More on the Product of the Gamma Function and the Riemann Zeta Function

Banyat Sroysang

Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121 Thailand banyat@mathstat.sci.tu.ac.th

Abstract

Recently, we generalized Sulaiman's inequalities involving the product of the gamma function and the Riemann zeta function. In this paper, we present a new inequality for the product of the gamma function and the Riemann zeta function.

Mathematics Subject Classification: 26D15

Keywords: Gamma function, zeta function, inequality

1 Introduction

The Riemann zeta function ξ is defined by

$$\xi(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{t^{s-1}}{e^t - 1} dt,$$

for all s > 1, where Γ is the gamma function.

We denote the product of the gamma function and the Riemann zeta function by h. Then $h(x) = \Gamma(x)\xi(x)$ for all x > 1.

In [2], Sulaiman showed that

$$h(1+x+y) \le h^{1/p}(1+p(x+1))h^{1/q}(1+q(y-1))$$

for all x > -1, y > 1, p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$.

In [1], we presented the generalization for above inequality as follows.

858 Banyat Sroysang

Theorem 1.1. [1] Let $x_1, x_2, ..., x_n > -1$, $y_1, y_2, ..., y_n > 1$, $p_1, p_2, ..., p_n > 1$ and $q_1, q_2, ..., q_n > 1$ be such that $\sum_{i=1}^{n} \left(\frac{1}{p_i} + \frac{1}{q_i}\right) = 1$. Then

$$h(1 + \sum_{i=1}^{n} (x_i + y_i)) \le \prod_{i=1}^{n} h^{1/p_i} (1 + p_i(x_i + 1)) h^{1/q_i} (1 + q_i(y_i - 1)).$$

Next, we denote the n-th derivative of h by h_n where n is a non-negative integer.

In [2], Sulaiman showed that

$$h_{m+n}^2\left(\frac{x+y}{2}\right) \le h_{2m}(x)h_{2n}(y)$$

and

$$h_{m+n+r}^3\left(\frac{x+y+z}{3}\right) \le h_{3m}(x)h_{3n}(y)h_{3r}(z)$$

for all x, y, z > 1 and non-negative even integers n, m, r.

In [1], we presented the generalization for above inequalities as follows.

Theorem 1.2. [1] Let $x_1, x_2, ..., x_n > 1$ and let $k_1, k_2, ..., k_n$ be non-negative even integers and let $k = \sum_{i=1}^{n} k_i$. Then

$$h_k^n \left(\sum_{i=1}^n \frac{x_i}{n} \right) \le \prod_{i=1}^n h_{nk_i}(x_i).$$

In this paper, we present a new inequality for the product of the gamma function and the Riemann zeta function.

2 Results

We note that

$$h^{(k)}(x) = \int_0^\infty \frac{(\log_e t)^k t^{x-1}}{e^t - 1} dt.$$

for all x > 1.

Theorem 2.1. Let $x_1, x_2, ..., x_n > 0$ and let $k_1, k_2, ..., k_n$ be non-negative even integers and let $k = \sum_{i=1}^{n} k_i$. Then

$$h_k^n \left(1 + \sum_{i=1}^n \frac{x_i}{n} \right) \le \prod_{i=1}^n h_{nk_i} (1 + x_i).$$
 (1)

Proof. By the assumption,

$$h_k \left(1 + \sum_{i=1}^n \frac{x_i}{n} \right) = h^{(k)} \left(1 + \sum_{i=1}^n \frac{x_i}{n} \right)$$

$$= \int_0^\infty \frac{(\log_e t)^k t^{\left(1 + \sum_{i=1}^n \frac{x_i}{n}\right) - 1}}{e^t - 1} dt$$

$$= \int_0^\infty \frac{(\log_e t)^k t^{\sum_{i=1}^n \frac{x_i}{n}}}{e^t - 1} dt$$

$$= \int_0^\infty \prod_{i=1}^n \frac{(\log_e t)^{k_i} t^{\frac{x_i}{n}}}{(e^t - 1)^{1/n}} dt$$

$$= \int_0^\infty \prod_{i=1}^n \left(\frac{(\log_e t)^{nk_i} t^{x_i}}{e^t - 1} \right)^{1/n} dt.$$

By the generalized Hölder inequality,

$$h_k \left(\sum_{i=1}^n \frac{x_i}{n} \right) \le \prod_{i=1}^n \left(\int_0^\infty \frac{(\log_e t)^{nk_i} t^{x_i}}{e^t - 1} dt \right)^{1/n}$$

$$= \prod_{i=1}^n \left(\int_0^\infty \frac{(\log_e t)^{nk_i} t^{1 + x_i - 1}}{e^t - 1} dt \right)^{1/n}$$

$$= \prod_{i=1}^n \left(h^{(nk_i)} (1 + x_i) \right)^{1/n}$$

$$= \prod_{i=1}^n \left(h_{nk_i} (1 + x_i) \right)^{1/n}$$

$$= \left(\prod_{i=1}^n h_{nk_i} (1 + x_i) \right)^{1/n}.$$

This implies the inequality (1).

Corollary 2.2. Let x > 0 and let $k_1, k_2, ..., k_n$ be non-negative even integers and let $k = \sum_{i=1}^{n} k_i$. Then

$$h_k^n(1+x) \le \prod_{i=1}^n h_{nk_i}(1+x).$$

Proof. This follows from Theorem 2.1 in case $x_1 = x_2 = ... = x_n$.

Corollary 2.3. Let x, y, z > 0 and let n, m, r be non-negative even integers. Then

$$h_{m+n}^2 \left(1 + \frac{x+y}{2}\right) \le h_{2m}(1+x)h_{2n}(1+y)$$

and

$$h_{m+n+r}^3 \left(1 + \frac{x+y+z}{3}\right) \le h_{3m}(1+x)h_{3n}(1+y)h_{3r}(1+z).$$

Proof. This follows from Theorem 2.1.

References

- [1] B. Sroysang, On the product of the gamma function and the Riemann zeta function, Math. Aeterna, 3 (2013), 13–16.
- [2] W. T. Sulaiman, Turan inequalities for the Riemann zeta functions, AIP Conf. Proc., **1389** (2011), 1793–1797.

Received: November, 2013