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Abstract

This paper is concerned with finding minimal dimension linear rep-
resentations for six-dimensional real, indecomposable nilpotent Lie al-
gebras. It is known that all such Lie algebras can be represented in
gl(6,R). After discussing the classification of the 24 such Lie algebras,
it is shown that only one algebra can be represented in gl(4,R). A
Theorem is then presented that shows that 13 of the algebras can be
represented in gl(5,R). The special case of filiform Lie algebras is con-
sidered, of which there are five, and it is shown that each of them can be
represented in gl(6, R) and not gl(5,R). Of the remaining five algebras,
four of them can be represented minimally in gl(5,R). That leaves one
difficult case that is treated in detail in an Appendix.
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1 introduction

This paper forms part of a series whose goal is to find linear representations
of minimal dimension for all the Lie algebras of low dimensions. In a previous
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work we have succeeded in finding linear representations for all indecomposable
Lie algebras of dimension five and less [5] and very recently we have been able
to carry out the same program for decomposable algebras of dimension five and
less [7]. We have also extended our work to Lie algebras that admit a non-
trivial Levi decomposition up to and including dimension eight [6]. Several
other authors have investigated the problem of finding minimal dimensional
representations of Lie algebras, see [2, 9] for example.

Of course it is an interesting and challenging mathematical problem to find
such minimal dimension representations but there are also compelling practical
reasons. Besides the value of having explicit representations of low-dimensional
Lie algebras, they also add to the growing body of results that seek to provide
alternatives to Ado’s Theorem for the construction of representations, see [3].
Although Ado’s theorem guarantees the existence of a matrix representation,
it is of no practical utility in constructing them and certainly not helpful in
finding representations of minimal dimension. Calculations involving symbolic
programs such as Maple and Mathematica use up lots of memory when storing
matrices; accordingly, calculations are likely to be faster if one can represent
matrix Lie algebras using matrices of a small size. On the downside, it is true
that choosing a smaller size representation may entail using more complicated
entries in the representing matrices; one can see this phenomenon even more
clearly if one constructs a matrix Lie group that gives rise to a matrix rep-
resentation of the algebra and an attendant set of invariant vector fields or
one-forms. Omne cannot have simultaneous simplicity in all aspects of a Lie
algebra or Lie group representation and so various choices among such rep-
resentations have to be made according to the kind of application one has in
mind.

In this paper we are concerned with finding linear representations for real
indecomposable nilpotent Lie algebras in dimension six that are of minimal
dimension. It is convenient to define an invariant u(g) for a Lie algebra g to be
the dimension of a minimal dimensional representation of g. It is known from
previous work [4] that for all the indecomposable six-dimensional nilpotent Lie
algebras p < 6. We adopt the numbering given in [10] and [12]. Refer also to
Section 2 below for a refinement in this classification.

In this article we give a Lie group corresponding to each of the 24 six-
dimensional nilpotent Lie algebras that is a subgroup of GL(4,R), GL(5,R)
or GL(6,R), respectively. The representation for the Lie algebra is then easily
obtained by differentiating and evaluating at the identity. In order to ensure
that we have a bona fide group representation we provide also a list of right-
invariant vector fields in each case.

An outline of this paper is as follows. In Section 2 we give a brief description
of the indecomposable six-dimensional nilpotent Lie algebras. Since we know
that for the indecomposable six-dimensional nilpotent Lie algebras pu < 6, in
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Section 3 we take up the issue of characterizing those algebras for which p = 4.
In fact there is just one, 6.14 a = —1, which is isomorphic to the space of 4 x 4
strictly upper triangular matrices. Thus, for the remaining 23 algebras, we
know that ;4 = 5 or 6. In Section 4 we present a result about representations
that, where applicable, implies that ¢ = 5. In fact it is applicable to 13 of
the 24 algebras. In Section 5 we discuss an important class of nilpotent Lie
algebras known as filiform Lie algebras. We show quite generally, that for an
n-dimensional filiform, g > n. Among the indecomposable six-dimensional
nilpotent Lie algebras, just five are filiform and it happens that we know
representations in gl(6, R) for each of these five algebras and hence the value
of u is settled in those cases. Remarkably, that leaves just one “difficult” case,
algebra 6.10, to discuss ; what makes it difficult, is that Theorem 4.1 is not
applicable and we cannot find a representation in gl(5, R) although we have
one in gl(6,R); therefore to claim that u = 6 we have to prove that there
is no representation in gl(5,R). It is much to be emphasized that, although
the conditions that arise in finding representations are polynomial, they are far
too complicated to solve in a simple algorithmic manner; rather, the conditions
have to be solved interactively according to their significance for the algebra
concerned. One can see the kind of complications that are involved in the
algebra 6.10 in the Appendix.

For the convenience of the reader we have listed also minimal dimension
representations for the indecomposable nilpotent Lie algebras of dimension
three, four and five. The representations are listed in Section 6. Most of the
calculations were done with MAPLE.

2 Classifying nilpotent Lie algebras in dimen-
sion six

The six-dimensional nilpotent Lie algebras have been studied and classified
independently by several different groups of authors. We summarize and syn-
thesize these various accounts. In 1958 Morozov obtained a classification of
the six-dimensional nilpotent Lie algebras over R [10]. Morozov discerned 22
classes of algebra of which four depended on a single parameter that he de-
noted by a in each case. In [10] these four cases were numbered 6.5, 6.10,6.14
and 6.18, respectively. This classification is reproduced verbatim in [12] and is
used below in Section 5. Later on Winternitz et al. refined Morozov’s classifi-
cation in, as far as we are aware, unpublished notes. In the later version they
realized that in all four cases where the parameter a entered, the parameter
could be removed and reduced to +1. Furthermore it turned out that the case
6.5(a = 1) was decomposable and that 6.10(a = 1) was equivalent to case
6.8. In Section 6 we give this isomorphism. Thus altogether there are 24 in-
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decomposable nilpotent Lie algebras in dimension six, none of which contains
parameters, up to isomorphism. Precisely the same number is found in [1],
[11] and [14], albeit using different bases.

3 Algebras for which =4

3.1 The centralizer of a central element

Suppose that we have a six-dimensional nilpotent indecomposable Lie subalge-
bra g of gl(4,R). Since g is nilpotent it must have a non-trivial center that we
may assume contains a strictly upper triangular matrix and we denote it by C.
The only possibilities are that C' has rank three, two or one. It is impossible for
C to have rank three, for in that case the centralizer of C' is four-dimensional
abelian.

Next suppose that C' has rank two; then we may assume that C' = [8 102}
where I denotes the 2 x 2 identity matrix and each of the zeroes are also
2 x 2. The centralizer of C is of the form [4 §] where A, B are arbitrary

2 x 2 matrices and comprises an eight-dimensional subalgebra. Given two such

matrices [ 5] and [ 52] their commutator is [[AléAﬂ [Al’?j]lﬂf]h“‘ﬂ] and

hence the central element C' would not be in the derived algebra. In conclusion,

1
0
0 .
0

Next, we shall make the following remark about taking traces. In a matrix
representation of a Lie algebra we can always modify matrices not contained
in the derived algebra by adding multiples of the identity and in particular, we
may always assume that such a matrix has trace zero. We shall refer to this
remark as the “trace argument” and we shall make use of it in the Appendix
when investigating algebra 6.10.

oo Oo
[elerlenlen)
[elelele)

C must have rank one and as such we may assume that C' = [

3.2 Trace argument

3.3 Reducing the dimension of the subalgebra

0

abcd
Coming back to the rank one matrix C', its centralizer is given by 8 o ? .
000a

o~

The 2 x 2 central block must be a nilpotent subalgebra of gl(2,R) and so it may
be assumed to be of the form [§§] or [§9] or [ 5 7] and the nilpotent algebra
that we seek must be a subalgebra of one of these seven or eight dimensional
subalgebras. Furthermore we may assume in these last two cases that a = 0
by taking traces. Now we have three solvable seven-dimensional algebras; the

first of them has a six-dimensional nilradical that is isomorphic to 6.14a = —1



Minimal Matrix Representations 117

and the others have five-dimensional nilradical that is isomorphic to the five-

dimensional Heisenberg algebra. We consider each of them in turn.
S1 S2 83 S4
. 0 0 s5 s6 .
In the first case we have the space of matrices 000 s that we take in

000 s
the order sq, s9, S3, S4, S5, Sg, S7 and obtain the following Lie brackets

[61762] = €9, [61,63] = €3, [61766] = —€g, [61767] = —€r7,

[627 65] = €3, [627 66] = €4, [637 67] = €4, [657 67] = €6. (31)

We enquire whether it is possible to have a six-dimensional nilpotent subalge-
bra that involves e;. First of all we dualize the structure equations so as to
obtain

o' = 0,d0> = —6'02,d> = —6'0° — 020",
d6* = —026° — 6307, d0° = 0, d6° = 0'6° — 6°67, (3.2)
o7 = 067

where the 6%, = 1..7 comprise the basis dual to e;,i = 1..7. We suppose
that
0! = b0* + ct® + ab* + e + f0° + gb” (3.3)

is a dependence relation among the one-forms which expresses the existence of
a six-dimensional subalgebra that is not obtained by setting just #; = 0. Now
we substitute 3.3 into 3.2 and df! = 0 gives

abf?0* + (be — 1)0%0° + (b(f + 1) — a)0?60° + 2bg6207 + ach>0* + ced36>
+e(f +1)0%60°5 + (2cg — 1)0307 + af*0° + agh* 0™ + 0305 + egh>0"
+(f —1)g0%0" = 0.

(3.4)
Condition 3.4 is impossible to satisfy; for example from the 020° term we
have e = § and from the 6°07 term we have g = 5= in which case the 6°¢7

term is not zero. Thus the only six-dimensional subalgebra is the obvious one
obtained by putting e; = 0 and a fortiori no such nilpotent subalgebra.

Now we consider the second case where the matrix Lie algebra is given by
0 s3 s4 S5

051056 | With the following Lie brackets
0 0 s2 s7
0000
[e1, €3] = —es3, [e1, €6] = €6, [ea, e4] = —ey, [ea, €7] = €7, [e3, €6] = €5, [eq, €7] = e5.

(3.5)
The dual structure equations are given by
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dot = 0,d0? = —0'6%,d03 = —0'03 — 6265, dO* = —0%0° — 0307, d9°> = 0,
df® = 0105 — 0507, d9™ = 6197,

(3.6)
Now we assume that there is a dependence relation of the form

af' + b0* + c0® + ho* + e0° + f0° + g0" = 0. (3.7)

Then taking the exterior derivative of 3.7 and substituting the exterior deriva-
tives from 3.6 gives

—bch?0% + ah?0* 4+ bfO?0° — agh*0” + chO®0* + ced®0° + (2cf — ae)d>0°
+cg00" + FhO*0° — aech*0” + ef0°0° — fg0°0" = 0.(3.8)

Condition 3.8 may be solved in four different ways: ¢ = e = f =9 = h =
0,b=e=f=g=h=0,b=c=e=9g=h=0,a=c= f =0 and the
corresponding one-form condition is given by af'+b03 = 0, af*+c6> = 0, af' +
f05 = 0, 0% + e0> + g0 + h7 = 0, respectively. However these conditions
are imposed, there always remains a condition of the form df® = 067 + ...
where ¢ # 0, which implies that the six-dimensional subalgebra that we are
seeking is not nilpotent. The argument for the third matrix subalgebra is
similar and indeed the second and third cases are complex equivalent. What we
have just argued is that up to isomorphism, the only six-dimensional nilpotent
subalgebra of gl(4,R) is the space of strictly upper triangular matrices.

Theorem 3.1 The only siz-dimensional nilpotent subalgebra of gl(4,R) is iso-
morphic to the subspace of strictly upper triangular matrices. As an abstract
Lie algebra it is 6.14a = —1.

Corollary 3.1 The most general representation of 6.14a = —1 in gl(4,R) is
giwen by, up to change of basis,

Aa+dp+fv a b c
0 Aa+du+fv d e
0 0 Aa+dp+fv f
0 0 0 Aa+du+fv

where X\, u,v € R are arbitrary.

If we order the basis according to the parameters a,b,c,d, e, f we find the
following non-zero brackets for 6.14a = —1

[61, 64] = €, [617 65} = €3, [62? 66] = €3, [647 66] = €5. (39)
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If we make the change of basis

1 =€ —€,6 =€+ €,83 = €4,61 = €3 + 5,65 = €3 — €5,66 = 2e3  (3.10)
we obtain

which is the form given in [12].

4 A representation theoretic result

In this Section we present a result which has been given before in the context
of solvable Lie algebras.

Theorem 4.1 ([13]) Suppose that the n-dimensional Lie algebra g has a basis
{e1,€ea,...,e,} and only the following non-zero brackets: [eq, e;] = C’giej, where
1<i,5<randr+1<a,b,c<n. Then g has a faithful representation as a
subalgebra of gl(r + 1,R).

In the proof of the Theorem 4.1 each e, is represented by the matrix C’gi (for
fixed a) augmented by (r + 1)th rows and columns of zeroes. For the ideal
spanned by the e;’s, map e; to an (r + 1) x (r + 1) matrix whose only non-
zero entry is 1 in the (r 4 1,4)th position. Said differently, the Theorem is
applicable to an algebra that has an abelian ideal and complementary abelian
subalgebra. In the context of the six-dimensional nilpotent indecomposable Lie
subalgebras, Theorem 4.1 is applicable to algebras 6.1 and 6.2 where » = 5 and
6.3,6.4,6.5,6.7,6.12,6.16 and 6.17 where r = 4. The representations appearing
in Section 6 are not necessarily constructed by using Theorem 4.1 although
they are all minimal.

5 The standard filiform algebra

In this Section we shall consider a very special class of nilpotent Lie algebras

[61, 62] = €3, [61, 63] = €4, [61, 64] = €5, ..uy [61, Gn_l] = €p. (51)

There is one such algebra in each dimension n beginning with n = 3. In [12]
these algebras appear as 3.1,4.1,5.2,6.2 for n = 3,4,5,6. Of course the main
concern in this paper is the case n = 6. More generally a nilpotent Lie algebra
is said to be filiform if the lower central series is of maximal length [16], which
means that its dimensions are n,n — 2,n — 3,n — 4,...1,0. For n = 6 the
filiforms are 6.2,6.19,6.20,6.21,6.22. We shall refer to conditions 5.1 as the
standard filiform Lie algebra. All filiforms are infinitesimal deformations of the
standard one in the sense that in a suitable basis they contain all the brackets
in 5.1 as well as possibly others: see [16] and [8].
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Theorem 5.1 For the standard filiform Lie algebra of dimension n we have
H=n.

Proof 5.1 First of all we begin by treating 5.1 as a complex Lie algebra. We
shall argue that if we cannot find a representation with p < n for the complex
Lie algebra, then there can be no representation with p < n for the real Lie
algebra.

Suppose then that we have a representation in gl(r,R) for the complex Lie
algebra. Since we are working over C, it may be assumed in view of Lie’s
Theorem that the matrices in the representation are simultaneously upper tri-
angular. Indeed, it is sufficient to suppose that the matrices representing ey
and es, that we shall denote by E1 and Es, respectively, and likewise for all the
remaining basis vectors, are simultaneously upper triangular.

Next, observe that [eq,e,] = 0 and hence [Ey, E,] = 0. Furthermore we
have that Ey = [Ey, [Ey, Es]] and more generally Ey = ad(E,)*2E, for k > 3.
It follows that Ey is strictly upper triangular for 3 < k <n.

Now we shall have to be more specific, so we shall label the entries of F;
and Ey as a;j and b;;, respectively. Then we find that

0 bi2(a11—a22)—ai2(b11—b22) * * kL. *
0 0 523(CL227a33)7a23(b227b33) * * ... *
0 0 0 E33,4 % .. *
Ez= 1o 0 0 0 * .. % (5.2)
: : : o E3n—1n
0 0 0 0 0 .. 0
where
33,3,4 = 534(@33 - a44) - a34(533 - 544)7
and
E3,n—1,n = bn,n—l(an—l,n—l - an,n) - a'n—l,n(bn—l,n—l - bn,n)
Moreover we find that
0 (a11—a22)(bi2(a11—a22)—ai2(bi1—b22)) * L
0 0 (a22—a33)(b23(az22—a33)—a23(b22—b33)) * ..
E . 0 0 0 E4’3’4
4 — 0 0 0 0
0 0 0 0 0
(5.3)
where Ey 34 = (a33 — a44)(b3a(ass — asq) — azs(bsz — b)) and
0 (b11—b22)(bi2(a11—a22)—ai2(b11—b22)) * *
0 0 E2’372’3
0 0 0 E2’373’4
[Es, Es] = | o 0 0 0 . (5.4)
0 0 0 0 0

where
E2,3,2,3 = (b22 - b33)(b23(a22 - G33) - 0623(522 - 533)),



Minimal Matrix Representations 121

E2,3,3,4 = (533 - b44)(b34(a33 - a44) - a34(b33 - 544)),

and
0 (a11—a22)? 3 (b12(a11—ag2)—a12(b11—ba)) * *
0 Enos * ..
E,= |0 0 o et (5.5)
; ; i b
where
En,2,3 = (G22 - G33)n72(b23(a22 - a33) - @23(522 - 533))
En34 = (ass — G44)n73(b34(a33 — Q4q) — a34(b33 — bas))
and
0 (a11—a22)" " 2(b12(a11—az2)—ai2(b11—b22))  * *
0 0 Ein2s * ..
v, B = |6 0 o et (5.6)
; ; S5
where

Ei o3 = (az — azs)" ?(ba(age — asz) — asz(bay — bs3))
Ey 34 = (ass — a4s)" " *(bza(azz — asa) — aza(bsz — bay))
Now since [Ey, E,| = 0 it follows that for 1 <k <n—1
(ar g — arr1pen) Ok k1 (@ — arripsr) — Grpyr Ok — brrips1)) =0 (5.7)

and from [Fa, E3| = 0 we find that for 1 <k <n—1

(b & — bt k1) Ok 1 (@ ke — g1 +1) — W1 Okt — ber16+1)) = 0. (5.8)

From 5.7 and 5.8 we deduce that

bie o1 (e — Akt 1) — k1 (Dkk — b1 1) = 0 (5.9)

for1 <k <n—1. Hence in E3 the second upper diagonal, that is, the one

above the main diagonal is zero. Now we calculate again with the new form of
Es. Then we find

00 (a11—a33)E3,1,2 * *
00 0 (a227a44)E3’2,3 *
o 00 0 0 (a33—a55)E3,374
E4 — |00 0 0 (510)

00 0 0 [}
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and
00 (a11—as3)" " 3E31,2 * *
00 0 (a22—a44)"3E323 *
—ars)n3
En = 8 8 8 8 (ass a50.)“ E33.4 .. (511)
00 o 6 o
and
00 (a11—as3)" 2E31,2 * *
00 0 (a22—a44)" " 2E3 23 *
[B1, B = | g0 0 : (oaa=ass)" *Baga | (512)
TR ; i

It follows that in E, the third upper diagonal is zero. Continuing in the same
manner we deduce that the fourth upper diagonal of Es5 is zero and eventually
that the first n — 1 upper diagonals in E, are zero. Since the representation
is in gl(r,R), if r < n we would have E, = 0. Hence there can be no no such
representation.

According to Vergne [16] every filiform algebra is a deformation of 5.1
in the sense that in an appropriate basis it contains all the brackets of 5.1
together with extra ones coming from a certain two cycle. If we think about
the conditions that were used in Theorem 5.1 we see that in addition to 5.1 all
that was required was that [eq, €3] = 0. Let us examine whether this condition
itself can be removed. We note first of all that if [es, e3] is not zero it cannot
contain eq, es or eg otherwise the Lie algebra will not be nilpotent in view of
Engel’'s Theorem. Condition 5.7 is valid just as before. Looking at [Fs, Fs]
which is a linear combination of Ey, Ej, ..., E, condition 5.8 no longer holds
directly; however, we now have

(b —=brt 1,601 =Pk o= ht1,541) ) (O i1 (O o= ot 1, 541) — e g1 (Ot —Di1,51) = 0
(5.13)

where P is some polynomial of degree at most n — 3. Now in view of condition

5.7 condition 5.13 reduces to condition 5.8 and hence the second upper diagonal

in Fj5 is zero as before. The remainder of the argument proceeds as before.

Hence

Corollary 5.1 For any filiform Lie algebra of dimension n we have p > n.

Extending the ideas in [16], Burde reached similar conclusions for filiform
algebras [2]. Finally, we remark that even if an algebra is not itself filiform,
it may possess some filiform characteristics; for example, it may contain a
subalgebra that is isomorphic to a filiform subalgebra of lower dimension. In
that case one may be able to apply the “filiform argument” more generally.
This line of reasoning is followed in the Appendix for algebra 6.10.
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6 Minimal Representations

Below, corresponding to each Lie algebra, we give a Lie group whose Lie algebra
is isomorphic to the given six-dimensional nilpotent Lie algebra. We have
found it more convenient to work with the group, which can be obtained by
exponentiating the Lie algebra representation. As such we only have to give a
single 6 X 6 or 5 X 5 matrix rather than six such matrices. The typical element
of the group is denoted by S. The representation for the algebra is then easily
obtained by differentiating and evaluating at the identity. In the list below the
vector fields do give a faithful representation of the algebra.

dimension 3
3.1: [62763] = €1:

O~ 8
— <

Right-invariant vector fields D, D,, D, + yD..

dimension 4
4.1: [62764] = €1, [63,64] = €a:

1w“’72x
101 w oy
S_OOIZ
0O 0 0 1

Right-invariant vector fields: D,, D,,D,, D,, +yD, + zD,
dimension 5

5.1: [es,e5] = eq, [eq, €5] = eg:

1 0 = =z
101 w oy
5_001q
00 0 1

Right-invariant vector fields: D,, D, D,, D, + qD., D,, + qD,,.
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5.2: [eg, e5] = €1, [e3, €5] = €9, €4, e5] = e3: (filiform)

n

I
S OO O
coco o~ 8
OO}—t@wa
on—gwﬁpﬁﬁ
IR S

Right-invariant vector fields: Dy, D, D,, D, D, + xD, + yD, + zD,,.

5.3: [e3,e4] = g, [e3,65] = €1, [eq, €5] = et

A
Olw“’;x
S=10 0 1 woy
o0 0 1 =z
o0 0 0 1

Right-invariant vector fields: D,, —D,, Dy + 2Dy, D, — 4Dy, Dy, +yD, + zD,.

5.4: [eg, eq] = €1, [e3,€5) = eq:

— 8 ou R

x
1
0
0

S O O =

Yy
0
1
0
Right-invariant vector fields: Dy, D, Dy, Dy + 2Dy, D,y +wD,.

5.5: [eg, e4] = €1, [ea,e5] = €1 [e3, e5] = ea:

— N e 8

Right-invariant vector fields: D,, D,, D, D, + zD,, Dy + yD, + zD,,.

ﬁ: [637 64] = €1, [627 65] = €1, [637 65] = €9, [647 65] = €3! (ﬁhform)

1 2w w?—z y—zw—ir%s q
0 1 w %2 x
S=10 0 1 w Yy
0 0 0 1 z
0 0 0 0 1
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Right-invariant vector fields: 2D,, —D,, Dy+2D,, —D,+yD,, —(D,+2xD,+
yD, + zD,)

dimension 6

6.1: [61762] = €3, [61763] = €4, [61, 65] = €6 -

1w“’72xp
01 w y gq
S=100 1 =2 0
00 0 10
00 0 01

Right invariant vector fields: —¢D, — yD, — 2D, — D, D, D,, D,, D, D,,.

6.2: [e1, ] = e3, [e1, €3] = e, [e1, e4] = €5, [e1, €5) = €4

- w2w3w4 -
bw oy g P
01 w % & ¢
SZOOIw“’;J;
00 0 1 w y
00 0 0 1 =z
00 0 0 0 1]

Right invariant vector fields: —¢D,—xD,—yD,—2D,—D,,, D, D,, D,, D,, D,.

6.3: [e1,e0] = eg, [e1, €3] = €4, [e2, €3] = €5

(10 2z £ p
01 qg x vy
S=1001 2z w
000 1 0
L0 0 0 0 1 ]

Right-invariant vector fields: D,,, D, +wD,,, D, +wD, + 2D, D,, D,, D,

6.4: [e1,e2] = es, [e1, e3] = eg, [€2, €4] = €4

nn

I
OO OO
OO O~ 8
coor~Rr o
O = & n W
— oo 3
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Right-invariant vector fields: —D, — yD,, — zD,, D, +wD,, D,,—D.,,, D,, D,.

6.5: [e1, e3] = e5, [e1,e4] = €g, [€2, €3] = —eg, [€2, €4] = €5:
Lzy q p
010 w =z
S=1001 —z w
000 1 0
000 0 1

Right-invariant vector fields: D,,, D, Dy—2D,+wD,, D,+zD,+wDy, Dy, D,.

6.6: [e1,e2] = eg, [e1, €3] = eu, [e1, 4] = €5, [e2, €3] = €5t

1 g w =z p 7
01qy§
S=1001 2 ¢
00 01 0
L0 0 0 0 1 ]

Right-invariant vector fields: D, + 2D, + yD, + qD,, + %Dp, —(Dy + 2D, +
qu>7 -Dz7 _Dy) D$7 _Dp'

6.7: [61, 63] = €4, [617 64] = €5, [627 63] = €¢:

1 0 0 p q ]
Olzéx
S=1001 2z y
000 1 w
L0 0 0 0 1 ]

Right-invariant vector fields: —(Dy,+2Dy,+yD,), —(Dy+2D,), D,, Dy, D, D,,.

6.8: [e1, €] = e3+es,[e1,e3] = ey, [e2, e5] = e

10 —%z p—l—%y— %zw q
01 w %wQ T
S=100 1 w Y
00 0 1 z
00 0 0 1
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Right-invariant vector fields: D,—%D,, —(2Dy+yDy+D.,,), —Dy—2Dy, =Dy, 5D ,—
D, +D,,—D,.

@: [617 62] = €3, [617 63] = €4, [617 65] = Ce, [627 63] = €6

[1 0 w—y z ]
01 2w—y wy—z+2z gq
S=100 1 w x
0 0 0 1 Y
| 0 0 0 0 1

Right-invariant vector fields: D, +yD,+wD,+xD,+2xD,, —D,+yD,, D, —
wD, —xD, —xDy, D,, —D, —yD, — 2yD,, D,.

6.10: [e1,ea] = e3,[e1,e3] = e5,[e1,e4] = €6, [e2, €3] = aes, [ea, €4] = €51 As
in case 6.5 a can be reduced to a = £1. Case a = 1 algebra is equivalent to
algebra 6.8. The change of basis that changes 6.8 to 6.10(a = 1) is given by:

€1 =e t+e, € =e —e, € = 2 +es), e =2e —e3), € =
—2(64 + 66), € = 2(66 — 64).
a=—1
(1 0 —2 w y—2w ¢q ]|
01 w =z %2 T
g — 00 1 0 w 2y
00 0 1 0 p
00 0 O 1 2z
(00 0 0 0 1|

Right-invariant vector fields: v/2(pD, + 2yD, + 2D, + D,,, —2yD, + pD, +
D.,\/2(—2zD, — D,), —4D,,4D,,4y/2D,.

6.11: [eg, ] = €3, [e1, e3] = ey, [e1, e4] = €5, [e2, €3] = €6

1y z—yz+ % w P
0 1 Yy—2z Yz — % —T q
S=10 0 1 z x
00 0 1 y
[0 0 0 0 1 |
Right-invariant vector fields: 2;% (2Dy+(2yz—2z2—2x) D,,+2qD,+22:D,), 335(D.+

yDy—2D,), 35(Dy+2Dy+2D,—yD,), Dy+yD,—2D,, 35D, 3(Dy+yD,+
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S

a):

6.12: [er,e3] =eq, [e1,e4] = €5,

Right-invariant vector fields: —(D,,

6.13: [e1,e0] = €5, ler,e3] = ey,

S OO O =

OO oo

4+ cocoo~=g

oo o~ g

Y

O oo~

S
o

g v

o o~ 2§,

SO = OO

o OB

x
Y
z
p
1

D

i TR S SN
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[627 65] = €6:

r+ 2 y)a Dpa Dz7Dy7Dq +praDz-

[617 64] = €, [627 65] = €g:

Right-invariant vector fields : (D, +pD,+yD,+2D,), D,+pD,,—D,, D,, —D,—

6.14: [e1,e3] = ey, [e1, eq] = €g, €2, €3] = €5, [e2, e5] = aeg: a can be reduced

S =
pDLE) _-D:C
to a = £1.

l.a=1

Right-invariant vector fields: D,+yD,+wD,, Dy+2Dy+wD., D,,, —D

2. a=—1

S =

1
0
0
0
0

o O =3

oS O = O K

o O O

1P+ o

o O~ 8

(S

p
q
1
0

IS NS

=g

-D.,D,.

Yo

— W

Right-invariant vector fields: (D, + D, + wD, + pD.), %(DI - D, +
wDy, +pD,),—2D,, — 2¢D,, D, — D, + ¢D,, D, + D, +¢D,, D..
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6.15: [e1,e0] = €3+ €5, [e1, €3] = ey, [e1, e4] = e6, [e2, €5] = €5

1 2w w?—z p+y—zw+%3 q
0 1 w “’72 x
S=10 0 1 w Y
0 0 0 1 z
0 0 0 0 1

Right-invariant vector fields are: D,, + 2D, + yD, + 2xD,, D, — yD,, —D, +
2Dy +2D,,D,,—2D, — 22D, —2D,.

6.16: [e1,e3] = €4, [er,eq] = €5, [er,e5] = €6, e, €3] = €5, [ez,eq] =
€g-: ) .
L w p+*% pw+% ¢
0 1 w D+ %2 T
S=10 0 1 w y
0 0 0 1 z
0 0 0 0 1

Right-invariant vector fields: —(D,, + 2D, + yD, + 2D,), —(D, + yD, +
2D,),D,, D,, D, D,.

6.17: [e1,e3] =e3, [er,e3] =es, [e1,e4] =e6, [e2,e5] = €

’U}2 ’11)3
L w 5 pt+% ¢
0 1 w 5 x
S=10 0 1 w Y
0 0 O 1 z
0 0 0 0 1

Right-invariant vector fields: —(D,, + D, + yD, + 2D,),D.,D,, D,, D, +
2Dy, D,.

6.18: [e1, 2] = e3,[e1, €3] = eq,[e1, e4] = €6, [ea, €3] = €5, [e2, 5] = aes. As in
6.5, 6.10 and 6.14 a can be reduced to a = +1.

l.a=1
1 y+3z §+5yz+%—2x w p_
0 1 y+5z yz—ir%—x q
S=10 0 1 z x
0 0 0 1 Yy
0 0 0 0 L]
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Right-invariant vector fields: D, + ( 22 +yz—x)Dy+qD,+ 2D, D, +

yD,+(3yz+1222 3x)Dw+3qu—|—5xDq,Dx 22Dy —2xDy—yD,, Dy, Dy, Dyt

yD,.
2. a=-1
(1 p x Yy w |
01 q pg—=x =z
S=10 0 1 P x

000 1 q

|0 0 0 0
Right-invariant vector fields: %( (q—2)D (2p+2—pq) D,
2(x—q)D. + 2z —2) Dy), 3(D, 2D +(q+2)D (pq+2p—x)Dy+
2(x—q)Dz—|—(2x+z)D ) Dz+( 2)D + (x—2q)Dy,,—D_y —
2D, —(q+2)Dy,Dy—2D,+(q—2) D 2D'

19: [e1, e0] = e3,[e1, e3] = €4, [e1, e4] = €5, [e1, €5] = e, [ea, €3] = €6

_1w“’72 +%3 w y+zwp
01 w % w q
g_ |00 1 w w; @
0 0 O 1 w Y
00 0 0 1 z
(000 0 0 0 1]

Right-invariant vector fields: Dy, +¢Dy+xDy+yDy+2D,, 5(D.+yD,), —1(D,—
2D,),1D,,~1D, iD,.

2

6.20: [e1,e2] = €3, [e1, €3] = eu, [e1, 4] = €5, €1, €5] = €6, [e2, €3] = €5, [e2, €4] =

€g-:
(1w z4+w? 2w—2y+ % 3x—2yw+u—l—ﬁ P
0 1 2w w? — 2 y—zw+— q
g_ |00 1 w w x
0 0 0 1 w Y
0 0 0 0 1 z
[ 0 0 0 0 0 1 ]

Right-invariant vector fields: D,, + ¢D, + 22D, + yD, + zD,, D, + xD,, —
yDy, —(Dy = 2yD, + 2Dy), Dy + 32Dy, —=2Dy, 2D,,.
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6.21: [e1, e2] = e3, [e1, e5] = g, [e2, €3] = e, [e2, e4] = €5, [e3, €4] = eq:

yw? 7

1 2z —y+zw oz—yw+iw? —g+awt+2 - )
0 1 w %2 %3 q
g_ |00 1 w w x
0 0 0 1 w Y
00 0 0 1 z
1 0 0 0 0 0 1 ]

Right-invariant vector fields: D,+q¢D,, Dy,+xD,+yD,+2D,,, D,—xD,, —(D,+
yD,), D, — zD,, —2D,,.

=

22 [er,e2] = ez, er,e3] = €5, [en,e5] = €6, ez, e3] = es, (e eq] =
es, [es,eq] = e

2_1.2 3_1.2

1l z wz—y :L‘fwar%zw —3Z xwqu%ywer%zer%zw —zziw ]
2
01 w % %y—&-%w?’—%zw q
2
S= 1|00 1 w T +E T
00 O 1 w Y
00 O 0 1 z
-00 O 0 0 1-

Right-invariant vector fields: D, + 52D, — 3yDy + qD,, Dy, + 2Dy + yD, +
xDy, D, + %qu —xDy,—D, —yD,, Dy — zD,,—2D,,.

7 Appendix: Algebra 6.10
The first remark is that the definition of Algebra 6.10 is

le1, ea] = e3, [e1, e3] = e5, [e1, e4] = eg, [e2, €3] = —eg, [€2, €4] = e5. (7.1)
Now make the change of basis

€1 = €1,63 = €3,63 = €3,64 = €5,65 = —€4,65 = —€§. (7.2)

Then the algebra becomes

[61, 6’2] = €3, [61, 63] = €4, [61, 64] = €4, [62, 63] = €g, [62, 65] = —é€4. (7-3)

Hence we can treat both 6.9 and 6.10 by writing the last bracket as [es, e5] +
Cey = 0 where C' = 0,1. We shall use the form given above for algebra 6.10
with C' =1 in order to demonstrate that it has no representation in gl(5, R).
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Now we assume that there is a matrix representation in which F,, E5 and
E5 are upper triangular. Then by applying the filiform argument we find that
FE, and Eg are of the form

Ey = Es =

[eleleloele)
[e]elelelen)
[elelelele)
ocoooR
oooT 0

é] . (7.4)

ococooR

0
0
0
0
0

= ocococoo
~+ oococoo

We shall analyze the possible normal forms fo
and Fjg.

he subspace spanned by FEj

Lemma 7.1 Assuming that the pencil of matrices spanned by Ey and Eg is
two-dimensional, there is a basis for it in one of the following four mormal

forms:
000007 00001 000107 00001
00001| 00000 00000| |00000
:lo0000| [00000|;[00000| |00000 .
00000| |00000 00000| |00000
00000 L00000 00000] L00000

00010 00001 00010 00000
00001 00000 00000 00001
00000 00000|,]100000 00000
00000 00000 00000 00000
00000 00000 00000 00000

Proof 7.1 Suppose first of all that a* + o® # 0. Then we may reduce to
a=1,a = 0. Nezt, assuming that 3 # 0 we can reduce to b =0 and g = 1.

[elenien)

Then we conjugate by the matrix P = (on the left by P~! and on

c

1
[eXelelelng
[=Renlenl 0}
oOOoO—OO
(el e}

—

the right by P) which reduces ¢ and § to 0.

Now loop back and assume from the outset that a = o = 0. Then we cannot
have b = B = 0 or else the matrices would be proportional. Without loss of
generality we may suppose that b =1 and f =0, thence to v =0 and ¢ = 1.

The last case to take care of is where a = 1, = 0 and f = 0. Then we
assume that v = 1 and ¢ = 0. Then, assuming that b # 0, we conjugate by

@)

the matriz P =

OOoOOO
OoO—OO0O
—HOOOO

] (on the left by P~' and on the right by P) which

[eleleleyy
[eleslen]S Jen)

reduces b to 1.

7.0.1 Casel

Now we start again from one of these normal forms. For the first such case,
the intersection of the centralizers of F, and Ejg is a subalgebra consisting of

abcde

. g h
matrices of the form [ i j k:]

ab

0a

OO OO
oo O Q
OO =

Accordingly we put

abcecd e afByd e rstuv

Oagh i Oalo Oraxzy=z
Ei=|00jkm|FEy=|007rwpu| Es=|o006ec]. (7.6)

000a b 000alp 000 rs

0000 a 0000 « 0000~
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and then find that

0 0 bA—B g+cr—jv bo—B h+ck—vyk —bd+bi+Bd—Bi+cu—ym

00 gT—3jA gr—kA —bo+B h+gu—Am

Es= o0 0 jr—kr —br+B kHjp—mT (7.7)
00 0 0 0
00 0 0 0

0 0 bgT—2bjA+B gj—cjT+v 5% bgr—2bkA+B gk+cjr—2 ckT+yjk  *

00 —(gT—3N)j gjk—2 gkT+jkA Ei25
Es= 100 0 i(ir—kr) Eags (7.8)
00
00
where
Eio5 = —2bgk + bkX+ B gk + gju — 2gmt 4+ jAm
B35 = —2bjk + bkt + B jk + j2u — jmt
00 —bATH+2Bgr—Bjr—cT?+yjT —be A+2 B gh—BkA—ck T+2y jr—y kT  *
00 —(gT—3N)T —grRTH2jr A=k T Es,2.5
Eﬁ - 00 0 T (jr—kT) FEg,35 (79)
00
00
where
Feos = —br A= Bgr +2BkEXN—gutm+2jAp— Amr
Eess = —bkT — Bjr+2BkT + jut —mr?
00 —j(2bgr—3bjA+Bgj—cjT+75) bgir—3bgkT+3bjkA—B gjk+ci?h—j%k  *
00 (g7—3N)5? 32 (gr—kX) E1,4.2,5
[El’ E4] “loo 0 j2(jr—kT) E1,435
00 0 0 0
00 0 0 0
(7.10)
where

Eia05 = 3bgkt — 3bgjk — bjk\ + B gjk + gj*u — j°Am

Eia35 = —j (3bjk — 20kt — B jk — j*pu + jmr)
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00 —7 (—bAT+3BgT—2BjA—cr?+vj7) bk AT—3BgrT+3BjK

00 (gT—7N)T2 72(gk—kN) E26,2,5
(B2, Bs] = | g 0 72 (jr—kr) Bagas | (7.11)
00 0 0 0
00 0 0 0
where

Eagos=BghT —be AT+ =3Bk AN+ 3BkAT + gut? — Amt?

Ey635 =—T (bliT—i—Qﬁjli—Bﬁk‘T —j,u7’+m7'2)

We may assume from the trace argument that @ = a = r = 0. Now we
may argue as follows: assume that j2 + 72 # 0 and for concreteness suppose,
first of all, that j # 0. Then from the (1, 3), (2,3),2,4, (3,4) and (3,5) entries
in [Ey, E4] = 0 we see that the corresponding entries in E5 must be zero. It
follows the only possible non-zero entries in Ey, Eg are the (1,5) entries and
hence FE; and FEjg are linearly dependent. Precisely the same argument applies
if 7 7é 0 USiIlg E27 E6 and [EQ, EG] =0.

Thus we assume that j = 7 = 0. Now, assuming that 6 # 0 the (2,3) and
(3,4) entries in [Ey, E5] = Es and [Es, E5| + Ey = 0 imply that g = k =~ =
x = 0 and again F,; and Fjg are rank one and proportional.

To continue assume that j =7=60=0. If b= =0 then Ey = Eg =0 so
we suppose that b* + 32 # 0. Then from [Ey, Ey] = 0 or [Fy, Fg] = 0 we have
we have gk = kA. To satisfy this condition we put k = AX and k = Ag for
some A. Then from the (1,4) and (2,5) entries in [E3, E5] = 0 we find that
x =& = 0. Next, from the (3,5) entries in [E}, E5] = Fg and [Ey, E5]+ Ey =0
we have s = 0 otherwise F; and Eg are proportional. From the from the (1, 5)
entry in [F3, F5] = 0 we have ( = —At. From the (1,4) and (2,5) entries in
[Ey, Ey4] = 0 and [Es, E5] + E4 = 0 we find that by = y56 = 0 and hence y = 0
since b+ 3% # 0. From the (1, 4) entries in [Ey, E5] = Eg and [Ey, E5|+ E4 = 0
we have, t(g? + A\?)(bA — gB) = 0. Now bA — g8 # 0 or else E; and Fg are
proportional and also ¢ = A = 0 is untenable. Hence we must have t = 0.
Looking at the (1,4) entries in [Ey, E5] = Eg and [Es, E5) + E4 = 0, we can
only have A = 0 in order to avoid F4 and Eg being proportional. Now 3 # 0
or else g = 0 and then [Ey, Es] + E4 = 0 gives z = u. Finally, we have that
Eg and [E,, Es] = Eg differ only by sign and hence Fg = 0.

7.0.2 Case 2

This case in much simpler than case 1 so we summarize it in mainly verbal
terms. This time we note that the common centralizer of Ey4, Fg is of the form
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alcde
0bfgh . .
007 ?- k |. We choose three matrices Fy, Ey, E5 of this form, and the (3, 3)-
000a0
00000
entry of each may be assumed to be zero. Then we calculate all the required

00 * %
brackets. It turns out that Ej3 is of the form §§§% (I)] . Then looking at the
00000

brackets [F1, F4] = 0 and [Es, Eg] = 0 and applying the filiform argument we

conclude that F5 can be reduced to

cococoo ©

0 x *
(8) é g] . Calculating the brackets again
000

it follows that [Ey, Ey] = 0 and [Es, Eg] = 0 which imply that £, = Eg = 0.

7.0.3 Case 3

0

This time we note that the common centralizer of E,, Fy is of the form § Z ] .
The space of such matrices forms a decomposable, non-solvable algebr(z)l of di-
mension 13. In order to have a solvable and ultimately nilpotent Lie algebra,
we will need to have n = 0, since the 2 x 2 block to which it belongs, comprises
a solvable subalgebra. Furthermore, by taking traces, we may assume that
a = 0. We choose three matrices F1, Fo, E5 of this form. Then we calculate
all the required brackets. So define:

cooao
o Q,

O3 =

al0cde 00p 6 e 00¢tuw

00fgh 00 Xo 00zy =2
Ei=]o0ijk| FEFy=|00wrp| Fy= [006¢c¢|. (7.12)

000bm 0003 000 sw

00000 00000 0000 r

Then we find that after applying the filiform argument

000 —bd+Bd+ck—jp cut+dr—5m—kp
000 —bo+Bg+fr—j\ futgr—kA—mo

Ez= o000 0 iptjr—kw—rm (7.13)
000 0 0
000 0 0
r0000 bdT—Bdr—ckT+iup+2jpr—kpw—Kmp ]
0000 boT—Bgr—frTHiApu+2jAT—kAw—KAm
Ey= 10000 0 ;
0000 0
:8 8 8 8 b5T*ﬁdT*CIiTﬁ»i/L%#’QjPT*kpU)*Kmp = (714)
0000boT—Bgr—frTHIAUF2JAT—kAw—KAmMm
EG = 0000 0
0000 0
L0000 0 |
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where the following conditions are necessary

cw—1p=20 7.15
fw—iA=0 7.16
jB—bk+ ik —jw =0 717
br —mpB =0 7.18

(7.15)
(7.16)
(7.17)
(7.18)
b(bd — df — ck + jp) =0 (7.19)
b(bo —gB — fk+jA) =0 (7.20)
i(ip+ j7 — kw —mk) =0 ( )
B(bd —dB — ck + jp) =0 (7.22)
Blbo —gB — fr+jA) =0 (7.23)
w(ip + Jj7 — kw — mk) = 0. ( )

At this point it remains only to satisfy the brackets [E}, E5] = Eg, [Ea, E5]+
Ey=0and [Es, E5]) = 0. Thus

(B, E5] — B =
00 cO—ti —ub+cf+ds—tj —bdT+Bdr+ck T—ipp—2 jpr+kpw+k mp+cen+dw—tk—um

00 f0—xi —yb+f&+gs—xj —bo T+L g+ fr T—i\ u—2 jATHEN w+Kk A m+ fn+gw—ck—ym

00 0 —&b+il+js—0j intjw—0k—Em
00 O 0 bw—sm
00 O 0 0
(7.25)
(B, Bs) + Ey =

00 po—tw —uf+ds—tk+p bd m—pBdm+ciptcjT—ckw—2 ck m+jmp—+§ w+pn—tp—ut
00 N0—zw —yB—axk+A€+os bmo—L gm+fiu+fiTr—fhkw—2 fr m4+jAm+An—apu+o w—yr

00 0 —& B+kK s—0 k+wé wn+rkw—0 u—& T
00 0 0 Bw—sT
00 0 0 0

(7.26)

000 —(b0—Bd—ck+jp)s —bdw+pdwtckw—ipt—jwp—jtr+ktw+rkmt
000 —(bo—Bg—fr+tjN\)s —bwo+B gwt+frw—ipr—jAw—jT z+kwr+k mz

[Eg, E5] = |o000 0 —0 (ip+jT—kw—km)
000 0 0
000 0 0

(7.27)

If we calculate the condition for F4 and Eg to be linearly independent we
see that it contains a factor iu + j7 — kw — mk; hence, from 7.21 and 7.24
we see that ¢ = w = 0 and from the (3,5) entry in [F3, F5] = 0 that § = 0.
From the (3,4) and (4, 5) entries in [Ey, Es] = E3 we must have b = = 0 and
similarly, from the (3,4) and (4,5) entries in [Ey, E5] = Eg, [Es, E5| + E4, =0
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we have s = 0, otherwise j = m = k = 7 = 0. From the (1,5) and (2,5)
entries in [Es, Fy| = we must have ¢ = 2 = 0 in order to have j7 —mx # 0.

At this point it remains only to satisfy the brackets [E}, E5] = Eg, [Ea, E5]+
E4 = 0 which give the conditions:

ckT —24pT+Emp+cn—um =0 (7.28)
fET=2JA7+KAm+ fnp—ym =0 (7.29)
cjT — 2cmk + jmp +pn —ur =0 (7.30)
fiT=2fcm+jAm+An—yr =0. (7.31)

The (1,5) entry of [Ey, E5] — Egx the (2,5) entry of [Es, E5] + E4 minus the
(1,5) entry of [Es, E5] + E4x the (2,5) entry of [Ey, E5] — Eg gives 2(cA —
fp)(47 — mk)?, the non-vanishing of which is required in order to ensure that
E4 and Ejg are linearly independent. However, if, so as to eliminate n, u,y, we
form the combination (f7—m\)((77.28 —m7.30) — ((ct —mp))(77.29—m7.31))
we obtain

2 + 7)(jr — mi)(cA — fp) = 0

and hence the representation that we are seeking does not exist.

7.0.4 Case 4
00001
00010
This case follows from Case 3 by transposing about the anti-diagonal. [o00100
01000
10000

If there were a representation coming from Case 3 then there would be a not
necessarily conjugate representation in Case 4 and vice-versa.

8 Acknowledgment

The authors thank the Qatar Foundation and Virginia Commonwealth Uni-
versity in Qatar for funding this project.

References

[1] R.E. Beck and B. Kolman, Construction of Nilpotent Lie Algebras over
arbitrary fields, Proceedings of 1981 ACM Symposium of Symbolic and
Algebra Computations, Paul S Wang ed.,1981.

[2] D. Burde, Affine structures on nilmanifolds, International Journal of
Math., 5, 1996, 599-616.



138

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Ghanam and Thompson

D. Burde, On a refinement of Ado’s Theorem, Arch. Math. (Basel) 70,
1998(2), 118-127.

R. Ghanam, G. Thompson and S. Tonon, Representations for six-
dimensional nilpotent Lie algebras, Hadronic J. , 29(3), 2006, 299-317.

R Ghanam and G Thompson, Minimal matriz representations of five-
dimensional Lie algebras, Extracta Mathematicae, 30(1), 95-133, 2015.

R. Ghanam, M. Lamichhane and G. Thompson, Minimal representations
of Lie algebras with non-trivial Levi decomposition, to appear in the Ara-
bian Journal of Mathematics.

R. Ghanam, M. Lamichhane and G. Thompson, Minimal matriz repre-
sentations of decomposable Lie algebras of dimension less than or equal to
five, preprint 2017.

R. Gomez, A. Jimenez-Merchhn and Y. Khakimdjanov, Low-dimensional
filiform Lie algebras, Journal of Pure and Applied Algebra, 130, 1998,
133-158.

Y. Kang and C. Bai, 2008, Refinement of Ado’s Theorem in Low Dimen-
sions and Applications in Affine Geometry, Communications in Algebra,
36(1), 82-93.

V. V. Morozov, Classification of Nilpotent Lie Algebras in dimension siz,
Izv. Vysshikh Uchebn. 4(5), 1958, 161-171.

O. A. Nielsen, Unitary Representations and Coadjoint Orbits of Low-
dimensional Nilpotent Lie Groups, Queens University Papers in Pure and
Applied Mathematics, 63, Kingston, Ontario, Canada, 1983.

J. Patera, R.T. Sharp, P. Winternitz and H. Zassenhaus, Invariants of
real low dimension Lie algebras, J. Math. Phys., 17 1976, 986-994.

M. Rawashdeh and G. Thompson. The inverse problem for six-dimensional
codimension two nilradical Lie algebras. J. Math. Phys. 2006; 47(11):
112901.

T. Skjelbred and T, Sund, Classification of Nilpotent Lie Algebras in di-
mension siz, preprint, Univerisity of Oslo, 1977.

K.A. Umlauf, Uber die Zusammensetzung der endlichen continuierliche
Transformationgruppen insbesondere der Gruppen von Rang null, doctoral
dissertation, University of Leipzig, 1891.

M. Vergne, Cohomologie des algébres de Lie nilpotentes. Application a
I’étude de la variété des algebres de Lie nilpotentes, Bull. Math.Soc.France
78, 1970, 81-116.

Received: April 27, 2018



