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Abstract

In 2012, Sulaiman proved an integral inequality concerning some

reverse of Minkowski’s inequality. In this paper, we present a general-

ization of the inequality.
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1 Introduction

The Minkowski’s inequality states that, for p ≥ 1, if

0 <

∫ b

a

f p(x)dx < ∞ and 0 <

∫ b

a

gp(x)dx < ∞

then

(
∫ b

a

(f(x) + g(x))p dx

)1/p

≤

(
∫ b

a

f p(x)dx

)1/p

+

(
∫ b

a

gp(x)dx

)1/p

.

In 2006, Bougoffa [1] presented an integral inequality concerning some re-
verse of Minkowski’s inequality as follows.

For any f, g > 0, if p ≥ 1 and

0 < m ≤
f(x)

g(x)
≤ M
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for all x ∈ [a, b], then

(
∫ b

a

f p(x)dx

)1/p

+

(
∫ b

a

gp(x)dx

)1/p

≤
M(m+ 1) +M + 1

(m+ 1)(M + 1)

(
∫ b

a

(f(x) + g(x))p dx

)1/p

.

In 2012, Sulaiman [2] presented an integral inequality similar to above
inequality as follows.

For any f, g > 0, if p ≥ 1 and

1 < m ≤
f(x)

g(x)
≤ M

for all x ∈ [a, b], then

M + 1

M − 1

(
∫ b

a

(f(x)− g(x))p dx

)1/p

≤

(
∫ b

a

f p(x)dx

)1/p

+

(
∫ b

a

gp(x)dx

)1/p

≤
m+ 1

m− 1

(
∫ b

a

(f(x)− g(x))p dx

)1/p

. (1)

In this paper, we present a generalization of Sulaiman’s inequality .

2 Main Results

Proposition 2.1. Assume that 0 < c < m ≤ M . Then

M + 1

M − c
≤

m+ 1

m− c
.

Proof. By the assumption, we have

(c+ 1)m ≤ (c+ 1)M .

Then

m− cM ≤ M − cm.

Then

(M + 1)(m− c) ≤ (m+ 1)(M − c).

Thus,

M + 1

M − c
≤

m+ 1

m− c
.
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This proof is completed.

Theorem 2.2. Assume that f, g > 0, p ≥ 1, and

0 < c < m ≤
f(x)

g(x)
≤ M

for all x ∈ [a, b]. Then

M + 1

M − c

(
∫ b

a

(f(x)− cg(x))p dx

)1/p

≤

(
∫ b

a

f p(x)dx

)1/p

+

(
∫ b

a

gp(x)dx

)1/p

≤
m+ 1

m− c

(
∫ b

a

(f(x)− cg(x))p dx

)1/p

.

(2)

Proof. By the assumption, we have

m− c ≤
f(x)

g(x)
− c ≤ M − c,

and then

m− c ≤
f(x)− cg(x)

g(x)
≤ M − c.

This implies that

f(x)− cg(x)

M − c
≤ g(x) ≤

f(x)− cg(x)

m− c
.

Hence,

1

M − c

(
∫ b

a

(f(x)− cg(x))p dx

)1/p

≤

(
∫ b

a

gp(x)dx

)1/p

≤
1

m− c

(
∫ b

a

(f(x)− cg(x))p dx

)1/p

. (3)

By the assumption, we have

−
1

m
≤ −

g(x)

f(x)
≤ −

1

M
.

Then

1

c
−

1

m
≤

1

c
−

g(x)

f(x)
≤

1

c
−

1

M
.
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Thus,

m− c

cm
≤

f(x)− cg(x)

cf(x)
≤

M − c

cM
.

This implies that

M

M − c
(f(x)− cg(x)) ≤ f(x) ≤

m

m− c
(f(x)− cg(x)).

Hence,

M

M − c

(
∫ b

a

(f(x)− cg(x))p dx

)1/p

≤

(
∫ b

a

f p(x)dx

)1/p

≤
m

m− c

(
∫ b

a

(f(x)− cg(x))p dx

)1/p

. (4)

By the inequalities (3) and (4), we obtain the inequality (2).

By Proposition 2.1, we can guarantee that the inequality (2) is possible.
Finally, we will obtain the inequality (1) if we replace c by 1 in the inequality
(2).

References

[1] L. Bougoffa, On Minkowski’s and Hardu integral inequalities, J. Inqual.
Pure Appl. Math., 2006, 7(2), article 60.

[2] W. T. Sulaiman, Reverses of Minkowski’s, Hölder’s, and Hardy’s integral
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