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Abstract
Recently, we generalized Sulaiman’s inequalities involving the prod-
uct of the gamma function and the Riemann zeta function. In this

paper, we present a new inequality for the product of the gamma func-
tion and the Riemann zeta function.
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1 Introduction

The Riemann zeta function £ is defined by

1 o] ts—l
$ls) = F(s)/o -1

for all s > 1, where I' is the gamma function.

We denote the product of the gamma function and the Riemann zeta func-
tion by h. Then h(x) = I'(z)¢(x) for all x > 1.

In [2], Sulaiman showed that

h(1+z+y) <hYP(1+pla+ 1)RY(1+q(y — 1))

forallx>—1,y>1,p>1and%+%:1.
In [1], we presented the generalization for above inequality as follows.
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Theorem 1.1. [1] Let x1, 29, ..., xn > —1, Y1,Y2y ey Yn > 1, p1, P2y ooy D > 1
and q1,qs, ...,q, > 1 be such that Z(p% + l) = 1. Then
i=1

qi

AL+ (i +y0) < TR (04 palars + )RV (14 iy — 1)),

i=1 =1

Next, we denote the n-th derivative of h by h, where n is a non-negative
integer.
In [2], Sulaiman showed that

x +
B (132) < hantens 0

and
T+y+
Hnse (2) < a0 2

for all z,y, 2z > 1 and non-negative even integers n, m,r.
In [1], we presented the generalization for above inequalities as follows.

Theorem 1.2. [1] Let x1,xo, ..., x, > 1 and let ky, ks, ..., k, be non-negative
even integers and let k=" k;. Then

In this paper, we present a new inequality for the product of the gamma
function and the Riemann zeta function.

2 Results

We note that

% ] t kt:c—l
h® (z) = / Mdt.
0

et —1

for all z > 1.
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Theorem 2.1. Let xq,x3,...,x, > 0 and let kq, ko, ..., k, be non-negative
even integers and let k =Y . k;. Then

B (1 n i %) < ﬁhnki(l + ). (1)

Proof. By the assumption,

h <1+Zﬂ> — p® <1+Zﬁ>
i—1 i—1
* (log, t)kt(1+2);;1 2i)-1
N /0 et —1
% (] kSl
0 et — 1

:/ H(Oget) t dt
o e

(log, t)™*:¢7
- [I(MEEE)

dt

T (log, t)"kitvi !
P (Z ;> <II(f e
n 00 nk;41+x;—1 1/n
_ H (/ (log, t)t t dt)
. 0 et —1

=TT Pk, (1 + )"

1=

[y

n

1/n
(H P (1 + xi)> :

1

This implies the inequality (1). O
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Corollary 2.2. Let x > 0 and let kq, ko, ..., k,, be non-negative even integers
and let k=" | k;. Then

hp (14 2) < T b (14 ).
i=1
Proof. This follows from Theorem 2.1 in case x1 = x5 = ... = x,,. ]

Corollary 2.3. Let x,y,z > 0 and let n,m,r be non-negative even integers.
Then

h2 n (1 + xT“’) < ho (1 + 2)han(1 +y)

and

-~ (1 + %) < By (14 2)hgn(1+ )b (1 + 2).

Proof. This follows from Theorem 2.1. O

References

[1] B. Sroysang, On the product of the gamma function and the Riemann
zeta function, Math. Aeterna, 3 (2013), 13-16.

[2] W. T. Sulaiman, Turan inequalites for the Riemann zeta functions, AIP
Conf. Proc., 1389 (2011), 1793-1797.

Received: November, 2013



