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Abstract

This paper is concerned with finding minimal dimension linear rep-
resentations for six-dimensional real, indecomposable nilpotent Lie al-
gebras. It is known that all such Lie algebras can be represented in
gl(6,R). After discussing the classification of the 24 such Lie algebras,
it is shown that only one algebra can be represented in gl(4,R). A
Theorem is then presented that shows that 13 of the algebras can be
represented in gl(5,R). The special case of filiform Lie algebras is con-
sidered, of which there are five, and it is shown that each of them can be
represented in gl(6,R) and not gl(5,R). Of the remaining five algebras,
four of them can be represented minimally in gl(5,R). That leaves one
difficult case that is treated in detail in an Appendix.

Mathematics Subject Classification:17B30, 22E15, 22E25 ,22E60, 53B05

Keywords: nilpotent Lie algebra, minimal dimension linear representa-
tion.

1 introduction

This paper forms part of a series whose goal is to find linear representations
of minimal dimension for all the Lie algebras of low dimensions. In a previous
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work we have succeeded in finding linear representations for all indecomposable
Lie algebras of dimension five and less [5] and very recently we have been able
to carry out the same program for decomposable algebras of dimension five and
less [7]. We have also extended our work to Lie algebras that admit a non-
trivial Levi decomposition up to and including dimension eight [6]. Several
other authors have investigated the problem of finding minimal dimensional
representations of Lie algebras, see [2, 9] for example.

Of course it is an interesting and challenging mathematical problem to find
such minimal dimension representations but there are also compelling practical
reasons. Besides the value of having explicit representations of low-dimensional
Lie algebras, they also add to the growing body of results that seek to provide
alternatives to Ado’s Theorem for the construction of representations, see [3].
Although Ado’s theorem guarantees the existence of a matrix representation,
it is of no practical utility in constructing them and certainly not helpful in
finding representations of minimal dimension. Calculations involving symbolic
programs such as Maple and Mathematica use up lots of memory when storing
matrices; accordingly, calculations are likely to be faster if one can represent
matrix Lie algebras using matrices of a small size. On the downside, it is true
that choosing a smaller size representation may entail using more complicated
entries in the representing matrices; one can see this phenomenon even more
clearly if one constructs a matrix Lie group that gives rise to a matrix rep-
resentation of the algebra and an attendant set of invariant vector fields or
one-forms. One cannot have simultaneous simplicity in all aspects of a Lie
algebra or Lie group representation and so various choices among such rep-
resentations have to be made according to the kind of application one has in
mind.

In this paper we are concerned with finding linear representations for real
indecomposable nilpotent Lie algebras in dimension six that are of minimal
dimension. It is convenient to define an invariant µ(g) for a Lie algebra g to be
the dimension of a minimal dimensional representation of g. It is known from
previous work [4] that for all the indecomposable six-dimensional nilpotent Lie
algebras µ ≤ 6. We adopt the numbering given in [10] and [12]. Refer also to
Section 2 below for a refinement in this classification.

In this article we give a Lie group corresponding to each of the 24 six-
dimensional nilpotent Lie algebras that is a subgroup of GL(4,R), GL(5,R)
or GL(6,R), respectively. The representation for the Lie algebra is then easily
obtained by differentiating and evaluating at the identity. In order to ensure
that we have a bona fide group representation we provide also a list of right-
invariant vector fields in each case.

An outline of this paper is as follows. In Section 2 we give a brief description
of the indecomposable six-dimensional nilpotent Lie algebras. Since we know
that for the indecomposable six-dimensional nilpotent Lie algebras µ ≤ 6, in
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Section 3 we take up the issue of characterizing those algebras for which µ = 4.
In fact there is just one, 6.14 a = −1, which is isomorphic to the space of 4× 4
strictly upper triangular matrices. Thus, for the remaining 23 algebras, we
know that µ = 5 or 6. In Section 4 we present a result about representations
that, where applicable, implies that µ = 5. In fact it is applicable to 13 of
the 24 algebras. In Section 5 we discuss an important class of nilpotent Lie
algebras known as filiform Lie algebras. We show quite generally, that for an
n-dimensional filiform, µ ≥ n. Among the indecomposable six-dimensional
nilpotent Lie algebras, just five are filiform and it happens that we know
representations in gl(6,R) for each of these five algebras and hence the value
of µ is settled in those cases. Remarkably, that leaves just one “difficult” case,
algebra 6.10, to discuss ; what makes it difficult, is that Theorem 4.1 is not
applicable and we cannot find a representation in gl(5,R) although we have
one in gl(6,R); therefore to claim that µ = 6 we have to prove that there
is no representation in gl(5,R). It is much to be emphasized that, although
the conditions that arise in finding representations are polynomial, they are far
too complicated to solve in a simple algorithmic manner; rather, the conditions
have to be solved interactively according to their significance for the algebra
concerned. One can see the kind of complications that are involved in the
algebra 6.10 in the Appendix.

For the convenience of the reader we have listed also minimal dimension
representations for the indecomposable nilpotent Lie algebras of dimension
three, four and five. The representations are listed in Section 6. Most of the
calculations were done with MAPLE.

2 Classifying nilpotent Lie algebras in dimen-

sion six

The six-dimensional nilpotent Lie algebras have been studied and classified
independently by several different groups of authors. We summarize and syn-
thesize these various accounts. In 1958 Morozov obtained a classification of
the six-dimensional nilpotent Lie algebras over R [10]. Morozov discerned 22
classes of algebra of which four depended on a single parameter that he de-
noted by a in each case. In [10] these four cases were numbered 6.5, 6.10, 6.14
and 6.18, respectively. This classification is reproduced verbatim in [12] and is
used below in Section 5. Later on Winternitz et al. refined Morozov’s classifi-
cation in, as far as we are aware, unpublished notes. In the later version they
realized that in all four cases where the parameter a entered, the parameter
could be removed and reduced to ±1. Furthermore it turned out that the case
6.5(a = 1) was decomposable and that 6.10(a = 1) was equivalent to case
6.8. In Section 6 we give this isomorphism. Thus altogether there are 24 in-
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decomposable nilpotent Lie algebras in dimension six, none of which contains
parameters, up to isomorphism. Precisely the same number is found in [1],
[11] and [14], albeit using different bases.

3 Algebras for which µ = 4

3.1 The centralizer of a central element

Suppose that we have a six-dimensional nilpotent indecomposable Lie subalge-
bra g of gl(4,R). Since g is nilpotent it must have a non-trivial center that we
may assume contains a strictly upper triangular matrix and we denote it by C.
The only possibilities are that C has rank three, two or one. It is impossible for
C to have rank three, for in that case the centralizer of C is four-dimensional
abelian.

Next suppose that C has rank two; then we may assume that C =
[
0 I2
0 0

]
where I2 denotes the 2 × 2 identity matrix and each of the zeroes are also
2 × 2. The centralizer of C is of the form [ A B

0 A ] where A,B are arbitrary
2×2 matrices and comprises an eight-dimensional subalgebra. Given two such

matrices
[
A1 B1
0 A1

]
and

[
A2 B2
0 A2

]
their commutator is

[
[A1,A2] [A1,B2]+[B1,A2]

0 [A1,A2]

]
and

hence the central element C would not be in the derived algebra. In conclusion,

C must have rank one and as such we may assume that C =

[
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
.

3.2 Trace argument

Next, we shall make the following remark about taking traces. In a matrix
representation of a Lie algebra we can always modify matrices not contained
in the derived algebra by adding multiples of the identity and in particular, we
may always assume that such a matrix has trace zero. We shall refer to this
remark as the “trace argument” and we shall make use of it in the Appendix
when investigating algebra 6.10.

3.3 Reducing the dimension of the subalgebra

Coming back to the rank one matrix C, its centralizer is given by

[
a b c d
0 e f g
0 h i j
0 0 0 a

]
.

The 2×2 central block must be a nilpotent subalgebra of gl(2,R) and so it may
be assumed to be of the form

[
0 f
0 0

]
or [ e 0

0 i ] or
[
e f
−f e

]
and the nilpotent algebra

that we seek must be a subalgebra of one of these seven or eight dimensional
subalgebras. Furthermore we may assume in these last two cases that a = 0
by taking traces. Now we have three solvable seven-dimensional algebras; the
first of them has a six-dimensional nilradical that is isomorphic to 6.14 a = −1
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and the others have five-dimensional nilradical that is isomorphic to the five-
dimensional Heisenberg algebra. We consider each of them in turn.

In the first case we have the space of matrices

 s1 s2 s3 s4

0 0 s5 s6

0 0 0 s7

0 0 0 s1

 that we take in

the order s1, s2, s3, s4, s5, s6, s7 and obtain the following Lie brackets

[e1, e2] = e2, [e1, e3] = e3, [e1, e6] = −e6, [e1, e7] = −e7,
[e2, e5] = e3, [e2, e6] = e4, [e3, e7] = e4, [e5, e7] = e6. (3.1)

We enquire whether it is possible to have a six-dimensional nilpotent subalge-
bra that involves e1. First of all we dualize the structure equations so as to
obtain

dθ1 = 0, dθ2 = −θ1θ2, dθ3 = −θ1θ3 − θ2θ5,
dθ4 = −θ2θ6 − θ3θ7, dθ5 = 0, dθ6 = θ1θ6 − θ5θ7,
dθ7 = θ1θ7.

(3.2)

where the θi, i = 1..7 comprise the basis dual to ei, i = 1..7. We suppose
that

θ1 = bθ2 + cθ3 + aθ4 + eθ5 + fθ6 + gθ7 (3.3)

is a dependence relation among the one-forms which expresses the existence of
a six-dimensional subalgebra that is not obtained by setting just θ1 = 0. Now
we substitute 3.3 into 3.2 and dθ1 = 0 gives

abθ2θ4 + (be− 1)θ2θ5 + (b(f + 1)− a)θ2θ6 + 2bgθ2θ7 + acθ3θ4 + ceθ3θ5

+c(f + 1)θ3θ6 + (2cg − 1)θ3θ7 + aθ4θ6 + agθ4θ7 + eθ5θ6 + egθ5θ7

+(f − 1)gθ6θ7 = 0.
(3.4)

Condition 3.4 is impossible to satisfy; for example from the θ2θ5 term we
have e = 1

b
and from the θ3θ7 term we have g = 1

2c
in which case the θ5θ7

term is not zero. Thus the only six-dimensional subalgebra is the obvious one
obtained by putting e1 = 0 and a fortiori no such nilpotent subalgebra.

Now we consider the second case where the matrix Lie algebra is given by 0 s3 s4 s5

0 s1 0 s6

0 0 s2 s7

0 0 0 0

 with the following Lie brackets

[e1, e3] = −e3, [e1, e6] = e6, [e2, e4] = −e4, [e2, e7] = e7, [e3, e6] = e5, [e4, e7] = e5.
(3.5)

The dual structure equations are given by
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dθ1 = 0, dθ2 = −θ1θ2, dθ3 = −θ1θ3 − θ2θ5, dθ4 = −θ2θ6 − θ3θ7, dθ5 = 0,
dθ6 = θ1θ6 − θ5θ7, dθ7 = θ1θ7.

(3.6)
Now we assume that there is a dependence relation of the form

aθ1 + bθ2 + cθ3 + hθ4 + eθ5 + fθ6 + gθ7 = 0. (3.7)

Then taking the exterior derivative of 3.7 and substituting the exterior deriva-
tives from 3.6 gives

−bcθ2θ3 + ahθ2θ4 + bfθ2θ6 − agθ2θ7 + chθ3θ4 + ceθ3θ5 + (2cf − ae)θ3θ6

+cgθ3θ7 + fhθ4θ6 − aeθ4θ7 + efθ5θ6 − fgθ6θ7 = 0. (3.8)

Condition 3.8 may be solved in four different ways: c = e = f = g = h =
0, b = e = f = g = h = 0, b = c = e = g = h = 0, a = c = f = 0 and the
corresponding one-form condition is given by aθ1+bθ3 = 0, aθ1+cθ3 = 0, aθ1+
fθ6 = 0, bθ2 + eθ5 + gθ6 + hθ7 = 0, respectively. However these conditions
are imposed, there always remains a condition of the form dθi = cθiθj + ...
where c 6= 0, which implies that the six-dimensional subalgebra that we are
seeking is not nilpotent. The argument for the third matrix subalgebra is
similar and indeed the second and third cases are complex equivalent. What we
have just argued is that up to isomorphism, the only six-dimensional nilpotent
subalgebra of gl(4,R) is the space of strictly upper triangular matrices.

Theorem 3.1 The only six-dimensional nilpotent subalgebra of gl(4,R) is iso-
morphic to the subspace of strictly upper triangular matrices. As an abstract
Lie algebra it is 6.14 a = −1.

Corollary 3.1 The most general representation of 6.14 a = −1 in gl(4,R) is
given by, up to change of basis,

λa+dµ+fν a b c

0 λa+dµ+fν d e

0 0 λa+dµ+fν f

0 0 0 λa+dµ+fν


where λ, µ, ν ∈ R are arbitrary.

If we order the basis according to the parameters a, b, c, d, e, f we find the
following non-zero brackets for 6.14 a = −1

[e1, e4] = e2, [e1, e5] = e3, [e2, e6] = e3, [e4, e6] = e5. (3.9)
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If we make the change of basis

e1 = e1 − e6, e2 = e1 + e6, e3 = e4, e4 = e2 + e5, e5 = e2 − e5, e6 = 2e3 (3.10)

we obtain

[e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e5, [e2, e5] = −e6 (3.11)

which is the form given in [12].

4 A representation theoretic result

In this Section we present a result which has been given before in the context
of solvable Lie algebras.

Theorem 4.1 ([13]) Suppose that the n-dimensional Lie algebra g has a basis
{e1, e2, ..., en} and only the following non-zero brackets: [ea, ei] = Cj

aiej, where
1 ≤ i, j ≤ r and r + 1 ≤ a, b, c ≤ n. Then g has a faithful representation as a
subalgebra of gl(r + 1,R).

In the proof of the Theorem 4.1 each ea is represented by the matrix Cj
ai (for

fixed a) augmented by (r + 1)th rows and columns of zeroes. For the ideal
spanned by the ei’s, map ei to an (r + 1) × (r + 1) matrix whose only non-
zero entry is 1 in the (r + 1, i)th position. Said differently, the Theorem is
applicable to an algebra that has an abelian ideal and complementary abelian
subalgebra. In the context of the six-dimensional nilpotent indecomposable Lie
subalgebras, Theorem 4.1 is applicable to algebras 6.1 and 6.2 where r = 5 and
6.3, 6.4, 6.5, 6.7, 6.12, 6.16 and 6.17 where r = 4. The representations appearing
in Section 6 are not necessarily constructed by using Theorem 4.1 although
they are all minimal.

5 The standard filiform algebra

In this Section we shall consider a very special class of nilpotent Lie algebras

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, ..., [e1, en−1] = en. (5.1)

There is one such algebra in each dimension n beginning with n = 3. In [12]
these algebras appear as 3.1, 4.1, 5.2, 6.2 for n = 3, 4, 5, 6. Of course the main
concern in this paper is the case n = 6. More generally a nilpotent Lie algebra
is said to be filiform if the lower central series is of maximal length [16], which
means that its dimensions are n, n − 2, n − 3, n − 4, ...1, 0. For n = 6 the
filiforms are 6.2, 6.19, 6.20, 6.21, 6.22. We shall refer to conditions 5.1 as the
standard filiform Lie algebra. All filiforms are infinitesimal deformations of the
standard one in the sense that in a suitable basis they contain all the brackets
in 5.1 as well as possibly others: see [16] and [8].
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Theorem 5.1 For the standard filiform Lie algebra of dimension n we have
µ ≥ n.

Proof 5.1 First of all we begin by treating 5.1 as a complex Lie algebra. We
shall argue that if we cannot find a representation with µ < n for the complex
Lie algebra, then there can be no representation with µ < n for the real Lie
algebra.

Suppose then that we have a representation in gl(r,R) for the complex Lie
algebra. Since we are working over C, it may be assumed in view of Lie’s
Theorem that the matrices in the representation are simultaneously upper tri-
angular. Indeed, it is sufficient to suppose that the matrices representing e1
and e2, that we shall denote by E1 and E2, respectively, and likewise for all the
remaining basis vectors, are simultaneously upper triangular.

Next, observe that [e1, en] = 0 and hence [E1, En] = 0. Furthermore we
have that E4 = [E1, [E1, E2]] and more generally Ek = ad(E1)

k−2E2 for k ≥ 3.
It follows that Ek is strictly upper triangular for 3 ≤ k ≤ n.

Now we shall have to be more specific, so we shall label the entries of E1

and E2 as aij and bij, respectively. Then we find that

E3 =


0 b12(a11−a22)−a12(b11−b22) ∗ ∗ ∗ ... ∗
0 0 b23(a22−a33)−a23(b22−b33) ∗ ∗ ... ∗
0 0 0 E3,3,4 ∗ ... ∗
0 0 0 0 ∗ ... ∗
...

...
...

... ∗
... E3,n−1,n

0 0 0 0 0 ... 0

 (5.2)

where
E3,3,4 = b34(a33 − a44)− a34(b33 − b44),

and
E3,n−1,n = bn,n−1(an−1,n−1 − an,n)− an−1,n(bn−1,n−1 − bn,n).

Moreover we find that

E4 =


0 (a11−a22)(b12(a11−a22)−a12(b11−b22)) ∗ ∗ ...
0 0 (a22−a33)(b23(a22−a33)−a23(b22−b33)) ∗ ...
0 0 0 E4,3,4 ...
0 0 0 0 ...
...

...
...

... ...
0 0 0 0 0


(5.3)

where E4,3,4 = (a33 − a44)(b34(a33 − a44)− a34(b33 − b44)) and

[E2, E3] =


0 (b11−b22)(b12(a11−a22)−a12(b11−b22)) ∗ ∗ ...
0 0 E2,3,2,3 ∗ ...
0 0 0 E2,3,3,4 ...
0 0 0 0 ...
...

...
...

... ...
0 0 0 0 0

 (5.4)

where
E2,3,2,3 = (b22 − b33)(b23(a22 − a33)− a23(b22 − b33)),
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E2,3,3,4 = (b33 − b44)(b34(a33 − a44)− a34(b33 − b44)),

and

En =


0 (a11−a22)n−3(b12(a11−a22)−a12(b11−b22)) ∗ ∗ ...
0 0 En,2,3 ∗ ...
0 0 0 En,3,4 ...
0 0 0 0 ...
...

...
...

... ...
0 0 0 0 0

 (5.5)

where

En,2,3 = (a22 − a33)n−2(b23(a22 − a33)− a23(b22 − b33))

En,3,4 = (a33 − a44)n−3(b34(a33 − a44)− a34(b33 − b44))

and

[E1, En] =


0 (a11−a22)n−2(b12(a11−a22)−a12(b11−b22)) ∗ ∗ ...
0 0 E1,n,2,3 ∗ ...
0 0 0 E1,n,3,4 ...
0 0 0 0 ...
...

...
...

... ...
0 0 0 0 0

 (5.6)

where

E1,n,2,3 = (a22 − a33)n−2(b23(a22 − a33)− a23(b22 − b33))

E1,n,3,4 = (a33 − a44)n−2(b34(a33 − a44)− a34(b33 − b44))

Now since [E1, En] = 0 it follows that for 1 ≤ k ≤ n− 1

(ak,k − ak+1,k+1)(bk,k+1(ak,k − ak+1,k+1)− ak,k+1(bkk − bk+1,k+1)) = 0 (5.7)

and from [E2, E3] = 0 we find that for 1 ≤ k ≤ n− 1

(bk,k − bk+1,k+1)(bk,k+1(ak,k − ak+1,k+1)− ak,k+1(bkk − bk+1,k+1)) = 0. (5.8)

From 5.7 and 5.8 we deduce that

bk,k+1(ak,k − ak+1,k+1)− ak,k+1(bkk − bk+1,k+1) = 0 (5.9)

for 1 ≤ k ≤ n − 1. Hence in E3 the second upper diagonal, that is, the one
above the main diagonal is zero. Now we calculate again with the new form of
E3. Then we find

E4 =


0 0 (a11−a33)E3,1,2 ∗ ∗ ...
0 0 0 (a22−a44)E3,2,3 ∗ ...
0 0 0 0 (a33−a55)E3,3,4 ...
0 0 0 0 ...
...

...
...

... ...
0 0 0 0 0

 (5.10)
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and

En =


0 0 (a11−a33)n−3E3,1,2 ∗ ∗ ...

0 0 0 (a22−a44)n−3E3,2,3 ∗ ...

0 0 0 0 (a33−a55)n−3E3,3,4 ...
0 0 0 0 ...
...

...
...

... ...
0 0 0 0 0

 (5.11)

and

[E1, En] =


0 0 (a11−a33)n−2E3,1,2 ∗ ∗ ...

0 0 0 (a22−a44)n−2E3,2,3 ∗ ...

0 0 0 0 (a33−a55)n−2E3,3,4 ...
0 0 0 0 ...
...

...
...

... ...
0 0 0 0 0

 . (5.12)

It follows that in E4 the third upper diagonal is zero. Continuing in the same
manner we deduce that the fourth upper diagonal of E5 is zero and eventually
that the first n − 1 upper diagonals in En are zero. Since the representation
is in gl(r,R), if r < n we would have En = 0. Hence there can be no no such
representation.

According to Vergne [16] every filiform algebra is a deformation of 5.1
in the sense that in an appropriate basis it contains all the brackets of 5.1
together with extra ones coming from a certain two cycle. If we think about
the conditions that were used in Theorem 5.1 we see that in addition to 5.1 all
that was required was that [e2, e3] = 0. Let us examine whether this condition
itself can be removed. We note first of all that if [e2, e3] is not zero it cannot
contain e1, e2 or e3 otherwise the Lie algebra will not be nilpotent in view of
Engel’s Theorem. Condition 5.7 is valid just as before. Looking at [E2, E3]
which is a linear combination of E4, E5, ..., En condition 5.8 no longer holds
directly; however, we now have

(bk,k−bk+1,k+1−P (ak,k−ak+1,k+1))(bk,k+1(ak,k−ak+1,k+1)−ak,k+1(bkk−bk+1,k+1) = 0
(5.13)

where P is some polynomial of degree at most n−3. Now in view of condition
5.7 condition 5.13 reduces to condition 5.8 and hence the second upper diagonal
in E3 is zero as before. The remainder of the argument proceeds as before.
Hence

Corollary 5.1 For any filiform Lie algebra of dimension n we have µ ≥ n.

Extending the ideas in [16], Burde reached similar conclusions for filiform
algebras [2]. Finally, we remark that even if an algebra is not itself filiform,
it may possess some filiform characteristics; for example, it may contain a
subalgebra that is isomorphic to a filiform subalgebra of lower dimension. In
that case one may be able to apply the “filiform argument” more generally.
This line of reasoning is followed in the Appendix for algebra 6.10.
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6 Minimal Representations

Below, corresponding to each Lie algebra, we give a Lie group whose Lie algebra
is isomorphic to the given six-dimensional nilpotent Lie algebra. We have
found it more convenient to work with the group, which can be obtained by
exponentiating the Lie algebra representation. As such we only have to give a
single 6× 6 or 5× 5 matrix rather than six such matrices. The typical element
of the group is denoted by S. The representation for the algebra is then easily
obtained by differentiating and evaluating at the identity. In the list below the
vector fields do give a faithful representation of the algebra.

dimension 3
3.1: [e2, e3] = e1:

S =

1 x z
0 1 y
0 0 1

 .
Right-invariant vector fields Dz, Dy, Dx + yDz.

dimension 4
4.1: [e2, e4] = e1, [e3, e4] = e2:

S =


1 w w2

2
x

0 1 w y
0 0 1 z
0 0 0 1

 .
Right-invariant vector fields: Dx, Dy, Dz, Dw + yDx + zDy

dimension 5

5.1: [e3, e5] = e1, [e4, e5] = e2:

S =


1 0 x z
0 1 w y
0 0 1 q
0 0 0 1

 .
Right-invariant vector fields: Dy, Dz, Dq, Dx + qDz, Dw + qDy.
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5.2: [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3: (filiform)

S =


1 w w2

2
w3

6
q

0 1 w w2

2
x

0 0 1 w y
0 0 0 1 z
0 0 0 0 1

 .
Right-invariant vector fields: Dq, Dx, Dy, Dz, Dw + xDq + yDx + zDy.

5.3: [e3, e4] = e2 , [e3, e5] = e1, [e4, e5] = e3:

S =


1 0 − z

2
y−zw

2
q

0 1 w w2

2
x

0 0 1 w y
0 0 0 1 z
0 0 0 0 1

 .
Right-invariant vector fields: Dx,−Dq, Dy + z

2
Dq, Dz − y

2
Dq, Dw + yDx + zDy.

5.4: [e2, e4] = e1, [e3, e5] = e1:

S =


1 x y q
0 1 0 z
0 0 1 w
0 0 0 1

 .
Right-invariant vector fields: Dq, Dz, Dw, Dx + zDq, Dy + wDq.

5.5: [e3, e4] = e1, [e2, e5] = e1 [e3, e5] = e2:

S =


1 q w + q2

2
x

0 1 q y
0 0 1 z
0 0 0 1

 .
Right-invariant vector fields: Dx, Dy, Dz, Dw + zDx, Dq + yDx + zDy.

5.6: [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3: (filiform)

S =


1 2w w2 − z y − zw + w3

3
q

0 1 w w2

2
x

0 0 1 w y
0 0 0 1 z
0 0 0 0 1

 .
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Right-invariant vector fields: 2Dq,−Dx, Dy+zDq,−Dz+yDq,−(Dw+2xDq+
yDx + zDy)

dimension 6

6.1: [e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6 :

S =


1 w w2

2
x p

0 1 w y q
0 0 1 z 0
0 0 0 1 0
0 0 0 0 1

 .
Right invariant vector fields: −qDp − yDx − zDy −Dw, Dz, Dy, Dx, Dq, Dp.

6.2: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6:

S =



1 w w2

2
w3

6
w4

24
p

0 1 w w2

2
w3

6
q

0 0 1 w w2

2
x

0 0 0 1 w y
0 0 0 0 1 z
0 0 0 0 0 1

 .

Right invariant vector fields: −qDp−xDq−yDx−zDy−Dw, Dz, Dy, Dx, Dq, Dp.

6.3: [e1, e2] = e6, [e1, e3] = e4, [e2, e3] = e5:

S =



1 0 z z2

2
p

0 1 q x y

0 0 1 z w

0 0 0 1 0

0 0 0 0 1


Right-invariant vector fields: Dw, Dz + wDp, Dq + wDy + zDx, Dy, Dx, Dp.

6.4: [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = e6:

S =


1 x y q p
0 1 0 z y
0 0 1 w 0
0 0 0 1 0
0 0 0 0 1

 .
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Right-invariant vector fields: −Dx − yDp − zDq, Dy + wDq, Dz,−Dw, Dp, Dq.

6.5: [e1, e3] = e5, [e1, e4] = e6, [e2, e3] = −e6, [e2, e4] = e5:

S =


1 x y q p
0 1 0 w z
0 0 1 −z w
0 0 0 1 0
0 0 0 0 1

 .

Right-invariant vector fields: Dw, Dz, Dy−zDq+wDp, Dx+zDp+wDq, Dp, Dq.

6.6: [e1, e2] = e6, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5:

S =



1 q w x p

0 1 q y q2

2

0 0 1 z q

0 0 0 1 0

0 0 0 0 1


Right-invariant vector fields: Dq + zDy + yDx + qDw + q2

2
Dp,−(Dw + zDx +

qDp), Dz,−Dy, Dx,−Dp.

6.7: [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e6:

S =



1 0 0 p q

0 1 z z2

2
x

0 0 1 z y

0 0 0 1 w

0 0 0 0 1


.

Right-invariant vector fields: −(Dw+zDy+yDx),−(Dq+zDp), Dz, Dy, Dx, Dp.

6.8: [e1, e2] = e3 + e5, [e1, e3] = e4, [e2, e5] = e6:

S =


1 0 −1

2
z p+ 1

2
y − 1

2
zw q

0 1 w 1
2
w2 x

0 0 1 w y
0 0 0 1 z
0 0 0 0 1

 .
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Right-invariant vector fields: Dz−y
2
Dq,−(zDy+yDx+Dw),−Dp−zDq,−Dq,

z
2
Dq−

Dy +Dp,−Dx.

6.9: [e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6, [e2, e3] = e6:

S =



1 0 w − y z p

0 1 2w − y wy − x+ 2 z q

0 0 1 w x

0 0 0 1 y

0 0 0 0 1


.

Right-invariant vector fields: Dw+yDx+wDz+xDp+2xDq,−Dx+yDq, Dy−
wDz − xDp − xDq, Dp,−Dz − yDp − 2yDq, Dq.

6.10: [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e2, e3] = ae6, [e2, e4] = e5: As
in case 6.5 a can be reduced to a = ±1. Case a = 1 algebra is equivalent to
algebra 6.8. The change of basis that changes 6.8 to 6.10(a = 1) is given by:
e1 = e1 + e2, e2 = e1 − e2, e3 = −2(e3 + e5), e4 = 2(e5 − e3), e5 =
−2(e4 + e6), e6 = 2(e6 − e4).

a = −1

S =



1 0 −z w y − zw q

0 1 w z w2

2
x

0 0 1 0 w 2y
0 0 0 1 0 p
0 0 0 0 1 2z
0 0 0 0 0 1

 .

Right-invariant vector fields:
√

2(pDq + 2yDx + zDy + Dw,−2yDq + pDx +
Dz,
√

2(−2zDq −Dy),−4Dp, 4Dx, 4
√

2Dq.

6.11: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e6:

S =



1 y x− yz + y2

2
w p

0 1 y − z yz − z2

2
− x q

0 0 1 z x

0 0 0 1 y

0 0 0 0 1


.

Right-invariant vector fields: 1

2.3
1
3

(2Dy+(2yz−z2−2x)Dw+2qDp+2xDq), 3
2
3 (Dz+

yDx−xDq), 3
1
3 (Dx+zDw+xDp−yDq), Dw+yDp−2Dq, 3

2
3Dp, 3(Dw+yDp+
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Dq).

6.12: [e1, e3] = e4, [e1, e4] = e6, [e2, e5] = e6:

S =


1 w w2

2
q x

0 1 w 0 y
0 0 1 0 z
0 0 0 1 p
0 0 0 0 1

 .
Right-invariant vector fields: −(Dw + yDx + zDy), Dp, Dz, Dy, Dq + pDx, Dx.

6.13: [e1, e2] = e5, [e1, e3] = e4, [e1, e4] = e6, [e2, e5] = e6:

S =


1 w w2

2
q x

0 1 w p y
0 0 1 0 z
0 0 0 1 p
0 0 0 0 1

 .
Right-invariant vector fields : (Dw+pDq+yDx+zDy), Dp+pDy,−Dz, Dy,−Dq−
pDx,−Dx.

6.14: [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e5, [e2, e5] = ae6: a can be reduced
to a = ±1.

1. a = 1

S =



1 p q 1
2
(p2 + q2) x

0 1 0 p y

0 0 1 q z

0 0 0 1 w

0 0 0 0 1


Right-invariant vector fields: Dp+yDx+wDy, Dq+zDx+wDz, Dw,−Dy,−Dz, Dx.

2. a = −1

S =


1 x y z
0 1 w p
0 0 1 q
0 0 0 1

 .
Right-invariant vector fields: 1

2
(Dq + Dx + wDy + pDz),

1
2
(Dx − Dq +

wDy + pDz),−2Dw − 2qDp, Dy −Dp + qDz, Dp +Dy + qDz, Dz.
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6.15: [e1, e2] = e3 + e5, [e1, e3] = e4, [e1, e4] = e6, [e2, e5] = e6:

S =


1 2w w2 − z p+ y − zw + w3

3
q

0 1 w w2

2
x

0 0 1 w y
0 0 0 1 z
0 0 0 0 1

 .
Right-invariant vector fields are: Dw + zDy + yDx + 2xDq, Dz − yDq,−Dy +
zDq + 2Dp, Dx,−2Dp − 2zDq,−2Dq.

6.16: [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e5, [e2, e4] =
e6:

S =


1 w p+ w2

2
pw + w3

6
q

0 1 w p+ w2

2
x

0 0 1 w y
0 0 0 1 z
0 0 0 0 1

 .
Right-invariant vector fields: −(Dw + xDq + yDx + zDy),−(Dp + yDq +
zDx), Dz, Dy, Dx, Dq.

6.17: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e5] = e6:

S =


1 w w2

2
p+ w3

6
q

0 1 w w2

2
x

0 0 1 w y
0 0 0 1 z
0 0 0 0 1

 .
Right-invariant vector fields: −(Dw + xDq + yDx + zDy), Dz, Dy, Dx, Dp +
zDq, Dq.

6.18: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e5, [e2, e5] = ae6. As in
6.5, 6.10 and 6.14 a can be reduced to a = ±1.

1. a = 1

S =



1 y + 3 z y2

2
+ 5yz + 15z2

2
− 2x w p

0 1 y + 5 z yz + 5z2

2
− x q

0 0 1 z x

0 0 0 1 y

0 0 0 0 1


.
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Right-invariant vector fields: Dy + (5
2
z2 + yz − x)Dw + qDp + xDq, Dz +

yDx+(3yz+15
2
z2−3x)Dw+3qDp+5xDq, Dx−2zDw−2xDp−yDq, Dq, Dp, Dw+

yDp.

2. a = −1

S =



1 p x y w

0 1 q pq − x z

0 0 1 p x

0 0 0 1 q

0 0 0 0 1


Right-invariant vector fields: 1

2
(−Dp + 2 Dq − (q − 2) Dx + (2 p+ x− pq) Dy +

2 (x− q) Dz + (2 x− z) Dw), 1
2
(Dp + 2 Dq + (q + 2) Dx + (pq + 2 p− x) Dy +

2 (x− q) Dz + (2 x+ z) Dw),Dx + (p− 2) Dy − qDz + (x− 2 q) Dw ,−D y −
2 Dz − (q + 2) Dw ,Dy − 2 Dz + (q − 2) Dw ,−2 Dw .

6.19: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6:

S =



1 w w2

2
z + w3

6
w4

24
− y + zw p

0 1 w w2

2
w3

6
q

0 0 1 w w2

2
x

0 0 0 1 w y
0 0 0 0 1 z
0 0 0 0 0 1

 .

Right-invariant vector fields: Dw+qDp+xDq+yDx+zDy,
1
2
(Dz+yDp),−1

2
(Dy−

zDp),
1
2
Dx,−1

2
Dq,

1
2
Dp.

6.20: [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e5, [e2, e4] =
e6:

S =



1 w z + w2 zw − 2y + w3

3
3x− 2yw + w2z

2
+ w4

12
p

0 1 2w w2 − z y − zw + w3

3
q

0 0 1 w w2

2
x

0 0 0 1 w y
0 0 0 0 1 z
0 0 0 0 0 1

 .

Right-invariant vector fields: Dw + qDp + 2xDq + yDx + zDy, Dz + xDp −
yDq,−(Dy − 2yDp + zDq), Dx + 3zDp,−2Dq, 2Dp.
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6.21: [e1, e2] = e3, [e1, e5] = e6, [e2, e3] = e4, [e2, e4] = e5, [e3, e4] = e6:

S =


1 z −y + zw x− yw + 1

2
zw2 −q + xw + zw3

6
− yw2

2
p

0 1 w w2

2
w3

3
q

0 0 1 w w2

2
x

0 0 0 1 w y
0 0 0 0 1 z
0 0 0 0 0 1

 .

Right-invariant vector fields: Dz+qDp, Dw+xDq+yDx+zDy, Dy−xDp,−(Dx+
yDp), Dq − zDp,−2Dp.

6.22: [e1, e2] = e3, [e1, e3] = e5, [e1, e5] = e6, [e2, e3] = e4, [e2, e4] =
e5, [e3, e4] = e6:

S =



1 z wz−y x−yw+ 1
2
zw2− 1

3
z2 xw−q− 1

2
yw2+ 1

3
zy+ 1

6
zw3− 1

3
z2w p

0 1 w w2

2
− z

3
2
3
y+ 1

6
w3− 1

3
zw q

0 0 1 w w2

2
+ z

3
x

0 0 0 1 w y

0 0 0 0 1 z

0 0 0 0 0 1

 .

Right-invariant vector fields: Dz + 1
3
zDx − 1

3
yDq + qDp, Dw + zDy + yDx +

xDq, Dy + 2
3
zDq − xDp,−Dx − yDp, Dq − zDp,−2Dp.

7 Appendix: Algebra 6.10

The first remark is that the definition of Algebra 6.10 is

[e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e2, e3] = −e6, [e2, e4] = e5. (7.1)

Now make the change of basis

e1 = e1, e2 = e2, e3 = e3, e4 = e5, e5 = −e4, e6 = −e6. (7.2)

Then the algebra becomes

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e6, [e2, e5] = −e4. (7.3)

Hence we can treat both 6.9 and 6.10 by writing the last bracket as [e2, e5] +
Ce4 = 0 where C = 0, 1. We shall use the form given above for algebra 6.10
with C = 1 in order to demonstrate that it has no representation in gl(5,R).
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Now we assume that there is a matrix representation in which E1, E2 and
E5 are upper triangular. Then by applying the filiform argument we find that
E4 and E6 are of the form

E4 =

[
0 0 0 a c
0 0 0 0 b
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]
E6 =

[
0 0 0 α γ
0 0 0 0 β
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]
. (7.4)

We shall analyze the possible normal forms for the subspace spanned by E4

and E6.

Lemma 7.1 Assuming that the pencil of matrices spanned by E4 and E6 is
two-dimensional, there is a basis for it in one of the following four normal
forms:[

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

][
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]
;

[
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

][
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]
;

[
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

][
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]
;

[
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

][
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]
.

(7.5)

Proof 7.1 Suppose first of all that a2 + α2 6= 0. Then we may reduce to
a = 1, α = 0. Next, assuming that β 6= 0 we can reduce to b = 0 and β = 1.

Then we conjugate by the matrix P =

[
1 δ 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −c
0 0 0 0 1

]
(on the left by P−1 and on

the right by P ) which reduces c and δ to 0.
Now loop back and assume from the outset that a = α = 0. Then we cannot

have b = β = 0 or else the matrices would be proportional. Without loss of
generality we may suppose that b = 1 and β = 0, thence to γ = 0 and c = 1.

The last case to take care of is where a = 1, α = 0 and β = 0. Then we
assume that γ = 1 and c = 0. Then, assuming that b 6= 0, we conjugate by

the matrix P =

[
1 0 0 0 0
0 b 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
(on the left by P−1 and on the right by P ) which

reduces b to 1.

7.0.1 Case 1

Now we start again from one of these normal forms. For the first such case,
the intersection of the centralizers of E4 and E6 is a subalgebra consisting of

matrices of the form

[
a b c d e
0 a f g h
0 0 i j k
0 0 0 a b
0 0 0 0 a

]
.

Accordingly we put

E1 =


a b c d e

0 a g h i

0 0 j k m

0 0 0 a b

0 0 0 0 a

E2 =


α β γ δ ε

0 α λ σ ι

0 0 τ κ µ

0 0 0 α β

0 0 0 0 α

E5 =


r s t u v

0 r x y z

0 0 θ ξ ζ

0 0 0 r s

0 0 0 0 r

 . (7.6)
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and then find that

E3 =


0 0 bλ−β g+cτ−jγ bσ−β h+cκ−γ k −bδ+bι+β d−β i+cµ−γ m

0 0 gτ−jλ gκ−kλ −bσ+β h+gµ−λm

0 0 0 jκ−kτ −bκ+β k+jµ−mτ

0 0 0 0 0

0 0 0 0 0

 (7.7)

E4 =


0 0 bgτ−2 bjλ+β gj−cjτ+γ j2 bgκ−2 bkλ+β gk+cjκ−2 ckτ+γ jk ∗

0 0 −(gτ−jλ)j gjκ−2 gkτ+jkλ E4,2,5

0 0 0 j(jκ−kτ) E4,3,5

0 0 0 0 0

0 0 0 0 0

 (7.8)

where

E4,2,5 = −2 bgκ+ bkλ+ β gk + gjµ− 2 gmτ + jλm

E4,3,5 = −2 bjκ+ bkτ + β jk + j2µ− jmτ

E6 =


0 0 −bλ τ+2β gτ−β jλ−cτ2+γ jτ −bκ λ+2β gκ−β kλ−cκ τ+2 γ jκ−γ kτ ∗

0 0 −(gτ−jλ)τ −gκ τ+2 jκ λ−kλ τ E6,2,5

0 0 0 τ (jκ−kτ) E6,3,5

0 0 0 0 0

0 0 0 0 0

 (7.9)

where

E6,2,5 = −bκ λ− β gκ+ 2 β kλ− gµ τ + 2 jλ µ− λmτ

E6,3,5 = −bκ τ − β jκ+ 2 β kτ + jµ τ −mτ 2

[E1, E4] =


0 0 −j(2 bgτ−3 bjλ+β gj−cjτ+γ j2) bgjκ−3 bgkτ+3 bjkλ−β gjk+cj2κ−γ j2k ∗

0 0 (gτ−jλ)j2 j2(gκ−kλ) E1,4,2,5

0 0 0 j2(jκ−kτ) E1,4,3,5

0 0 0 0 0

0 0 0 0 0


(7.10)

where

E1,4,2,5 = 3 bgkτ − 3 bgjκ− bjkλ+ β gjk + gj2µ− j2λm

E1,4,3,5 = −j
(
3 bjκ− 2 bkτ − β jk − j2µ+ jmτ

)
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[E2, E6] =


0 0 −τ (−bλ τ+3β gτ−2β jλ−cτ2+γ jτ) bκ λ τ−3β gκ τ+3β jκ ∗

0 0 (gτ−jλ)τ2 τ2(gκ−kλ) E2,6,2,5

0 0 0 τ2(jκ−kτ) E2,6,3,5

0 0 0 0 0

0 0 0 0 0

 . (7.11)

where

E2,6,2,5 = β gκ τ − bκ λ τ +−3 β jκ λ+ 3 β kλ τ + gµ τ 2 − λmτ 2

E2,6,3,5 = −τ
(
bκ τ + 2 β jκ− 3 β kτ − jµ τ +mτ 2

)
We may assume from the trace argument that a = α = r = 0. Now we

may argue as follows: assume that j2 + τ 2 6= 0 and for concreteness suppose,
first of all, that j 6= 0. Then from the (1, 3), (2, 3),2, 4, (3, 4) and (3, 5) entries
in [E1, E4] = 0 we see that the corresponding entries in E3 must be zero. It
follows the only possible non-zero entries in E4, E6 are the (1, 5) entries and
hence E4 and E6 are linearly dependent. Precisely the same argument applies
if τ 6= 0 using E2, E6 and [E2, E6] = 0.

Thus we assume that j = τ = 0. Now, assuming that θ 6= 0 the (2, 3) and
(3, 4) entries in [E1, E5] = E6 and [E2, E5] + E4 = 0 imply that g = k = γ =
κ = 0 and again E4 and E6 are rank one and proportional.

To continue assume that j = τ = θ = 0. If b = β = 0 then E4 = E6 = 0 so
we suppose that b2 + β2 6= 0. Then from [E1, E4] = 0 or [E2, E6] = 0 we have
we have gκ = kλ. To satisfy this condition we put κ = Aλ and k = Ag for
some A. Then from the (1, 4) and (2, 5) entries in [E3, E5] = 0 we find that
x = ξ = 0. Next, from the (3, 5) entries in [E1, E5] = E6 and [E2, E5] +E4 = 0
we have s = 0 otherwise E4 and E6 are proportional. From the from the (1, 5)
entry in [E3, E5] = 0 we have ζ = −At. From the (1, 4) and (2, 5) entries in
[E1, E4] = 0 and [E2, E5] + E4 = 0 we find that by = yβ = 0 and hence y = 0
since b2+β2 6= 0. From the (1, 4) entries in [E1, E5] = E6 and [E2, E5]+E4 = 0
we have, t(g2 + λ2)(bλ − gβ) = 0. Now bλ − gβ 6= 0 or else E4 and E6 are
proportional and also g = λ = 0 is untenable. Hence we must have t = 0.
Looking at the (1, 4) entries in [E1, E5] = E6 and [E2, E5] + E4 = 0, we can
only have λ = 0 in order to avoid E4 and E6 being proportional. Now β 6= 0
or else E6 = 0 and then [E2, E5] + E4 = 0 gives z = u. Finally, we have that
E6 and [E1, E5] = E6 differ only by sign and hence E6 = 0.

7.0.2 Case 2

This case in much simpler than case 1 so we summarize it in mainly verbal
terms. This time we note that the common centralizer of E4, E6 is of the form
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[
a 0 c d e
0 b f g h
0 0 i j k
0 0 0 a 0
0 0 0 0 b

]
. We choose three matrices E1, E2, E5 of this form, and the (3, 3)-

entry of each may be assumed to be zero. Then we calculate all the required

brackets. It turns out that E3 is of the form

[
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 0
0 0 0 0 0

]
. Then looking at the

brackets [E1, E4] = 0 and [E2, E6] = 0 and applying the filiform argument we

conclude that E3 can be reduced to

[
0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]
. Calculating the brackets again

it follows that [E1, E4] = 0 and [E2, E6] = 0 which imply that E4 = E6 = 0.

7.0.3 Case 3

This time we note that the common centralizer of E4, E6 is of the form

[
a 0 c d e
0 a f g h
0 0 i j k
0 0 n b m
0 0 0 0 a

]
.

The space of such matrices forms a decomposable, non-solvable algebra of di-
mension 13. In order to have a solvable and ultimately nilpotent Lie algebra,
we will need to have n = 0, since the 2×2 block to which it belongs, comprises
a solvable subalgebra. Furthermore, by taking traces, we may assume that
a = 0. We choose three matrices E1, E2, E5 of this form. Then we calculate
all the required brackets. So define:

E1 =


a 0 c d e

0 0 f g h

0 0 i j k

0 0 0 b m

0 0 0 0 0

E2 =


0 0 p δ ε

0 0 λ σ ι

0 0 w κ µ

0 0 0 β τ

0 0 0 0 0

E5 =


0 0 t u v

0 0 x y z

0 0 θ ξ ζ

0 0 0 s ω

0 0 0 0 r

 . (7.12)

Then we find that after applying the filiform argument

E3 =


0 0 0 −bδ+β d+cκ−jp cµ+dτ−δ m−kp

0 0 0 −bσ+β g+fκ−jλ fµ+gτ−kλ−mσ

0 0 0 0 iµ+jτ−kw−κm

0 0 0 0 0

0 0 0 0 0

 (7.13)

E4 =


0 0 0 0 bδ τ−β dτ−cκ τ+iµ p+2 jpτ−kpw−κmp

0 0 0 0 bσ τ−β gτ−fκ τ+iλ µ+2 jλ τ−kλw−κλm

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

E6 =


0 0 0 0 bδ τ−β dτ−cκ τ+iµ p+2 jpτ−kpw−κmp

0 0 0 0 bσ τ−β gτ−fκ τ+iλ µ+2 jλ τ−kλw−κλm

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(7.14)
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where the following conditions are necessary

cw − ip = 0 (7.15)

fw − iλ = 0 (7.16)

jβ − bκ+ iκ− jw = 0 (7.17)

bτ −mβ = 0 (7.18)

b(bδ − dβ − cκ+ jp) = 0 (7.19)

b(bσ − gβ − fκ+ jλ) = 0 (7.20)

i(iµ+ jτ − kw −mκ) = 0 (7.21)

β(bδ − dβ − cκ+ jp) = 0 (7.22)

β(bσ − gβ − fκ+ jλ) = 0 (7.23)

w(iµ+ jτ − kw −mκ) = 0. (7.24)

At this point it remains only to satisfy the brackets [E1, E5] = E6, [E2, E5]+
E4 = 0 and [E3, E5] = 0. Thus

[E1, E5]− E6 =
0 0 cθ−ti −ub+cξ+ds−tj −bδ τ+β dτ+cκ τ−iµ p−2 jpτ+kpw+κmp+cη+dω−tk−um

0 0 fθ−xi −yb+fξ+gs−xj −bσ τ+β gτ+fκ τ−iλ µ−2 jλ τ+kλw+κλm+fη+gω−xk−ym

0 0 0 −ξ b+iξ+js−θ j iη+jω−θ k−ξ m

0 0 0 0 bω−sm

0 0 0 0 0


(7.25)

[E2, E5] + E4 =
0 0 pθ−tw −uβ+δ s−tκ+pξ bδ m−β dm+ciµ+cjτ−ckw−2 cκm+jmp+δ ω+pη−tµ−uτ

0 0 λ θ−xw −yβ−xκ+λ ξ+σ s bmσ−β gm+fiµ+fjτ−fkw−2 fκm+jλm+λ η−xµ+σ ω−yτ

0 0 0 −ξ β+κ s−θ κ+wξ wη+κω−θ µ−ξ τ

0 0 0 0 β ω−sτ

0 0 0 0 0


(7.26)

[E3, E5] =


0 0 0 −(bδ−β d−cκ+jp)s −bδ ω+β dω+cκω−iµ t−jω p−jtτ+ktw+κmt

0 0 0 −(bσ−β g−fκ+jλ)s −bω σ+β gω+fκω−iµ x−jλω−jτ x+kwx+κmx

0 0 0 0 −θ (iµ+jτ−kw−κm)

0 0 0 0 0

0 0 0 0 0

 .
(7.27)

If we calculate the condition for E4 and E6 to be linearly independent we
see that it contains a factor iµ + jτ − kw − mκ; hence, from 7.21 and 7.24
we see that i = w = 0 and from the (3, 5) entry in [E3, E5] = 0 that θ = 0.
From the (3, 4) and (4, 5) entries in [E1, E2] = E3 we must have b = β = 0 and
similarly, from the (3, 4) and (4, 5) entries in [E1, E5] = E6, [E2, E5] + E4 = 0
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we have s = 0, otherwise j = m = κ = τ = 0. From the (1, 5) and (2, 5)
entries in [E3, E2] = we must have t = x = 0 in order to have jτ −mκ 6= 0.

At this point it remains only to satisfy the brackets [E1, E5] = E6, [E2, E5]+
E4 = 0 which give the conditions:

cκ τ − 2 jpτ + κmp+ cη − um = 0 (7.28)

fκ τ − 2 jλ τ + κλm+ fη − ym = 0 (7.29)

cjτ − 2cmκ+ jmp+ pη − uτ = 0 (7.30)

fjτ − 2 fκm+ jλm+ λ η − yτ = 0. (7.31)

The (1, 5) entry of [E1, E5] − E6× the (2, 5) entry of [E2, E5] + E4 minus the
(1, 5) entry of [E2, E5] + E4× the (2, 5) entry of [E1, E5] − E6 gives 2(cλ −
fp)(jτ −mκ)2, the non-vanishing of which is required in order to ensure that
E4 and E6 are linearly independent. However, if, so as to eliminate η, u, y, we
form the combination (fτ−mλ)((τ7.28−m7.30)−((cτ−mp))(τ7.29−m7.31))
we obtain

2(m2 + τ 2)(jτ −mκ)(cλ− fp) = 0

and hence the representation that we are seeking does not exist.

7.0.4 Case 4

This case follows from Case 3 by transposing about the anti-diagonal.


0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

.

If there were a representation coming from Case 3 then there would be a not
necessarily conjugate representation in Case 4 and vice-versa.
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