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Abstract

This paper is concerned with the existence of positive solutions to the

p-Laplacian dynamic equation
(

φp(u
△∇(t))

)∇
+ h(t)f(t, u(t), u△(t)) =

0, t ∈ [0, T ]T, subject to boundary conditions u(0)−B0(
∑m−2

i=1 αiu
△(ξi)) =

0, u△(T ) = 0, u△∇(0) = 0, where φp(u) = |u|p−2u with p > 1. By using
a generalization of Leggett-Williams fixed-point theorem due to Avery
and Peterson, we prove the m-point boundary value problem has at
least triple or arbitrary positive solutions. Our results are new for the
special cases of difference equations and differential equations as well as
in the general time scale setting. An example illustrates the application
of the results obtained.
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1 Introduction

Recently, some authors have obtained many results on the existence of
positive solutions to boundary value problems on time scales, for details, see
[4, 5, 6, 10, 11, 12, 13, 15] and the references therein. However, there is very
little reported work considered the existence of positive solutions to boundary
value problems with nonlinear terms involving with the derivative explicitly,
see [9, 14].
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In [9], Wei Han studied the following m-point p-Laplacian eigenvalue prob-
lems

{

(φp

(

u△∇(t))
)∇

+ λf(t, u(t), u△(t)) = 0, t ∈ (0, T )T, λ > 0

αu(0)− βu△(0) = 0, u(T ) =
∑m−2

i=1 αiu(ξi), u
△∇(0) = 0

,

the author showed the existence and uniqueness of a nontrivial solution by way
of the Leray-Schauder nonlinear alternative.

In [14], You-Hui Su concerned the following p- Laplacian dynamic equation

{

(φp

(

u△(t))
)∇

+ h(t)f(t, u(t), u△(t)) = 0, t ∈ [0, T ]T
u(0)−B0(

∑m−2
i=1 αiu

△(ξi)) = 0, u△(T ) = 0
.

The author obtained that the boundary value problem has at least triple or
arbitrary positive solutions by using a generalization of Leggett-Williams fixed-
point theorem due to Avery and Peterson.

Motivated by the above mentioned works, in this paper, we consider the
boundary value problem















(φp

(

u△∇(t))
)∇

+ h(t)f(t, u(t), u△(t)) = 0, t ∈ [0, T ]T
u(0)− B0(

∑m−2
i=1 αiu

△(ξi)) = 0
u△(T ) = 0
u△∇(0) = 0

, (1.1)

where 0, T are points in T. By an interval (0, T )T, we always mean (0, T )
⋂

T.
Other type of interval are defined similarly. ξi ∈ [0, T ]T such that 0 ≤ ξ1 <
ξ2 < · · · < ξm−2 < ρ(T ), αi ∈ [0,+∞)(i = 1, 2, . . . , m− 2),

∑m−2
i=1 αi 6= 1, and

B0 satisfies
Bx ≤ B0(x) ≤ Ax, x ∈ R

+, (1.2)

where A and B are positive real numbers. We denote the p-Laplacian operator
by φp(u), i.e., φp(u) = |u|p−2u, p > 1, (φp)

−1 = φq,
1
p
+ 1

q
= 1. By using

a generalization of Leggett-Williams fixed-point theorem due to Avery and
Peterson, we prove that the boundary value problem (1.1) has at least triple
or arbitrary positive solutions.

We note that by a solution u of problem (1.1) we mean that u : T →
R, which is a delta differential, u△ and (φp(u

△∇))∇ are both continuous on
T
k
⋂

Tk, and u satisfies problems (1.1). The interrelated definitions on time
scales can be found in [3].

Throughout this paper, it is assumed that
(H1) η ∈ [0, T

2
]T and T ≥ 1;

(H2)f : [0, T ]T×R
+×R → R

+ is continuous, and does not vanish identically
on any closed subinterval of [0, T ]T, where R

+ denotes the nonnegative real
numbers;
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(H3)h : T → R
+ is left dense continuous, and does not vanish identically

on any closed subinterval of [0, T ]T holds.

2 Preliminary Notes

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex set
P ⊂ E is said to be a cone provided that the following conditions are satisfied:

(i) if x ∈ P and λ ≥ 0, then λx ∈ P ;
(ii) if x ∈ P and −x ∈ P , then x = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if
y − x ∈ P.

Let γ and θ be nonnegative continuous convex functionals on P , α be a
nonnegative continuous concave functional on P , and ψ be a nonnegative con-
tinuous functional on P. Then, for positive real numbers a, b, c and d, we define
the following sets:

P (γ, d) = {x ∈ P : γ(x) < d}, P (γ, α, b, d) = {x ∈ P : b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P : b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

and a closed set

R(γ, ψ, a, d) = {x ∈ P : a ≤ ψ(x), γ(x) ≤ d}.

Now, we give a generalization of Leggett-Williams fixed-point theorem due
to Avery and Peterson .
Lemma 2.1([2]). Let P be a cone in a real Banach space E and γ, θ, ψ, α be
defined as above. Moreover ψ satisfies ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1 such
that, for some positive numbers h and d, α(x) ≤ ψ(x) and ‖x‖ ≤ hγ(x) for
all x ∈ P (γ, d). Suppose that Q : P (γ, d) → P (γ, d) is completely continuous
and that there exist positive real numbers a, b, c with a < b such that:

(i) {x ∈ P (γ, θ, α, b, c, d) : α(x) > b} 6= ∅ and α(Q(x)) > b for x ∈
P (γ, θ, α, b, c, d);

(ii) α(Qx) > b for x ∈ P (γ, α, b, d) with θ(Qx) > c;
(iii) 0 /∈ R(γ, ψ, a, d) and ψ(Qx) < a for all x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then Q has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that
γ(xi) ≤ d for i = 1, 2, 3, b < α(x1), a < ψ(x2) and α(x2) < b with ψ(x3) < a.

3 Main Results

In this section, by using a generalization of Leggett-Williams fixed-point
theorem due to Avery and Peterson [2], we will discuss the existence of positive
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solutions to problem (1.1) under some conditions.
Lemma 3.1. The problem (1.1) have the unique solution

u(t) = −

∫ t

0

(t− s)φq

(

I(s)
)

∇s+ t

∫ T

0

φq

(

I(s)
)

∇s

+B0

(m−2
∑

i=1

αi

(

∫ T

0

φq

(

I(s)
)

∇s−

∫ ξi

0

φq

(

I(s)
)

∇s
)

)

,

where

I(s) =

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ.

Proof . From (1.1) we know the form of the solution is

u(t) = −

∫ t

0

(t− s)φq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ − E)∇s+ Ft+G. (3.1)

Since u△∇(0) = 0, one can get E = 0.
Now, we solve for F,G. By (3.1) we have

u△(t) = −

∫ t

0

φq(I(s))∇s+ F. (3.2)

By u△(T ) = 0, we can get

F =

∫ T

0

φq(I(s))∇s,

and u(0) = G = B0(
∑m−2

i=1 αiu
△(ξi)) then

G = B0

(m−2
∑

i=1

αi

(

∫ T

0

φq(I(s))∇s−

∫ ξi

0

φq(I(s))∇s
)

)

.

Substituting F,G in (3.1), one has

u(t) = −

∫ t

0

(t− s)φq

(

I(s)
)

∇s+ t

∫ T

0

φq

(

I(s)
)

∇s

+B0

(m−2
∑

i=1

αi

(

∫ T

0

φq

(

I(s)
)

∇s−

∫ ξi

0

φq

(

I(s)
)

∇s
)

)

.

Now suppose that u(t) is the solution of (1.1). We will show that

u(t) ≥ 0, u△(t) ≥ 0, u△∇(t) ≤ 0. (3.3)
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From (3.2), we can get

u△∇(t) = −φq(I(s)) ≤ 0, t ∈ [0, T ]T.

So we obtain that u△(t) ≥ u△(T ) = 0 for t ∈ [0,T]T. Note that

u(t) ≥ u(0) = B0(
m−2
∑

i=1

αiu
△(ξi)) ≥ B(

m−2
∑

i=1

αiu
△(ξi)) ≥ 0, t ∈ [0, σ(T )]T.

Then (3.3) holds.
Let the Banach space E be C1

ld

(

[0, σ(T )]T → R
)

with the norm

‖u‖ = max{supt∈[0,σ(T )]T |u(t)|, supt∈[0,T ]T|u
△(t)|}

and define the cone P ⊂ E by
P = {u ∈ E : u(t) ≥ 0for t ∈ [0, σ(T )]T and u

△(t) ≥ 0, u△∇(t) ≤ 0 for t ∈
[0, T ]T, u

△(T ) = 0, u△∇(0) = 0}.
To obtain our main results, we make use of the following lemmas.

Lemma 3.2 [14]. If u ∈ P , then
(i) u(t) ≥ t

σ(T )
u(σ(T )) for t ∈ [0, σ(T )]T;

(ii) su(t) ≤ tu(s) for s, t ∈ [0, σ(T )]T and s ≤ t.
Lemma 3.3 [14]. For any u ∈ P , there exists a real number M > 0 such that

supt∈[0,σ(T )]Tu(t) ≤ Msupt∈[0,T ]Tu
△(t), where M = max{1, σ(T )

T
(B

∑m−2
i=1 αi +

T )}.
Now, we define the operator Q : P → E by

(Qu)(t) = −

∫ t

0

(t− s)φq

(

I(s)
)

∇s+ t

∫ T

0

φq

(

I(s)
)

∇s

+B0

(m−2
∑

i=1

αi

(

∫ T

0

φq

(

I(s)
)

∇s−

∫ ξi

0

φq

(

I(s)
)

∇s
)

)

.

Lemma 3.4. Q : P → P is completely continuous.
Proof . First, it is obvious that Q : P → P .

Second, we show that Q maps a bounded set into a bounded set. Assume
that c > 0 is a constant and u ∈ P c = {u ∈ P : ‖u‖ = max{supt∈[0,σ(t)]T

|u(t)|,

supt∈[0,T ]T
|u△(t)|} ≤ c}.

Note that the continuity of f guarantees that there is a constant D > 0
such that f(t, u, u△) ≤ φp(D) for (t, u, u△) ∈ [0, T ]T × [0, c]× [0, c]. Hence, for
t ∈ [0, T ]T,

∣

∣

∣

∣

∫ T

0

φq(I(s))∇s

∣

∣

∣

∣

< +∞ (3.4)

and
∣

∣

∣

∣

−

∫ t

0

(t− s)φq(I(s))∇s+ t

∫ T

0

φq(I(s))∇s
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+B0

(m−2
∑

i=1

αi(

∫ T

0

φq(I(s))∇s−

∫ ξi

0

φq(I(s))∇s)

)
∣

∣

∣

∣

< +∞. (3.5)

Hence, Q maps a bounded set into a bounded set.
Third, for t1, t2 ∈ [0, T ]T, and we suppose t1 ≤ t2, we have

∣

∣(Qu)(t1)− (Qu)(t2)
∣

∣

=
∣

∣−

∫ t1

0

(t1 − s)φq(I(s))∇s+ t1

∫ T

0

φq(I(s))∇s+

∫ t2

0

(t2 − s)φq(I(s))∇s

−t2

∫ T

0

φq(I(s))∇s
∣

∣

=
∣

∣

∫ t1

0

(t2 − t1)φq(I(s))∇s+

∫ t2

t1

(t2 − s)φq(I(s))∇s+ (t1 − t2)

∫ T

0

φq(I(s))∇s
∣

∣

≤ (t2 − t1)
∣

∣

∫ T

0

φq(I(s))∇s
∣

∣+ (t2 − t1)
∣

∣(t2 − t1)φq(

∫ T

0

h(τ)f(τ, u(τ), u△(τ))∇τ)
∣

∣

+(t2 − t1)
∣

∣

∫ T

0

φq(I(s))∇s
∣

∣

= (t2 − t1)(
∣

∣2

∫ T

0

φq(I(s))∇s
∣

∣+
∣

∣(t2 − t1)φq(

∫ T

0

h(τ)f(τ, u(τ), u△(τ))∇τ
∣

∣)

→ 0 as (t1 → t2).

The Arzela-Ascoli theorem on time scales [7] tells us that QP c is relatively
compact.

We next claim that Q : P c → P is continuous. Assume that {un}
∞
n=1 ⊂

P c and limn→∞ ‖un − u0‖ → 0. This means that limn→∞ |un − u0| → 0
and limn→∞ |u△n − u△0 | → 0. Since {(Qun)(t)}

∞
n=1 is uniformly bounded and

equicontinuous on [0, T ]T, there exists a uniformly convergent subsequence
{(Qun)(t)}

∞
n=1. Let {(Qun(m))(t)}

∞
m=1 be a subsequence which converges to

v(t) uniformly on [0, T ]T. Observe that

(Qun)(t) = −

∫ t

0

(t− s)φq

(

I(s)
)

∇s+ t

∫ T

0

φq

(

I(s)
)

∇s

+B0

(m−2
∑

i=1

αi

(

∫ T

0

φq

(

I(s)
)

∇s−

∫ ξi

0

φq

(

I(s)
)

∇s
)

)

.

By using (3.4) and (3.5), inserting un(m) into the above and then letting m→
∞, we obtain

v(t) = −

∫ t

0

(t− s)φq

(

I(s)
)

∇s+ t

∫ T

0

φq

(

I(s)
)

∇s

+B0

(m−2
∑

i=1

αi

(

∫ T

0

φq

(

I(s)
)

∇s−

∫ ξi

0

φq

(

I(s)
)

∇s
)

)

,
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where we have used Lebesgues dominated convergence theorem on time scales
[1]. From the definition of Q, we know that v(t) = Qu0(t) on [0, T ]T. This
shows that each subsequence of {(Qun)(t)}

∞
n=1 uniformly converges to {(Qu0)(t)},

Therefore, the sequence {(Qun)(t)}
∞
n=1 uniformly converges to {(Qu0)(t)}.

This means that Q is continuous at u0 ∈ P c. So, Q is continuous on P c since
u0 is arbitrary. Thus, Q is completely continuous. The proof is complete.

Now, it is easy to obtain that all the fixed points of the completely contin-
uous operator Q are solutions of the boundary value problem (1.1). Define the
nonnegative continuous convex functionals γ, nonnegative continuous concave
functional α, θ, and nonnegative continuous functional ψ, respectively, on P
by

γ(u) = supt∈[0,T ]Tu
△(t) = u△(0),

α(u) = inft∈[η,T ]Tu(t) = u(η),

ψ(u) = θ(u) = supt∈[0,T ]Tu(t) = u(T).

By Lemma 3.3, one obtains

supt∈[0,σ(T )]Tu(t) ≤Msupt∈[0,T ]Tu
△(t) =Mγ(u) for all u ∈ P.

For notational convenience, we denote

L =

∫ T

0

φq(

∫ s

0

h(τ)∇τ)∇s,N =

∫ T

0

sφq(

∫ s

0

h(τ)∇τ)∇s,

M∗ =

∫ T

0

sφq(

∫ s

0

h(τ)∇τ)∇s + A
m−2
∑

i=1

αi

(
∫ T

0

φq(

∫ s

0

h(τ)∇τ)∇s−

∫ ξi

0

φq(

∫ s

0

h(τ)∇τ)∇s

)

.

In the following, we list and prove the results in this subsection.
Theorem 3.5. Suppose that there exist constants a, b, d such that 0 < a <
η
T
b < η

2T
d. f satisfies the following conditions:

(i) f(τ, u(τ), u△(τ)) ≤ φp(
d
L
) for (τ, u(τ), u△(τ)) ∈ [0, T ]T× [0,Md]× [0, d];

(ii) f(τ, u(τ), u△(τ)) > φp(
bT
ηN

) for (τ, u(τ), u△(τ)) ∈ [η, T ]T × [b,Md] ×

[0, d];
(iii) f(τ, u(τ), u△(τ)) < φp(

a
M∗ ) for (τ, u(τ), u△(τ)) ∈ [0, T ]T×[0, a]×[0, d].

Then problem (1.1) has at least three positive solutions u1, u2, u3 such that

‖ui‖ ≤ d for i = 1, 2, 3, b < u1(η), a < u2(η) and u2(η) < b with u3(η) < a.
(3.6)

Proof . By the definition of the completely continuous operator Q and its
properties, it suffices to show that all the conditions of Lemma 2.1 hold with
respect to Q.

First, we show that Q : P (γ, d) → P (γ, d).
For any u ∈ P (γ, d), we have γ(u) = supt∈[0,T ]Tu

△(t) ≤ d. By Lemma 3.3,
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one has supt∈[0,T ]Tu(t) ≤ Md. Assumption (i) implies that f(τ, u(τ), u△(τ)) ≤
φp(

d
L
), then

γ(Qu) = supt∈[0,T ]T(Qu)
△(t) = (Qu)△(0) =

∫ T

0
sφq(

∫ s

0
h(τ)f(τ, u(τ), u△(τ))∇τ)∇s

≤
∫ T

0
h(τ)φq(

∫ s

0
φp(

d
L
)∇τ)∇s = d

L

∫ T

0
φq(

∫ s

0
h(τ)∇τ)∇s = d.

Second, we verify that condition (i) of Lemma 2.1 holds. Let u(t) = − b
T 2 (t−

T )2 + T
η
b. It’s easy to see that

α(u) = mint∈[η,T ]Tu(t) = u(η) = − b
T 2 (η−T )

2+ T
η
b = b(− η2

T 2 −1+ η
T
+ η

T
+ T

η
)

≥ b(− η2

T 2 − 1 + η
T
+ 2) = b[1 + η

T
(1− η

T
)] ≥ b, θ(u) = T

η
b,

and

γ(u) = maxt∈[η,T ]Tu
△(t) = u△(0), we will prove γ(u) ≤ d from two cases.

Case (I) Fix t ∈ T
k. we consider the case where t is right-scattered.

u△(t) = u(σ(t))−u(t)
σ(t)−t

=
b

T2
(t2)−σ(t)2−2tT+2σ(t)T

σ(t)−t
, then u△(0) = b

T 2 (2T −σ(t)) ≤
d.
Case (II) Let now t be left-dense and right-dense. In this case

u△(t) = u′(t)) = − 2b
T 2 (t− T ), then u△(0) = u′(0) = 2b

T
≤ d.

Thus {u ∈ P (γ, θ, α, b, T
η
b, d) : α(u) > b} 6= ∅. For any {u ∈ P (γ, θ, α, b, T

η
b, d) :

α(u) > b}, Lemma 3.3 implies that b ≤ u ≤ Md and 0 ≤ u△ ≤ d for all
t ∈ [η, T ]T.

The properties of u implies u(t) ≥ t
T
u(T ) for t ∈ [0, T ]T and by assumption

(ii) and Lemma 3.2, we have

α(Qu) = inft∈[η,T ]T(Qu)(t) = (Qu)(η) ≥
η

T
(Qu)(T )

=
η

T

{

−

∫ T

0

(T − s)φq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ)∇s

+T

∫ T

0

φq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ)∇s

+B0

(m−2
∑

i=1

αi(

∫ T

0

φq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ)∇s

−

∫ ξi

0

φq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ)∇s)

)}

≥
η

T

{
∫ T

0

sφq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ)∇s

+B

(m−2
∑

i=1

αi(

∫ T

0

φq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ)∇s



Multiple positive solutions of boundary value problem on time scales 301

−

∫ ξi

0

φq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ)∇s)

)}

≥
η

T

{
∫ T

0

sφq(

∫ s

0

h(τ)φp(
bT

ηN
)∇τ)∇s+B

(

−
m−2
∑

i=1

αi

∫ ξi

0

φq(

∫ s

0

h(τ)φp(
bT

ηN
)∇τ)∇s

)

+B

(m−2
∑

i=1

αi

∫ T

0

φq(

∫ s

0

h(τ)φp(
bT

ηN
)(τ))∇τ)∇s

)}

>
b

N

{
∫ T

0

sφq(

∫ s

0

h(τ)∇τ)∇s +B

(m−2
∑

i=1

αi

∫ T

0

sφq(

∫ s

0

h(τ)∇τ)∇s

)

−B

(m−2
∑

i=1

αi

∫ ξi

0

sφq(

∫ s

0

h(τ)∇τ)∇s)

)}

= b.

Third, we prove that condition (ii) of Lemma 2.1 holds. For any u ∈
P (γ, α, b, d) with θ(Qu) > T

η
b, we can get α(Qu) ≥ η

T
θ(Qu) > b.

Finally, we check condition (iii) of Lemma 2.1. Clearly, ψ(0) = 0 < a, we
have 0 /∈ R(γ, ψ, a, d). If u ∈ R(γ, ψ, a, d) with ψ(u) = supt∈[0,T ]Tu(t) = u(T ) =
a this yields 0 ≤ u ≤ a for all t ∈ [0, T ]T. In addition, γ(u) = supt∈[0,T ]Tu

△(t) ≤
d. Hence, by assumption (iii), we have

ψ(Qu) = (Qu)(T ) =

∫ T

0

sφq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ)∇s

+B0

(m−2
∑

i=1

αi

(

∫ T

0

φq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ)∇s

−

∫ ξi

0

φq(

∫ s

0

h(τ)f(τ, u(τ), u△(τ))∇τ)∇s
)

)

≤

∫ T

0

sφq(

∫ s

0

h(τ)φp(
a

M∗
)∇τ)∇s−A

m−2
∑

i=1

αi

∫ ξi

0

φq(

∫ s

0

h(τ)φp(
a

M∗
)∇τ)∇s

+A
m−2
∑

i=1

αi

∫ T

0

φq(

∫ s

0

h(τ)φp(
a

M∗
)∇τ)∇s

=
a

M∗
{

∫ T

0

sφq(

∫ s

0

h(τ)∇τ)∇s + A

m−2
∑

i=1

αi

(
∫ T

0

φq(

∫ s

0

h(τ)∇τ)∇s

−

∫ ξi

0

φq(

∫ s

0

h(τ)∇τ)∇s

)

} = a.

Consequently, all the conditions of Lemma 2.1 are satisfied. The proof is
completed.
Theorem 3.6. Let i = 1, 2, · · · , n and suppose that there exist constants
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ai, bi, di such that

0 < a1 <
η

T
b1 <

η

2T
d1 < a2 <

η

T
b2 <

η

2T
d2 < · · · < an, n ∈ N.

In addition, f satisfy the following conditions:

(i)f(τ, u(τ), u△(τ)) ≤ φp(
di
L
) for (τ, u(τ), u△(τ)) ∈ [0, T ]T×[0,Mdi]×[0, di];

(ii)f(τ, u(τ), u△(τ)) > φp(
biT
ηN

) for (τ, u(τ), u△(τ)) ∈ [η, T ]T × [bi,Mdi] ×

[0, di];

(iii)f(τ, u(τ), u△(τ)) < φp(
ai
M∗ ) for (τ, u(τ), u

△(τ)) ∈ [0, T ]T×[0, ai]×[0, di].
Then problem (1.1) has at least 2n+ 1 positive solutions.
Proof . When i = 1, it is clear that Theorem 3.5 holds. Then we can obtain
at least three positive solutions u1, u2 and u3 satisfying (3.6). Hence, we finish
the proof by induction.

4 An example

In this section, we present a simple example to explain the main result.
Example 4.1. Let T = {2− (1

3
)N0}

⋃

{0, 1
4
. 1

6
, 1
2
, 1, 5

4
, 3
2
, 7
4
, 2}.

Consider the following boundary value problem with p = 6 and k ∈ N0.























(

φp(u
△∇(t))

)∇

+ (t + ρ(t))f(t, u(t), u△(t)) = 0, t ∈ [0, 2]T

u(0)− 1
1000

(u△(1
4
) + u△(1

2
)) = 0

u△(2) = 0
u△∇(0) = 0

, (4.1)

where

f(t, u(t), u△(t)) =







t+ 0.003 + |u△|, (t, u, u△) ∈ [0, 2]× [0, 4]× [0, 5];
t+ |u△|+ p(u), (t, u, u△) ∈ [0, 2]× [4, 4.1]× [0, 5];
t+ 2 + |u△|, (t, u, u△) ∈ [0, 2]× [4.1, 20]× [0, 5].

Here p(u) satisfies p(4) = 0.003, p(4.1) = 2, p(u) : R → R
+ is continuous

and p△(u) > 0.

It is obvious that A = B = 1
1000

and a1 = a2 = 1, Choosing η = 1 and
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r = 3
2
, a direct calculation shows that

L =

∫ 2

0

φq(

∫ s

0

(τ + ρ(τ))∇τ)∇s ≈ 2.039,

N =

∫ 2

0

sφq(

∫ s

0

(τ + ρ(τ))∇τ)∇s ≈ 3.772,

M∗ =

∫ 2

0

sφq(

∫ s

0

(τ + ρ(τ))∇τ)∇s + A
m−2
∑

i=1

αi(

∫ T

0

φq(

∫ s

0

(τ + ρ(τ))∇τ)∇s

−

∫ ξi

0

φq(

∫ s

0

(τ + ρ(τ))∇τ)∇s) ≈ 3.776.

If we take a = 2, b = 4.1, d = 5, then 0 < a < η
t
b < ηN

TL
d. Moreover,

f(t, u(t), u△(t)) = t+2+|u△| > 1.518 ≈ φp(
b

N
), (t, u, u△) ∈ [0, 2]×[4.1, 20]×[0, 5],

f(t, u(t), u△(t)) = t+0.003+|u△| < 0.042 ≈ φp(
a

M∗
), (t, u, u△) ∈ [0, 2]×[0, 4]×[0, 5],

max(t,u(t),u△(t))∈[0,2]×[0,20]×[0,5]f(t, u, u
△) = t + 2 + |u△| < 88.3 ≈ φp(

d

L
).

Therefore, all the conditions of Theorem 3.5 are satisfied. By Theorem
3.5, we see that the boundary value problem (4.1) has at least three positive
solutions u1, u2, u3 such that
‖ui‖ ≤ 5 for i = 1, 2, 3, 4.1 < u1(1), 2 < u2(1) and u2(1) < 4.1 with u3(1) < 2.
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