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Abstract

In this paper, we investigate the moderate deviations for one di-
mensional random walks in independent, identically distributed random
sceneries. Our approach is based on the Gätner-Ellis theorem. As an
application, we get the corresponding law of the iterated logarithm.
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1 Introduction

In 1979, Kesten and Spitzer ([12]) introduced a different model for random
walk in random environment, which they call random walk in random scenery.
In the field of stochastic processes in random environments, random walks
in random scenery represent a class of processes with fairly weak interaction.
Recently, they have received a lot of attention.

To define random walk in random scenery, suppose {Sn : n ≥ 0} is an
underlying random walk on Z started at the origin, and {ξ(i) : i ∈ Z} are
independent, identically distributed real-valued random variables, which are
independent of the random walk and which are called the scenery. Random
walk in random scenery is the process {Xn : n ≥ 0} given by

Xn :=
∑

1≤k≤n

ξ(Sk) =
∑
x∈Z

ξ(x)ln(x), for n ≥ 0,
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where ln(x) =
∑

1≤k≤n 1{Sk=x} are the local times of the random walk at the
site x.

In the early papers ([4], [12]), the authors established central limit theorems
for the random walk in random scenery. Large deviation problems for random
walks in random scenery have only recently attracted attention, see ([2], [3],
[9], [10], [11]), and also ([1], [6]) where Brownian motions are used in place of
random walks. Recently, the authors of [9] have investigated moderate devia-
tion principles for Xn in dimension d ≥ 2, providing a full analysis including
explicit rate functions. Crucial ingredients of their proofs are concentration
inequalities for self-intersection local times of random walks.

In this paper, we study the moderate deviations for Xn in dimension d = 1.
In the rest of this paper, {Sn : n ≥ 0} is a symmetric random walk on Z with
covariance σ2. We assume that the smallest group that supports {Sn : n ≥ 0}
is Z. Throughout, {ξ(i) : i ∈ Z} is an i.i.d. sequence of symmetric random
variable satisfying

Eξ(1)2 = 1 and Eeλ0ξ(1)2 <∞, for some λ0 > 0.

Our main approach is based on high moment estimations and Gätner-Ellis
theorem. Some ideas of the proof come from [7]. The main result is the
following theorem.

Theorem 1.1. Let bn be a positive sequence satisfying

bn →∞, bn = o( 7
√
n), n→∞. (1.1)

Then, for any λ > 0,

lim
n→∞

1

bn
logP

(
±Xn ≥ λ(nbn)3/4

)
= − 3

√
81

32
σ2/3λ4/3. (1.2)

As an application, we get the following law of the iterated logarithm.

Corollary 1.1.

lim sup
n→∞

±Xn

(2n log log n)3/4
=

√
2

3
σ−1/2, a.s..

2 Proof of Theorem1.1

We define
Hn =

∑
x∈Z

l2n(x).

Recall ln(x) =
∑

1≤k≤n 1{Sk=x} are the local times of the random walk at the
site x. Let Kn be a positive sequence will later be specified.
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The following two random quantities play important roles in this paper:

X̃n = XnI{
sup
x∈Z

ln(x)≤Kn

},

H̃n = HnI{
sup
x∈Z

ln(x)≤Kn

}.
Firstly, we give two useful Lemmas.

Lemma 2.1. (see [8]) Set Qn =
∑

1≤j<k≤n
I{Sj=Sk}, and bn is a positive sequence

satisfying (1.1). Then, for any λ > 0,

lim
n→∞

1

bn
logP

(
Qn ≥ λn3/2b1/2n

)
= −6σ2λ2. (2.1)

Lemma 2.2. (see [8]) set Kn = Mn

√
nbn where Mn satisfying

Mn →∞, M2
n

(
b7n
n

) 1
4

→ 0, n→∞. (2.2)

and bn is a positive sequence satisfying (1.1). Then,

lim
n→∞

logP
(

sup
x∈Z

ln(x) > Kn

)
= −∞. (2.3)

We now prove the moderate deviations for X̃n.

Proposition 2.1. Let bn be a positive sequence satisfying

bn →∞, bn = o( 7
√
n), n→∞.

Then, for any θ > 0,

lim
n→∞

1

bn
logE exp

{
±θ b

1/4
n

n3/4
X̃n

}
=

θ4

24σ2
. (2.4)

Proof 2.1. In view of Qn = 1
2
(Hn − n), we have

lim
n→∞

1

bn
logP

(
Hn ≥ λn3/2b1/2n

)
= −3

2
σ2λ2.

Under the fact that Hn ≤ n supx∈Z ln(x), we have for any λ > 0,

E exp

{
λ
b
1/2
n

n3/2
Hn

}
≤ E exp

{
λ

√
bn
n

sup
x∈Z

ln(x)

}
.
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By the fact (see Lemma 11 and Lemma 12 in [13]) that

lim sup
n→∞

1

bn
logE exp

{
λ

2

√
bn
n

sup
x∈Z

ln(x)

}
<∞,

we have that for any λ > 0,

lim sup
n→∞

1

bn
logE exp

{
λ
b
1/2
n

n3/2
Hn

}
<∞.

According to Varadhan’s integral lemma, we have for any λ > 0,

lim
n→∞

1

bn
logE exp

{
λ
b
1/2
n

n3/2
Hn

}
= sup

y>0
{yλ− 3

2
σ2y2} =

λ2

6σ2
(2.5)

We now compute the Laplace transform E exp
{
±θ b

1/4
n

n3/4 X̃n

}
. Integrating

with respect to randomness of the i.i.d scenery {ξ(i) : i ∈ Z}, lead to

E exp

{
±θ b

1/4
n

n3/4
X̃n

}
= E exp

{∑
x∈Z

θ2b
1/2
n

2n3/2
ln(x)I{

sup
x∈Z
≤Kn

}(1 + o(1))

}

where Λ is the log-Laplace transform of the variables {ξ(i) : i ∈ Z}. Since
only the behavior of Λ near the origin is concerned. Using the strong moments
assumptions of {ξ(i) : i ∈ Z} , we have Λ(θ) = θ2

2
(1 + o(1)). Therefore,

E exp

{
±θ b

1/4
n

n3/4
X̃n

}
= E exp

{
θ2b

1/2
n

2n3/2
H̃n(1 + o(1))

}
.

By (2.5), we have

lim sup
n→∞

1

bn
logE exp

{
±θ b

1/4
n

n3/4
X̃n

}
≤ θ4

24σ2
. (2.6)

Notice that

E exp

{
θ2b

1/2
n

2n3/2
H̃n

}
≥ E

[
exp

{
θ2b

1/2
n

2n3/2
Hn

}
I{

sup
x∈Z

ln(x)≤Kn

}
]

= E exp

{
θ2b

1/2
n

2n3/2
Hn

}
− E

[
exp

{
θ2b

1/2
n

2n3/2
Hn

}
I{

sup
x∈Z

ln(x)>Kn

}
]
.



Moderate deviations for one-dimensional random walk in random scenery 127

In view of (2.5),

max

{
lim inf
n→∞

1

bn
logE exp

{
θ2b

1/2
n

2n3/2
H̃n

}
,

lim sup
n→∞

1

bn
logE

[
exp

{
θ2b

1/2
n

2n3/2
Hn

}
I{

sup
x∈Z

ln(x)>Kn

}
]}
≥ θ4

24σ2
.

By Lemma2.2 and Cauchy-Schwartz inequality and (2.5), we have

lim sup
n→∞

1

bn
logE

[
exp

{
θ2b

1/2
n

2n3/2
Hn

}
I{

sup
x∈Z

ln(x)>Kn

}
]

= −∞,

which implies that

lim inf
n→∞

1

bn
logE exp

{
±θ b

1/4
n

n3/4
H̃n

}
≥ θ4

24σ2
. (2.7)

So,

lim inf
n→∞

1

bn
logE exp

{
±θ b

1/4
n

n3/4
X̃n

}
≥ θ4

24σ2
. (2.8)

Proposition2.1 follows from (2.6) and (2.8).

We now complete the proof of Theorem1.1.

By Gätner-Ellis theorem, we have for any λ > 0,

lim
n→∞

1

bn
logP

(
±X̃n ≥ λ(nbn)3/4

)
= − sup

θ>0

{
λθ − θ4

24σ2

}
= − 3

√
81

32
σ2/3λ4/3.

Then the moderate deviations for Xn can be obtained through the following
exponential equivalence given by

lim
n→∞

1

bn
logP(X̃n 6= Xn) = lim

n→∞

1

bn
logP

(
sup
x∈Z

ln(x) > Kn

)
= −∞.

As an application of Theorem1.1, by the standard Borel-Cantelli lemma
argument, we can easily get Corallory1.1.
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