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ABSTRACT
Leukemia is the most prevalent form of malignant cancer among children zero to 14 years of age. Established risk

factors encompass a range of environmental exposures and patient attributes such as age, gender and race/ethnicity;

additionally, a correlation exists between lower socioeconomic status and an unfavorable prognosis. This research

investigated whether attributes of residential counties in the United States consistently distinguished between

pediatric leukemia patients and pediatric cancer patients without leukemia after accounting for various patient-level

factors. The units of analysis consisted of pediatric (age < 20 years) cancer diagnoses reported to the Surveillance,

Epidemiology and End Results’ “SEER-21” cancer registry from 2010 through 2017 (N=44,808). The outcome was

binary: cases were pediatric leukemia diagnoses (9.69%) and controls were the remaining non-leukemia pediatric

cancer diagnoses. County-level predictors included urban-rural status, inflation-adjusted median household income

and roximity to tribal lands. Patient-level factors included age, sex, ethnicity/race, the reporting source and the year of

diagnosis. Using multilevel logistic regression, nonmetro counties adjacent to metro counties had 30 percent greater

odds that a pediatric cancer was leukemia compared to counties of metro areas with over one million residents. The

crude association between lower county median household income and pediatric leukemia was confounded by this

nonmetro county adjacent to metro result. Males and all minorities also had higher odds that a given pediatric cancer

would be diagnosed as leukemia. Exploration of these patient factors alongside documented environmental risk

factors for pediatric leukemia should be conducted among residents of nonmetro counties neighboring metro

counties. This urban-rural discrepancy in the odds of leukemia among pediatric cancer diagnoses should improve the

identification of localized risks and prevention efforts in these communities.
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INTRODUCTION
Leukemia is the leading type of malignant pediatric cancer in the
zero-to-14-year age range; Acute Lymphocytic Leukemia (ALL)
accounted for an estimated 26 percent and Acute Myeloid
Leukemia (AML) accounted for an additional estimated 5
percent, of all new malignant pediatric cases in the U.S. in 2014
[1]. Additionally, a steady per year average increase of 0.7 percent
has been recorded for the number of new leukemia cases in the

U.S. in this age range since 1975 [2]. Although not as comparatively 
consequential in the 15-to-19-year age range, ALL and AML 
together accounted for an estimated 12 percent of new malignant 
cancers for this population of adolescents in the U.S. in 2014 [1].

Among the U.S. population from birth to under 20 years of age 
from 2006 through 2010, Hispanics had the highest age-adjusted 
leukemia incidence rate followed by non-Hispanic whites, non-
Hispanic Asian/Pacific Islanders and non-Hispanic blacks [1].
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independently associated with whether pediatric cancer cases
were diagnosed as leukemia after accounting for patient-level
characteristics. Second, this study aimed to identify which
urban-rural community categories in the U.S. might exhibit
reliably greater odds that pediatric cancer cases were diagnosed
as leukemia. The results of this study should advance our
strategic public health knowledge and efforts on this topic
toward identifying the types of communities where documented
environmental and community-level risk factors appear to be
contributing most consistently to pediatric leukemia incidence.
Closing this gap is a necessary step toward confirming known
and identifying yet unknown, risk factors and high-risk
populations for the implementation of corresponding
community-based prevention strategies.

MATERIALS AND METHODS
This study had a cross-sectional case-control study design; the
exposure/predictor data and case-control status were
contemporaneous for each cancer diagnosis, which collectively
made up the units of analysis for the study. The data were
secondary; they were entrusted to the authors for research
purposes free of charge by the National Cancer Institute’s
(NCI) Surveillance, Epidemiology and End Results (SEER)
cancer registry. The study sample was a subset of the SEER 21
dataset limited to patient diagnosis years from 2010 through
2017 and patient age at diagnosis was limited to a maximum age
of less than 20 years at the time of diagnosis. This resulted in a
finite population sample of 44,808 pediatric cancer diagnoses
observed over eight calendar years.

The SEER 21 dataset included cancer registries from 21
different reporting sources (see note*). The SEER 21 registry was
exhaustive of all cancer diagnoses within the geographic
coverage areas for each of the 21 reporting sources. The data
were therefore representative of the populations of the
combined mutually exclusive geographical areas that included
some states and large metropolitan areas within the U.S. As a
result, the sample for this study was not designed to represent
the total pediatric population of the U.S., but nonetheless, the
21 registries covered sufficiently diverse parts of the U.S. to
make the generalizability of the results of this study considerably
strong for the U.S. pediatric population.

The study outcome was a binary pediatric cancer diagnosis
variable. The variable was considered a case for a leukemia
diagnosis (ICD-O-3 histology codes 9800-9949) and a control for
any non-leukemia diagnosis. Eight variables were analyzed as
potential predictors of a pediatric leukemia diagnosis. Patient-
level demographic predictors included age in whole years, binary
sex and race/ethnicity in four categories: Hispanic of any race,
non-Hispanic black, non-Hispanic white and non-Hispanic of
other or unknown race. Geographic/ecological predictors
included eight ordinal inflation-adjusted (2018 U.S. Dollar)
median household income categories of the county of residence
(<$45k, $45k-<$50k, $50k-<$55k, $55k-<$60k, $60k-<$65k,
$65k-<$70k, $70k-<$75k, $75k+), five ordinal categories of the
rural/urban status of the county of residence based on the U.S.
Department of Agriculture’s (USDA) [17] Rural-Urban
Continuum Codes (RUCCs) (nonmetro county not adjacent to
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Even so, the mortality rate for pediatric non-Hispanic black 
leukemia patients was more similar to other groups due to a 
higher case-fatality rate [1]. Additionally, malignant pediatric 
cancers of all kinds have been shown to present significant and 
unforeseen financial and employment burdens on families and 
caregivers, especially for families in rural areas and these 
burdens require special systems of support [3].

Pediatric leukemia in the U.S has been linked to genetics, the 
physical environment and health behaviors in the current 
literature [4-6]. According to genetic research [7,8], around eight 
to ten percent or more of all children diagnosed with cancer had 
experienced a mutation in a predisposing gene that was 
inherited from the parents.

The observation of parental environmental exposures during 
prenatal and postnatal periods, as well as the child’s 
environmental exposures, has resulted in the identification of 
exposures to tobacco smoke, solvents, pesticides, other 
chemicals, ionizing radiation and even traffic-caused air 
pollution as contributors to the development of pediatric 
leukemia [2]. Public health efforts aimed at reducing these 
exposures should likewise reduce the overall rate of childhood 
leukemia [2]. In addition to the significance of the type of 
exposure, whether it be environmental or genetic/molecular, the 
timing from exposure to pathogenesis is not necessarily 
immediate [9]. Notably, the fundamental molecular damage 
triggers for pediatric leukemia inherited in utero appear to delay 
their activation until infancy or childhood [9].

Since data have shown an increased risk of pediatric leukemia 
among Hispanics compared to non-Hispanic blacks and whites, 
this possibly implicates higher rates of harmful environmental 
exposures among Hispanic children and their parents [10]. In 
the large and ethnically diverse population of California, 
disproportionately high pediatric leukemia incidence has been 
observed for Hispanics and this disparity has only been growing 
in recent years due to increases in Hispanic incidence rates [10].

While greater pediatric leukemia incidence rates have been 
observed among those of higher socioeconomic status [11], 
greater mortality rates have occurred in patients of lower 
socioeconomic status [12]. Inequitable access to healthcare 
services has had a noted impact on these disparities in pediatric 
leukemia outcomes [12]. Many lower socioeconomic status 
neighborhoods are simply not in close proximity to the 
necessary healthcare facilities [13]. Furthermore, treatments can 
be costly and are typically more accessible and affordable to 
those of higher socioeconomic status [14]. Similarly, while 
greater pediatric leukemia incidence rates have been observed in 
Hispanics and non-Hispanic whites, higher mortality rates have 
been observed for Hispanic and non-Hispanic black populations 
that tend to be more socially disadvantaged [1,15]. In short, 
vulnerable populations are disproportionally exposed to risk 
factors for cancer from early in life, so it is crucial that the 
disparities in exposures and their subsequent outcomes be 
addressed [16].

Given the current body of knowledge on this topic, there are 
two needs that the present study addressed. First, this study 
explored whether residential community-level factors were
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Multilevel logistic regression modelling (SAS 9.4; https://
www.sas.com) was used to observe the adjusted odds ratios for 
the eight predictor variables. All predictor variables were retained 
in the model (Table 2) due to the retention of each one resulting 
in an improved model fit (i.e., lower Akaike Information 
Criterion). There were 22 regression model parameters across 
eight separate predictors. Using the standard statistical power of 
0.8 and the Type 1 error probability (α) of 0.05, the model 
required a minimum sample size of 2,170 to detect a multiple 
correlation coefficient of 0.1 [19,20]. Given that all eight 
predictors were tested equally for their associations with the 
outcome in the multilevel model, the Bonferroni adjustment to 
the Type 1 error probability was made to account for eight null 
hypotheses, one for each predictor (α j=0.05/8=0.00625), which 
preserved the model Type 1 error probability of 0.05 [21].

The greatest percentage of missing values among the selected 
variables in the final analytic sample was for the urban/rural 
status variable (0.21% missing). Given the negligible missing 
percentages for urban/rural status and the other variables, 
patients with missing values were excluded from the analysis. 
Furthermore, given the external validity and robust data 
collection from the many comprehensive cancer registries across 
several urban area and statewide jurisdictions, case-control 
matching and sensitivity analyses were not used in the collection 
and analysis of the data.

RESULTS
The November 2019 version of SEER 21 includes 9,821,960 
records across 18 years (2000-2017). According to the National 
Cancer Institute [22], approximately one percent of all cancer 
diagnoses occur in the under 20 years of age category. 
Restricting the data to an age of less than 20 years at the time of 
diagnosis, the data were reduced to 97,998 records, which is one 
percent (0.998%) of the records in the full dataset. There were 
significant changes to leukemia diagnostic coding for cases 
diagnosed from January 1, 2010 forward [23], so the dataset was 
restricted to cases diagnosed from 2010 through 2017. 
This decision reduced the analytic sample to a final count of 
44,808 pediatric cancer cases. Of these pediatric cancer 
diagnoses, almost one in ten (4,342 cases, 9.69%) had a 
leukemia code. This large finite population sample was more 
than minimally powered for the multilevel logistic modelling 
discussed in the Methods. Additionally, since non-
leukemia controls far outnumbered leukemia cases, which 
were much closer to the required minimum sample size, large 
sample p-value scaling was not used. Furthermore, the use of 
the Bonferroni correction largely removes the need for large 
sample scaling [21].

Predictors Leukemia Cases Non-Leukemia Controls P-value

n=4,342 (9.69%) n=40,466 (90.31%)

χ2 test and Cochran-Armitage trend Z-test: Count (column %)

Vickers BN, et al.

metro county, nonmetro county adjacent to metro county, 
county of metro area: population <250k, county of metro area: 
population 250k-1 million, county of metro area: >1 million) 
and binary Purchased/Referred Care Delivery area (PRCDA)
(“1” for any county containing all or part of a tribal land/
reservation or any county sharing a common boundary with a 
tribal land/reservation, “0” for all other counties). A nonmetro 
county is considered “adjacent” if it shares a boundary with a 
metro area county (or if a nonmetro noncore county shares a 
boundary with a micropolitan area county) and two percent or 
greater of the workforce commutes to the core of the adjacent 
metro area (or for a nonmetro noncore county, to the adjacent 
micropolitan area) [17]. Two other predictors were the calendar 
year of diagnosis (range: 2010-2017) and the binary reporting 
source (“1” for hospital inpatient/outpatient or physician’s 
office, “0” for other source, like a cancer care center).

Concerning any potential data bias, although the SEER-21 
cancer registry dataset is large and has very strong external 
validity for the U.S. population, it does not collect data on all 
geographic areas of the U.S., so the results may be biased toward 
the geographies represented. Nonetheless, the percentages for 
the urban/rural-metro/nonmetro classifications in previous 
SEER data have matched acceptably well to these respective 
percentages for the total U.S. population [18]. The study design 
was cross-sectional, so no observed associations were considered 
to be causal. Even so, this study was conducted for the purpose 
of exploring possible causal hypotheses, so comments on how 
the results of this study corroborate prior etiological research, as 
well as discussions concerning possible etiologies suggested by 
these results, are included in the Discussion section. Last, the 
use of non-leukemia pediatric cancer controls means that this 
study examined differences among different types of pediatric 
cancers. Therefore, this study does not contribute to the 
comparison of pediatric leukemia cases to the larger pediatric 
population that was cancer-free. Nonetheless, differences 
observed between pediatric leukemia and non-leukemia cancer 
cases may have important implications for possible differential 
etiologies between these groups.

Each of the eight predictors was described according to the 
appropriate measure of central tendency and distribution for 
pediatric leukemia cases as a group and for the non-leukemia 
pediatric cancer controls as a group and the appropriate 
statistical test of bivariate associations were performed using 
SAS Version 9.4 (https://www.sas.com). These included the chi-
square test for nominal predictors and the Cochran-Armitage 
test for the single ordinal predictor: inflation-adjusted median 
household income of the county of residence (Table 1).
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Age category (None missing) (χ2=79.7313)

<1 year 311 (7.16%) 2,484 (6.14%) <0.001

1 – 4 years 974 (22.43%) 9,375 (23.17%)

5 – 9 years 821 (18.91%) 6,901 (17.05%)

10 – 14 years 1,018 (23.45%) 8,026 (19.83%)

15 – 19 years 1,218 (28.05%) 13,680 (33.81%)

Sex (None missing) (χ2=75.54)

Male 2,567 (59.12%) 21,120 (52.19%)  <0.001

Female 1,775 (40.88%) 19,346 (47.81%)

Ethnicity/Race (None missing) (χ2=67.36)

Hispanic (Any race) 1,256 (28.93%) 11,207 (27.69%)  <0.001

Non-Hispanic (NH) Black 567 (13.06%) 4,189 (10.35%)

Non-Hispanic (NH) White 2,024 (46.61%) 21,189 (52.36%)

NH (Other/unknown race) 495 (11.40%) 3,881 (9.59%)

Reporting Source (None missing) (χ2=23.52)

Hospital or Clinic 4,196 (96.64%) 38,431 (94.97%)  <0.001

Other (e.g., cancer center) 146 (3.36%) 2,035 (5.03%)

Year of Diagnosis (None missing) (χ2=16.36)

2010 539 (12.41%) 4,951 (12.23%) 0.022

2011 504 (11.61%) 5,079 (12.55%)

2012 520 (11.98%) 5,054 (12.49%)

2013 568 (13.08%) 4,972 (12.29%)

2014 565 (13.01%) 5,109 (12.63%)

2015 519 (11.95%) 5,308 (13.12%)

2016 544 (12.53%) 5,114 (12.64%)

2017 583 (13.43%) 4,879 (12.06%)

Urban-Rural County Status (Missing=0.21%) (χ =11.38)

Nonmetro not next to metro 144 (3.33%) 1,339 (3.32%) 0.023

Nonmetro next to metro 266 (6.15%) 2,025 (5.01%)

Metro: <250,000 291 (6.72%) 2,594 (6.42%)

Metro: 250,000-1 million 858 (19.82%) 8,067 (19.97%)

Vickers BN, et al.
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Metro: >1 million 2,769 (63.98%) 26,363 (65.27%)

County Contains or Next to Tribal Land (PRCDA) (Missing=0.02%) (χ2=4.00)

Yes 1,282 (29.54%) 12,549 (31.02%)  0.046

No 3,058 (70.46%) 27,912 (68.98%)

County Median Household Income (Inflation-adjusted) (Missing=0.02%) (Z=3.3896)

<$45,000 431 (9.93%) 3,678 (9.09%)  <0.001

$45,000-$49,999 304 (7.00%) 2,552 (6.31%)

$50,000-$54,999 436 (10.05%) 4,039 (9.98%)

$55,000-$59,999 535 (12.33%) 4,985 (12.32%)

$60,000-$64,999 812 (18.71%) 7,167 (17.71%)

$65,000-$69,999 376 (8.66%) 3,736 (9.23%)

$70,000-$74,999 291 (6.71%) 2,555 (6.31%)

≥ $75,000 1,155 (26.61%) 11,749 (29.04%)

Note: Significant p-values using Bonferroni adjustment (αj=0.05/8=0.00625) appear in italics.

Table 1 shows the descriptive statistics for the leukemia cases 
and non-leukemia controls and the results of statistical tests of 
bivariate associations of cases and controls with the predictors 
are shown. Using the Bonferroni adjustment, five of the eight 
predictors had significant unadjusted associations with pediatric 
leukemia diagnoses. Compared to controls, pediatric leukemia

 diagnoses occurred more among infants and the five-to-fourteen-
year age range, were reported more from hospitals and clinics 
and were more common among males and racial/ethnic 
minorities. Among ecological factors, pediatric leukemia made 
up greater proportions of pediatric cancer cases in counties with 
lower median household incomes.

Predictors Model Estimate (S.E.) Adjusted Odds Ratio P-value

Intercept -2.694 (0.123) <0.001

Age Category (Reference: <1 year)

1 – 4 years -0.199 (0.069) 0.819 0.004

5 – 9 years -0.058 (0.071) 0.943 0.411

10 – 14 years 0.013 (0.069) 1.013 0.85

15 – 19 years -0.324 (0.068) 0.723 <0.001

Sex (None missing) (Reference: Female)

Male 0.278 (0.033) 1.32 <0.001

Ethnicity/Race (reference: Non-Hispanic White)

Hispanic (any race) 0.159 (0.039) 1.172 <0.001

Vickers BN, et al.
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Non-Hispanic (NH) Black 0.333 (0.052) 1.395 <0.001

NH (Other/unknown race) 0.313 (0.055) 1.368 <0.001

Reporting Source (Reference: Other (e.g., cancer center))

Hospital or Clinic 0.418 (0.088) 1.518 <0.001

Year of Diagnosis (Reference: 2010)

2011 -0.085 (0.066) 0.919 0.195

2012 -0.052 (0.065) 0.95 0.428

2013 0.044 (0.064) 1.044 0.496

2014 0.015 (0.064) 1.015 0.812

2015 -0.099 (0.065) 0.906 0.127

2016 -0.018 (0.064) 0.982 0.783

2017 0.098 (0.063) 1.103 0.122

Urban-Rural County Status (Reference: Metro: > 1 million)

Nonmetro not next to metro 0.027 (0.096) 1.027 0.779

Nonmetro next to metro 0.258 (0.075) 1.294 <0.001

Metro: <250,000 0.072 (0.070) 1.075 0.299

Metro: 250,000-1 million 0.035 (0.042) 1.036 0.408

County Contains or Next to Tribal Land (PRCDA) (Reference: No)

Yes -0.065 (0.036) 0.937 0.067

County Median Household Income (Inflation-adjusted)

Increasing Category Effect -0.013 (0.008) 0.987 0.114

Note: Significant p-values using Bonferroni adjustment (αj=0.05/8=0.00625) appear in italics.

pediatric leukemia diagnoses had odds of being reported by a 
hospital or clinic, as opposed to other reporting sources, that 
were 52 percent greater than those observed for the other 
pediatric cancer diagnoses. Last, while no ordinal effect was 
observed for county urban-rural classification, the odds of a 
pediatric leukemia diagnosis were almost 30 percent higher in 
nonmetro counties that were adjacent to metro counties 
compared to counties of metro areas with over 1 million 
residents. The odds of pediatric leukemia were undifferentiated 
from the odds of other pediatric cancers among all other urban-
rural classifications compared to metro areas with over 1 million 
residents.

A lower county median household income, which was associated 
with higher percentages of pediatric cancer diagnoses that were 
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In the multilevel logistic regression model (Table 2), the age 
category, sex, ethnicity/race, reporting source and urban-rural 
county status were significantly associated with pediatric 
leukemia diagnoses. The adjusted odds of a pediatric cancer 
diagnosis being leukemia were significantly smaller in the one-to-
four-year and 15-to-19-year age ranges than were observed among 
infants. The adjusted odds for the five-to-14-year age range were 
not significantly different from those of infants. Furthermore, 
the odds of the patient being male were 32 percent higher 
among leukemia diagnoses compared to other pediatric cancers. 
Likewise, the odds of any minority race/ethnicity were 
significantly higher among leukemia diagnoses, especially for a 
non-Hispanic ethnicity with black, other, or unknown race. The 
largest model effect was observed for the reporting source:
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hand, Blake et al. [18] found higher incidence rates among metro 
populations for liver, thyroid and breast cancers. While the 
present study did not examine incidence nor mortality rates, 
significantly greater odds that a pediatric cancer was diagnosed as 
leukemia were observed for nonmetro counties, but only 
among those that were adjacent to metro areas. The almost 30 
percent greater odds are noteworthy given that these are 
marginal model odds after accounting for significant patient-
level characteristics like age, sex, race/ethnicity and reporting 
source. Similarly, among nonmetro areas with urbanized (based 
on population density) populations of 2,500 or more, Blake et 
al. [18] observed higher cancer incidence rates for those counties 
that were adjacent to metro areas. Combining the Blake et al. 
study [18] with the present study, the adjacency of nonmetro 
communities to metro areas appears to pose contextual and/or 
environmental risks for cancer, including pediatric leukemia. 
Future research should explore the possible links between the 
established environmental risk factors for pediatric leukemia 
and these nonmetro communities adjacent to metro areas.

Surprisingly, the epidemiological literature on Socio Economic 
Status (SES) and pediatric leukemia is limited. One study that 
hypothesized that differentials in SES might account for 
differences in leukemia risk by pediatric age did not find 
support for that hypothesis [26]. Likewise, a study of the 
Canadian pediatric population counterintuitively found a 
slightly lower risk of pediatric leukemia by lower neighborhood 
per capita income [27]. Additionally, one case-control study on 
pediatric leukemia found no association with SES [28]. 
Alternatively, lower SES is a documented risk factor for poorer 
prognosis and survival among pediatric leukemia patients 
[13,29]. While not an assessment of risk, the present cross-
sectional study observed a significant unadjusted association 
between U.S. counties with lower median household incomes 
and pediatric leukemia odds compared to other pediatric 
cancers. Even so, the multilevel analysis showed that this result 
was confounded by the significantly greater odds of pediatric 
leukemia among nonmetro counties adjacent to metro areas, as 
these counties tend to have lower median household incomes. 
Therefore, this study’s results do not conflict with prior research 
that found no differential risk of pediatric leukemia incidence 
by SES, but this study’s results would also not conflict with a 
hypothesis of lower neighborhood SES-associated factors being 
confounded with the relevant environmental risk factors.

A study of pediatric leukemia incidence in the U.S. by race/
ethnicity from 1992 to 2013 observed the highest age-adjusted 
incidence rates for Hispanic whites and the lowest age-adjusted 
incidence rates were among non-Hispanic blacks [30]. Asians 
and whites (both non-Hispanic) had similar incidence rates 
located between the other two groups. The present study’s case-
control design paints a different picture from a different analytic 
perspective. While adjusting for the other individual and 
community-level factors, it is non-Hispanic black children who 
had the greatest odds that a given pediatric cancer would be 
diagnosed as leukemia, even though the age-adjusted incidence 
rate was lowest for this group [30]. Non-Hispanic children with 
other or unknown race likewise had relatively high pediatric 
leukemia diagnosis odds. Although the age-adjusted incidence 
rate for Hispanic children was the highest [30], their odds of a 
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leukemia in the crude bivariate analysis (Table 1), became a non-
significant predictor in the multilevel model due to confounding 
with urban-rural county status. This confounding was driven by 
nonmetro counties tending to have lower median household 
incomes. No meaningful or directional trend or period effects 
were observed over the timeframe of the data collection. To 
reiterate from the Methods, the retention of all eight predictors 
in the multilevel logistic regression improved model fit.

DISCUSSION
This study found that social determinants at both the patient 
level and the aggregated county level were independently 
associated with the likelihood that a pediatric cancer was 
diagnosed as leukemia. Due to leukemia being a cancer of the 
blood, it was not surprising that the odds were greater for 
pediatric leukemia diagnoses being reported by a regular 
hospital or clinic, where blood tests are readily available, than 
was observed for other pediatric cancers. Among patient-level 
factors, the adjusted odds that a pediatric cancer was diagnosed 
as leukemia were relatively higher for infants, five-to-14-year-olds, 
males and all minority race/ethnicity categories compared to 
non-Hispanic white patients. In county-level factors, nonmetro 
counties that were adjacent to metro counties were associated 
with significantly greater odds of a leukemia diagnosis when 
compared to other county types. The unadjusted association of 
lower county median household income with pediatric leukemia 
was confounded with this stronger effect observed for nonmetro 
counties adjacent to metro counties, as these counties tended to 
have lower median household incomes than metro counties. 
Furthermore, these generalizable results exhibited a robust 
pattern over the 2010 to 2017 pooled data timeframe, as the 
marginal odds of a leukemia diagnosis associated with the 
calendar year did not significantly deviate in any of the years 
from 2011 to 2017 from those in 2010, the baseline 
collection year.

An important contribution of this study was the examination of 
contextual community factors alongside patient-specific 
characteristics simultaneously in a multilevel-adjusted analysis. 
Additionally, this analysis examined the role of rural-urban 
communities in pediatric leukemia diagnosis odds based on the 
USDA’s [17] RUCCs classification available in the analytic 
SEER 21 dataset. Compiling all these factors as predictors 
within a single study intentionally followed the prescribed 
methodology of Meilleur et al. [24], making this study a 
prescribed methodological advancement in the area of urban-
rural cancer research.

Using the RUCCs classification system, Delavar et al. [25] found 
no significant differences in survival hazard ratios based on 
metro versus nonmetro nor urban versus rural areas of residence 
among pediatric cancer patients. However, that study did not 
examine the specific cancer type, which might have been 
consequential, as it was in the present study. For example, Blake 
et al. [18] found higher incidence and mortality rates among 
“rural” (i.e., nonmetro, based on RUCCs) populations for 
certain types of cancers such as “cervical cancer (measured 
among women only) as well as colorectal, kidney, lung and 
bronchus, melanoma and oropharyngeal cancers.” On the other
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pediatric cancers. Most notably, counties designated as nonmetro 
areas adjacent to metro areas were associated with the greatest 
adjusted odds that a pediatric cancer was diagnosed as leukemia. 
Future research should explore the extent to which the 
documented environmental exposure risk factors for pediatric 
leukemia align geographically with these high-risk areas.
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