More on some inequalities for the digamma function

Banyat Sroysang

Department of Mathematics and Statistics,
Faculty of Science and Technology,
Thammasat University, Pathumthani 12121 Thailand
banyat@mathstat.sci.tu.ac.th

Abstract

In this paper, we generalize some inequalities for the digamma function.

Mathematics Subject Classification: 26D15

Keywords: Digamma function, inequality

1 Introduction

The digamma function Ψ is defined by

$$\Psi(x) = \frac{d}{dx} \ln \Gamma(x),$$

where Γ is the gamma function and x > 0.

Abramowitz and Stegun [1] proved that, for all x > 0,

$$\Psi(x) = -\gamma + \sum_{k=0}^{\infty} \left(\frac{1}{k+1} - \frac{1}{x+k} \right),$$

where γ is the Euler constant. Thus, for all x > 0,

$$\Psi^{(n)}(x) = (-1)^{n+1} n! \sum_{k=0}^{\infty} \frac{1}{(x+k)^{n+1}}.$$

where n is a positive integer.

In 2011, Sulaiman [3] presented three inequalities as follows.

124 Banyat Sroysang

$$\Psi(x+y) \ge \Psi(x) + \Psi(y) \tag{1}$$

where x > 0 and 0 < y < 1.

$$\Psi^{(n)}(x+y) \le \Psi^{(n)}(x) + \Psi^{(n)}(y) \tag{2}$$

where n is a positive odd integer and x, y > 0.

$$\Psi^{(n)}(x+y) \ge \Psi^{(n)}(x) + \Psi^{(n)}(y) \tag{3}$$

where n is a positive even integer and x, y > 0.

In 2013, Sroysang [2] generalized the inequalities (1), (2) and (3) as follows.

$$\Psi(x + \sum_{i=1}^{m} y_i) \ge \Psi(x) + \sum_{i=1}^{m} \Psi(y_i). \tag{4}$$

where x > 0 and $0 < y_i \le 1$ for all $i \in \mathbb{N}_m$.

$$\Psi^{(n)}\left(x + \sum_{i=1}^{m} y_i\right) \le \Psi^{(n)}(x) + \sum_{i=1}^{m} \Psi^{(n)}(y_i). \tag{5}$$

where n be a positive odd integer and x > 0, $y_i > 0$ for all $i \in \mathbb{N}_m$.

$$\Psi^{(n)}\left(x + \sum_{i=1}^{m} y_i\right) \ge \Psi^{(n)}(x) + \sum_{i=1}^{m} \Psi^{(n)}(y_i). \tag{6}$$

where n be a positive even integer and x > 0, $y_i > 0$ for all $i \in \mathbb{N}_m$.

In this paper, we present the generalizations for the inequalities (4), (5) and (6).

2 Results

Theorem 2.1. Assume that x > 0, $\beta_i > 0$ and $0 < y_i \le 1$ for all $i \in \mathbb{N}_m$. Then

$$\Psi(x + \sum_{i=1}^{m} \beta_i y_i) \ge \Psi(x) + \sum_{i=1}^{m} \beta_i \Psi(y_i). \tag{7}$$

Proof. Let
$$f(x) = \Psi(x + \sum_{i=1}^{m} \beta_i y_i) - \Psi(x) - \sum_{i=1}^{m} \beta_i \Psi(y_i)$$
. Then

$$f'(x) = \Psi'(x + \sum_{i=1}^{m} \beta_i y_i) - \Psi'(x)$$

$$= \sum_{k=0}^{\infty} \left(\frac{1}{(x + \sum_{i=1}^{m} \beta_i y_i + k)^2} - \frac{1}{(x + k)^2} \right) \le 0.$$

Thus, f is non-increasing. Moreover,

$$\lim_{x \to \infty} f(x) = \gamma \sum_{i=1}^{m} \beta_{i}$$

$$+ \lim_{x \to \infty} \sum_{k=0}^{\infty} \left(\sum_{i=1}^{m} \frac{-\beta_{i}}{k+1} - \frac{1}{x + \sum_{i=1}^{m} \beta_{i} y_{i} + k} + \frac{1}{x+k} + \sum_{i=1}^{m} \frac{\beta_{i}}{y_{i} + k} \right)$$

$$= \gamma \sum_{i=1}^{m} \beta_{i} + \sum_{k=0}^{\infty} \left(\sum_{i=1}^{m} \frac{-\beta_{i}}{k+1} + \sum_{i=1}^{m} \frac{\beta_{i}}{y_{i} + k} \right)$$

$$= \gamma \sum_{i=1}^{m} \beta_{i} + \sum_{k=0}^{\infty} \sum_{i=1}^{m} \frac{\beta_{i} (1 - y_{i})}{(k+1)(y_{i} + k)} \ge 0.$$

It follows that $f(x) \geq 0$ and then we obtain the inequality (7).

Theorem 2.2. Let n be a positive integer. Assume that x > 0, $\beta_i > 0$ and $y_i > 0$ for all $i \in \mathbb{N}_m$. It follows that

(i) if n is odd, then

$$\Psi^{(n)}\left(x + \sum_{i=1}^{m} \beta_i y_i\right) \le \Psi^{(n)}(x) + \sum_{i=1}^{m} \beta_i \Psi^{(n)}(y_i), \tag{8}$$

and (ii) if n is even, then

$$\Psi^{(n)}\left(x + \sum_{i=1}^{m} \beta_i y_i\right) \ge \Psi^{(n)}(x) + \sum_{i=1}^{m} \beta_i \Psi^{(n)}(y_i). \tag{9}$$

Proof. Let
$$f(x) = \Psi^{(n)}(x) + \sum_{i=1}^{m} \beta_i \Psi^{(n)}(y_i) - \Psi^{(n)}\left(x + \sum_{i=1}^{m} \beta_i y_i\right)$$
. Then

126 Banyat Sroysang

$$f'(x) = \Psi^{(n+1)}(x) - \Psi^{(n+1)}\left(x + \sum_{i=1}^{m} \beta_i y_i\right)$$
$$= (n+1)! \sum_{k=0}^{\infty} \left(-\frac{1}{(x+k)^{n+2}} + \frac{1}{(x+\sum_{i=1}^{m} \beta_i y_i + k)^{n+2}}\right).$$

If n is odd, then $f'(x) \leq 0$ and then f is non-increasing. If n is even, then $f'(x) \geq 0$ and then f is non-decreasing. Moreover,

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} n! \times$$

$$\sum_{k=0}^{\infty} \left(\frac{1}{(x+k)^{n+1}} + \sum_{i=1}^{m} \frac{\beta_i}{(y_i+k)^{n+1}} - \frac{1}{(x+\sum_{i=1}^{m} \beta_i y_i + k)^{n+1}} \right)$$

$$= n! \sum_{k=0}^{\infty} \sum_{i=1}^{m} \frac{\beta_i}{(y_i+k)^{n+1}}.$$

If n is odd, then $\lim_{x\to\infty} f(x) \geq 0$, so $f(x) \geq 0$ and then we obtain the inequality (8). If n is even, then $\lim_{x\to\infty} f(x) \leq 0$ and then $f(x) \leq 0$, so we obtain the inequality (9).

References

- [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables, New York, 1972, 258–259.
- [2] B. Sroysang, Three inequalities for the digamma function, Math. Aeterna, 2013, **3**(4), 253–256.
- [3] W. T. Sulaiman, Turan inequalities for the digamma and polygamma functions, South Asian J. Math., 2011, 1(2), 49–55.

Received: January, 2014