of multiple
solutions for problem (1). It seems difficult to get the same result by Nehari
manifold methods.

In order to state our main theorem, let us introduce the following hypothe-
ses:

(H1) f ∈ C(Ω̄) with ‖f‖∞ = 1 and f+ = max{f, 0} 6= 0, l1(x), l2(x) ∈
Lσ(Ω), σ = 2∗

2∗−1
. Furthermore, there exists a non-empty open domain Ω1 ⊂ Ω

such that l1(x) > 0, l2(x) > 0 in Ω1. (H2) g, h ∈ C(∂Ω) with ‖g‖∞ = ‖h‖∞ =
1, g± = max{±g, 0} 6= 0 and h± = max{±h, 0} 6= 0.

Throughout this paper, we let S and S̄ be the best Sobolev and the best
Sobolev trace constants for the embedding of H1(Ω) in L2∗(Ω) and H1(Ω) in
Lq(∂Ω), respectively. Then we have the following result.

Theorem 1.1. Assume that (H1)−(H2) hold, there exist c0, c1 > 0 such that

the problem (1) admits at least two solutions provided 0 < |λ|
2

2−q + |µ|
2

2−q < c0

and ‖l1‖
2
σ + ‖l2‖

2
σ < c1(|λ|

2
2−q + |µ|

2
2−q )

2−q
α+β−q , where σ = 2∗

2∗−1
.
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2 The proof of Theorem 1.1.

In this paper, we let H = H1(Ω)×H1(Ω) with the standard norm

‖(u, v)‖H =

(
∫

Ω

(|∇u|2 + u2)dx+

∫

Ω

(|∇v|2 + v2)dx

)1/2

.

First we give the definition of the weak solution of (1).

Definition 2.1. We say that (u, v) is a weak solution to (1) if for all
(ϕ1, ϕ2) ∈ H we have

∫

Ω

(∇u∇ϕ1 + uϕ1)dx+

∫

Ω

(∇v∇ϕ2 + vϕ2)dx−
α

α + β

∫

Ω

f |u|α−2u|v|βϕ1dx

−
β

α + β

∫

Ω

f |u|α|v|β−2vϕ2dx−

∫

Ω

l1(x)ϕ1dx−

∫

Ω

l2(x)ϕ2dx

− λ

∫

∂Ω

g|u|q−2uϕ1ds− µ

∫

∂Ω

h|v|q−2vϕ2ds = 0.

Let Jλ,µ : H → R
1 be the energy functional of problem (1) defined by

Jλ,µ(u, v) =
1

2
‖(u, v)‖2H −

1

α+ β

∫

Ω

f |u|α|v|βdx− L(u, v)−
1

q
Gλ,µ(u, v), (2)

where

L(u, v) =

∫

Ω

(

l1(x)u+ l2(x)v
)

dx,Gλ,µ(u, v) = λ

∫

∂Ω

g|u|qds+ µ

∫

∂Ω

h|v|qds.

We see Jλ,µ(u, v) ∈ C1(H,R1) and for any (ϕ1, ϕ2) ∈ H there holds

〈J ′
λ,µ(u, v), (ϕ1, ϕ2)〉 =

∫

Ω

(∇u∇ϕ1 + uϕ1)dx+

∫

Ω

(∇v∇ϕ2 + vϕ2)dx

−
α

α + β

∫

Ω

f |u|α−2u|v|βϕ1dx−
β

α + β

∫

Ω

f |u|α|v|β−2vϕ2dx

−

∫

Ω

l1(x)ϕ1dx−

∫

Ω

l2(x)ϕ2dx− λ

∫

∂Ω

g|u|q−2uϕ1ds

− µ

∫

∂Ω

h|v|q−2vϕ2ds. (3)

We will make use of the Mountain Pass Theorem in [9] (also see [10]).

Lemma 2.2. (Mountain Pass Theorem) Suppose X is a Banach space, I ∈
C1(X,R1) with I(0) = 0. If I satisfies (PS) condition and

(A1) there are ρ, α0 > 0, such that I(u) ≥ α0 when ‖u‖X = ρ.
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(A2) there is e ∈ X, ‖e‖X > ρ such that I(e) < 0.
Define

Γ = {γ ∈ C1([0, 1], X)|γ(0) = 0, γ(1) = e}

Then

c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)) ≥ α0

is a critical value of I(u).

Lemma 2.3. Assume (H1) − (H2) hold. Then there exist c0, c1 > 0 such
that Jλ,µ(u, v) satisfies the assumption (A1) − (A2) in Lemma 2.1 provided

0 < |λ|
2

2−q + |µ|
2

2−q < c0, and ‖l1‖
2
σ + ‖l2‖

2
σ < c1(|λ|

2
2−q + |µ|

2
2−q )

2−q
α+β−q , where

σ = 2∗

2∗−1
.

Proof. By the Hölder inequality and the Sobolev embedding theorem we
have

∫

Ω

f(x)|u|α+βdx ≤

(
∫

Ω

|f(x)|δdx

)
1
δ
(
∫

Ω

|u|2
∗

dx

)
α+β
2∗

≤ M1S
α+β‖u‖α+β

H1(Ω),

where δ = 2∗

2∗−(α+β)
,M1 > 0, such that (

∫

Ω
|f(x)|δdx)

1
δ < M1.

In a similar manner we obtain
∫

Ω

f(x)|v|α+βdx ≤ M1S
α+β‖v‖α+β

H1(Ω).

So
∫

Ω

f(x)|u|α|v|βdx ≤ 2M1S
α+β‖(u, v)‖α+β

H . (4)

It is clear that

λ

∫

∂Ω

g|u|qds+ µ

∫

∂Ω

h|v|qds

≤ λ‖g‖∞

∫

∂Ω

|u|qds+ µ‖h‖∞

∫

∂Ω

|v|qds

≤ S̄q(|λ|
2

2−q + |µ|
2

2−q )
2−q
2 ‖(u, v)‖qH. (5)

Using Young inequality, we get
∫

Ω

|l1(x)||u|dx ≤ ‖l1‖σ‖u‖2∗ ≤ S‖l1‖σ‖u‖H1 ≤ ε‖(u, v)‖2H + Cε‖l1‖
2
σ, (6)
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∫

Ω

|l2(x)||v|dx ≤ ‖l2‖σ‖v‖2∗ ≤ S‖l2‖σ‖v‖H1 ≤ ε‖(u, v)‖2H + Cε‖l2‖
2
σ, (7)

where σ = 2∗

2∗−1
, ε > 0, Cε > 0. Hence for 0 < ε ≤ 1

8
, we have

Jλ,µ(u, v) ≥
1

2
‖(u, v)‖2H −

2

α + β
M1S

α+β‖(u, v)‖α+β
H

−
1

q
S̄q(|λ|

2
2−q + |µ|

2
2−q )

2−q
2 ‖(u, v)‖qH

− 2ε‖(u, v)‖2H − Cε‖l1‖
2
σ − Cε‖l2‖

2
σ

≥
1

4
‖(u, v)‖2H −

2

α + β
M1S

α+β‖(u, v)‖α+β
H

−
1

q
S̄q(|λ|

2
2−q + |µ|

2
2−q )

2−q
2 ‖(u, v)‖qH − Cε‖l1‖

2
σ − Cε‖l2‖

2
σ. (8)

Let g(z) := 2
α+β

M1S
α+βzα+β−2 + 1

q
S̄q(|λ|

2
2−q + |µ|

2
2−q )

2−q
2 zq−2, z > 0.

To verify (A1) in Lemma 2.1, it suffices to show that g(z1) < 1
4
for some

z1 = ‖(u, v)‖H > 0. Note that g(z) → +∞ when z → 0+ or z → +∞, g(z)
has a minimum at z1 > 0. Then g′(z1) = 0. A simple computation yields

z1 =

(

S̄q(α+ β)(2− q)

2qM1(α + β − 2)Sα+β

)
1

α+β−q

(|λ|
2

2−q + |µ|
2

2−q )
2−q

2(α+β−q) . (9)

Moveover, g(z1) <
1
4
implies that

2

α + β
M1S

α+β

(

S̄q(α+ β)(2− q)

2qM1(α + β − 2)Sα+β

)
α+β−2
α+β−q

(|λ|
2

2−q + |µ|
2

2−q )
(2−q)(α+β−2)

2(α+β−q)

+
1

q
S̄q

(

S̄q(α + β)(2− q)

2qM1(α+ β − 2)Sα+β

)
q−2

α+β−q

(|λ|
2

2−q + |µ|
2

2−q )
(2−q)(α+β−2)

2(α+β−q) <
1

4
. (10)

Let

1

4
z21 −

2

α+ β
M1S

α+βz
α+β
1 −

1

q
S̄q(|λ|

2
2−q + |µ|

2
2−q )

2−q
2 z

q
1

− Cε(‖l1‖
2
σ + ‖l2‖

2
σ) > 0, (11)

we deduce that ‖l1‖
2
σ + ‖l2‖

2
σ < c1(|λ|

2
2−q + |µ|

2
2−q )

2−q
α+β−q , where the constant

c1 > 0 is independent of λ, µ. Then it follows from (8) , (10) and (11) that

there exist c0, α0 > 0 such that Jλ,µ(u, v) ≥ α0 with 0 < |λ|
2

2−q + |µ|
2

2−q < c0

and ‖l1‖
2
σ + ‖l2‖

2
σ < c1(|λ|

2
2−q + |µ|

2
2−q )

2−q
α+β−q . Thus (A1) in Lemma 2.1 is true.
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We now verify (A2) in Lemma 2.1. Choose (ϕ1, ϕ2) ∈ C∞
0 (Ω) × C∞

0 (Ω),
(ϕ1, ϕ2) 6= 0. Then

Jλ,µ(tϕ1, tϕ2) =
1

2
t2‖(ϕ1, ϕ2)‖

2
H −

1

α+ β
tα+β

∫

Ω

f |ϕ1|
α|ϕ2|

βdx

− t(

∫

Ω

l1(x)ϕ1dx−

∫

Ω

l2(x)ϕ2dx)−
1

q
tq(λ

∫

∂Ω

g|ϕ1|
qds+ µ

∫

∂Ω

h|ϕ2|
qds)

and Jλ,µ(tϕ1, tϕ2) → −∞ as t → +∞ since α + β > 2. Therefore, there exists
t large enough, such that Jλ,µ(tϕ1, tϕ2) < 0. Then, we take e = (tϕ1, tϕ2) ∈ H

and Jλ,µ(e) < 0 and (A2) in Lemma 2.1 is true. This completes the proof of
Lemma 2.2. 2

Lemma 2.4. Assume (H1) − (H2) hold. Then Jλ,µ(u, v) defined by (2)
satisfies (PS) condition on H.

Proof. Let {(un, vn)} be a (PS)c sequence of Jλ,µ(u, v) in H , that is

Jλ,µ(un, vn) → c, J ′
λ,µ(un, vn) → 0 in H∗.

We first claim that {(un, vn)} is bounded in H. In fact, for large n we obtain

c + 1 + ‖(un, vn)‖H

≥ Jλ,µ(un, vn)−
1

α + β
〈J ′

λ,µ(un, vn), (un, vn)〉

≥ (
1

2
−

1

α+ β
)‖(un, vn)‖

2
H + (

1

α + β
−

1

q
)S̄q(|λ|

2
2−q + |µ|

2
2−q )

2−q
2 ‖(un, vn)‖

q
H

+ (
1

α+ β
− 1)S(‖l1‖σ + ‖l2‖σ)‖(un, vn)‖H . (12)

By virtue of (H2) and (12), we conclude that {‖(un, vn)‖H} is bounded. Thus,
passing to a subsequence, if necessary, we have ‖(un, vn)‖H → t0 ≥ 0.

If t0 = 0, then the proof is finished. In the following, we now show that
{(un, vn)} has a convergent subsequence in H for t0 > 0. Since {(un, vn)} is
bounded in H , the {un} and {vn} are bounded in H1(Ω) respectively. Then,
there exists {(u, v)} ∈ H such that

un ⇀ u, vn ⇀ v weakly in H1(Ω).
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Let

Pn := 〈J ′
λ,µ(un, vn), (un − u, vn − v)〉

=

∫

Ω

(∇un∇(un − u) + un(un − u))dx

+

∫

Ω

(∇vn∇(vn − v) + vn(vn − v))dx

−
α

α + β

∫

Ω

f |un|
α−2un|vn|

β(un − u)dx

−
β

α + β

∫

Ω

f |un|
α|vn|

β−2vn(vn − v)dx

−

∫

Ω

l1(x)(un − u)dx−

∫

Ω

l2(x)(vn − v)dx

− λ

∫

∂Ω

g|un|
α−2un(un − u)ds− µ

∫

∂Ω

h|vn|
q−2vn(vn − v)ds. (13)

Then the fact J ′
λ,µ(un, vn) → 0 in H∗ implies Pn → 0 as n → ∞.

Since that un ⇀ u, vn ⇀ v in H1(Ω), we see that

Qn :=

∫

Ω

(∇u∇(un − u) + u(un − u))dx

+

∫

Ω

(∇v∇(vn − v) + v(vn − v))dx → 0, n → ∞.

From (H1) and Dominated Convergence Theory and the Sobolev compact
embedding theory, we can conclude

∫

Ω

f |un|
α−2un|vn|

β(un − u)dx → 0, as n → ∞, (14)
∫

Ω

f |un|
α|vn|

β−2vn(vn − v)dx → 0, as n → ∞. (15)

By the Sobolev trace embedding theory in the bounded domain Ω, {un} has
a subsequence, still denoted by {un}, which converges u in Lq(∂Ω). Thus we
have

∫

∂Ω

|g||un − u|qds → 0, as n → ∞.

Then it follows from Hölder inequality that as n → ∞,

∫

∂Ω

|g||un|
q−1|un − u|ds ≤ (

∫

∂Ω

|g||un − u|qds)
1
q (

∫

∂Ω

|g||un|
qds)

q−1
q

→ 0, as n → ∞. (16)



788 Xiaodong Zhao and Lin Chen

Similarly, we have
∫

∂Ω

|h||vn|
q−1|vn − v|ds → 0, as n → ∞, (17)

∫

Ω

|l1(x)||un − u|dx → 0, as n → ∞, (18)
∫

Ω

|l2(x)||vn − v|dx → 0, as n → ∞. (19)

Then it follows from (13) and (14)-(19) that as n → ∞,

Tn :=

∫

Ω

(∇un∇(un − u) + un(un − u))dx

+

∫

Ω

(∇vn∇(vn − v) + vn(vn − v))dx → 0.

Thus Tn −Qn → 0. That is to say

Tn −Qn = ‖(un − u, vn − v)‖2H → 0, as n → ∞. (20)

Thus Jλ,µ(u, v) satisfies (PS)c condition on H . This completes the proof of
Lemma 2.3.
Proof of Theorem 1.1. By Lemma 2.2 and Lemma 2.3, Jλ,µ(u, v) satisfies all
assumptions in Lemma 2.1. Then there exists (u1, v1) ∈ H such that (u1, v1)
is a solution of problem (1) by Lemma 2.1. Furthermore, Jλ,µ(u, v) ≥ α0 > 0.

We now seek a solution (u2, v2) of problem (1). Choose (ϕ1, ϕ2) ∈ C∞
0 (Ω)×

C∞
0 (Ω) such that

∫

Ω
l1(x)ϕ1dx+

∫

Ω
l2(x)ϕ2dx > 0 and then

Jλ,µ(tϕ1, tϕ2) =
1

2
t2‖(ϕ1, ϕ2)‖

2
H −

1

α + β
tα+β

∫

Ω

f |ϕ1|
α|ϕ2|

βdx

− t(

∫

Ω

l1(x)ϕ1dx+

∫

Ω

l2(x)ϕ2dx)

−
1

q
tq(λ

∫

∂Ω

g|ϕ1|
qds+ µ

∫

∂Ω

h|ϕ2|
qds)

< 0 (21)

for small t > 0 and thus for any open ball Bτ ⊂ H such that

−∞ < cτ = inf
Bτ

Jλ,µ(u, v) < 0. (22)

Thus, exists ρ > 0, such that

cρ = inf
(u,v)∈Bρ

Jλ,µ(u, v) < 0 and inf
(u,v)∈∂Bρ

Jλ,µ(u, v) > 0. (23)
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Letting εn ↓ 0 such that

0 < εn < inf
(u,v)∈∂Bρ

Jλ,µ(u, v)− inf
(u,v)∈Bρ

Jλ,µ(u, v). (24)

Then, by Ekeland’s variational principle in [11], there exists {(un, vn)} ⊂ Bρ

such that

cρ ≤ Jλ,µ(un, vn) < cρ + εn (25)

and

Jλ,µ(un, vn) < Jλ,µ(u, v) + εn‖(un − u, vn − v)‖H , (26)

for all (u, v) ∈ Bρ, u 6= un, v 6= vn.

Then it follows from (24)-(26) that

Jλ,µ(un, vn) < cρ + εn ≤ inf
(u,v)∈Bρ

Jλ,µ(u, v) + εn < inf
(u,v)∈∂Bρ

Jλ,µ(u, v), (27)

so that (un, vn) ∈ Bρ. We now consider the functional F : Bρ → R given by

F (u, v) = Jλ,µ(u, v) + εn‖(u− un, v − vn)‖H , (u, v) ∈ Bρ. (28)

Then (26) shows that F (un, vn) < F (u, v), (u, v) ∈ Bρ, u 6= un, v 6= vn and
thus (un, vn) is a strict local minimum of F . Moreover,

t−1(F (un + tϕ1, vn + tϕ2)− F (un, vn)) ≥ 0, (29)

for small t > 0 and (ϕ1, ϕ2) ∈ B1. Hence,

t−1(Jλ,µ(un + tϕ1, vn + tϕ2)− Jλ,µ(un, vn)) + εn‖(ϕ1, ϕ2)‖H ≥ 0. (30)

Let t → 0+, then

〈J ′
λ,µ(un, vn), (ϕ1, ϕ2)〉+ εn‖(ϕ1, ϕ2)‖H ≥ 0, ∀(ϕ1, ϕ2) ∈ B1. (31)

Replacing (ϕ1, ϕ2) in (31) by (−ϕ1,−ϕ2), we get

−〈J ′
λ,µ(un, vn), (ϕ1, ϕ2)〉+ εn‖(ϕ1, ϕ2)‖H ≥ 0, ∀(ϕ1, ϕ2) ∈ B1. (32)

So that ‖J ′
λ,µ(un, vn)‖ ≤ εn.

Therefore, there is a sequence {(un, vn)} ⊂ Bρ such that Jλ,µ(un, vn) → cρ < 0,
and
J ′
λ,µ(un, vn) → 0 in H∗ as n → ∞. By Lemma 2.3, {(un, vn)} has a convergent

subsequence in H , still denoted by {(un, vn)}, such that (un, vn) → (u2, v2) in
H . Thus (u2, v2) is a solution of (1) with Jλ,µ(u2, v2) < 0. Then the proof of
Theorem 1.1 is complete. 2
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