
Mathematica Aeterna, Vol. 3, 2013, no. 9, 709 - 738

Methods for Understanding

Turing Machine Computations

John Nixon

Brook Cottage
The Forge, Ashburnham

Battle, East Sussex
TN33 9PH, U.K.

Abstract

This paper is an ab initio investigation into ways of describing Turing
Machine (TM) behaviour. It is shown how results for a TM restricted
to a finite length of tape can be used to speed up any TM computation.
The non-redundant set of such rules is referred to as the irreducible regu-
lar (computation) rules (IRR) and an algorithm is described to generate
them for any TM for an arbitrary length of tape. This algorithm has
been implemented in C++ as is freely available. The examples studied
show that the IRR can be either finite or infinite in number. For several
TM’s when they are infinite, recursive formulae for them were found
and it is expected that this is always possible. These formulae were
found by examining the IRR in each example separately and correctly
guessing it and proving it by induction. A table showing which IRR
follow others dependent on the next symbol read, was found for the
examples studied and gives much information on the TM behaviour. It
is anticipated that it will be possible in this way to analyse a universal
TM to discover how the interpretation cycle works.

Mathematics Subject Classification: 68Q05

Keywords: Turing Machine, Finite tape, short-cut computation rules

1 Introduction

The Turing Machine (TM) is one of the most well known models of compu-
tation and is arguably the simplest. The importance of TMs lies in the well
known fact that the TM can be programmed to carry out any computation.
See for example Minsky’s book [1] that initially motivated this study. The



710 John Nixon

general working of a TM is described below and the program that defines a
particular example will for simplicity be referred to as a Turing Machine. To
define a computation, a particular TM needs to be specified together with the
initial state of its “tape”, which can be thought of as an linear infinite (in both
directions) collection of cells that each can contain one of a finite collection
of symbols at any point in time. As defined thus the TM would be a general
kind of simulation of a one-dimensional universe that once started could con-
tinue indefinitely, but this would not reach an “answer” unless a predefined
condition was reached when some aspect of the resulting information on the
tape would give the “answer”. The simplest way to do this is to declare one
of the machine states to be a halt state that when entered immediately stops
the TM. The methods in the paper can however be applied to TMs whether or
not they have halt states. I think this fact makes my approach different from
most other work in this area. I regard the understanding of the continuing
computation in terms of the application of short-cut rules an important first
step in analysing a computation which is equally or more important than the
actual result on halting which can be derived from it.

The generality of the TM concept made a succession of more complex
examples fascinating to study and the methods of this paper resulted from
a succession of improvements of technique and concepts resulting from these
studies. Many times I have given up on a particular approach or example
because of the enormous complexity and unsatisfying incompleteness of the
results obtained. The resulting methods now form a coherent set of ideas and
I expect the uses of these methods will be many and varied and I am publishing
this in the hope that my readers will develop the methods here and find many
uses for them.

In Section 2, Turing Machines are defined, followed by Configuration Sets
(CSs) in Section 3. CSs are the building blocks in terms of which computation
rules are defined in Section 4. These are the short-cuts that can be used
when carrying out the computation of a particular TM. In Section 5, a class of
computation rules (or regular rules RR) is defined recursively by restricting the
computation to a finite length of tape, and it is shown how any computation
of a TM can be expressed in terms of these. The set of RR so generated has
redundancy because rules derived in one step from another rule should not
be mentioned separately. Removing these gives the set of Irreducible Regular
Rules (IRR) and a definition of the completeness of a set of IRR is given.

The first three examples of TM’s were taken from a study of TM’s by
Machlin and Stout [3] who referred to them as “a simple loop”, “a shadow
christmas tree” and a “a counter” respectively and it may be instructive to
compare my analysis with theirs. In Sections 6 and 7 examples of Turing
Machines with a finite and infinite number of IRR respectively are analysed
including giving tables which establish the completeness of the set of IRR



Turing Machines 711

found and give information on the long-term behaviour of the TM in each
case. In Section 8 an example is studied that for the first time has a number
of derivation steps in any IRR that is approximately exponentially increasing
with the length of the tape. This indicated very complex behaviour and long
computation times within short lengths of tape that are effectively summarised
by the IRR and is related to the designation “counter”.

In Section 9 it is shown that the IRR in general have a tree structure.
Theorems are given that allow recursive construction of the IRR and a general
algorithm applicable to any TM is given to generate them for an arbitrary
length of tape. Another example of a TM is studied in detail that required
a much more complex induction proof for the set of IRR. The algorithm to
generate the IRR was used to generate the IRR for the earlier examples which
suggested their general formulae which were then verified by induction as in
the earlier sections of the paper. Section 10 has some concluding remarks.

2 Definition of Turing Machines (TMs)

There are many slightly different but equivalent versions and notations for
TM’s. A TM here is defined to interact with a one-dimensional tape that is
potentially infinite in both directions and may be thought of as marked off into
squares, each having one symbol on it at any point in time. The interaction is
by reading, writing (i.e. erasing the previous symbol written in that square)
to one square of the tape at a time at the position where the read/write head
is at that time, and moving one step to the right or left.

The machine table that completely describes a particular TM can be spec-
ified by a set of quintuples. This is also the notation I used to represent TM’s
for input to the computer program [2] for TM analysis. In each quintuple, the
first two elements are respectively the machine state and the symbol that has
been read. These pairs uniquely determine three corresponding actions to be
taken by the TM in one cycle i.e. (1) print a new symbol at the current posi-
tion of the read/write head (pointer), (2) move the pointer left (L) or right(R)
by one square, (3) enter a new machine state. These actions are carried out in
this order and are represented respectively by the remaining three symbols of
the quintuple. Halting condition(s) may be included by having ‘H’ as the new
state reached for a subset of the quintuples. The TM continues to repeat the
basic cycle indefinitely unless a halting condition is reached.

3 Configuration Sets

A configuration of a TM is the complete description of the state of the compu-
tation at one instant i.e. the contents of the tape, the machine state, and the



712 John Nixon

position of the pointer on the tape. In the following analysis, extensive use will
be made of configurations sets (CSs), which are sets of configurations defined
by specifying the machine state and a few symbols on the tape relative to the
position of the pointer. The notation for CSs is as follows: the machine state,
then the specified symbols on the tape in the same order, with the pointer in-
dicated by an underscore or an underline. I will use capital letters for machine
states and non-negative integers for symbols on the tape.

In this paper, CSs will determine the symbols in a single range on the
tape without any gaps. A subset of a CS can be formed by specifying extra
symbols for it. For example, A0 that could be read is the CS defined by state
A and symbol 0 immediately to the left of the pointer and is a superset of
A10 . A superscript indicates a repeat count for example B0231 is B02221 and
C{0123}3300 is C011301130113300 . All parameter values are non-negative
integers unless otherwise stated. This convention saves specifying conditions
explicitly in each formula.

4 Computation Rules

A computation rule (abbreviated to ‘rule’) for a TM has a pair of CSs that
are related by a set of TM steps, such that every TM configuration in the left
hand side (LHS) of the rule is mapped by the TM steps to a configuration
in the right hand side (RHS) of the rule, and the RHS is the exact image of
the LHS under the mapping. Using such derived rules for computing with a
TM speeds up the computation (in terms of substitution steps) by a factor
which is a weighted average of the number of TM steps needed to derive a
rule. The length of a rule is the number of symbols in the neighbourhood of
the pointer that are specified in its LHS and RHS, which must be the same.
The instructions of the TM (the quintuples) are the rules of length 1 and can
be expressed in the form qs1 → q′ s′1 or qs1 → q′s′1 for a left or right moving
machine step respectively, where an underline or underscore represents the
pointer position. The s’s represent symbols on the tape, and q’s represent the
machine states.

For the regular rules (RR) to be defined recursively below of length n, the
RHS is the result of computing on a piece of tape of length n with specified
symbols for as many TM steps as possible unless the ‘C’ (or cycle) condition
occurs. The ‘C’ condition means that the computation enters a stationary
cycle of repeating configurations. This is in contrast to an endless repeating
cycle that progresses along the tape when for example the tape has all 1’s
at the pointer and to the right of it and the instruction A1 → A0 repeats
indefinitely replacing the 1’s by 0’s as the pointer moves right. This is not a
‘C’ condition.

Useful computation rules frequently fall into the following 8 forms, the first



Turing Machines 713

4 of which represent cases where the computation does not halt or cycle:

qs1s2 . . . sn → q′ s′1s
′

2 . . . s
′

n

qs1s2 . . . sn → q′s′1s
′

2 . . . s
′

n

qs1s2 . . . sn → q′ s′1s
′

2 . . . s
′

n

qs1s2 . . . sn → q′s′1s
′

2 . . . s
′

n

which are defined to have types LL, LR, RL, RR respectively, and the other 4
forms are defined to have the types LH, LC, RH, RC where the first symbol (L
or R) of the ‘type’ represents the pointer being at the left or right respectively in
the LHS, and second symbol of the ‘type’ (H or C) represents the computation
ending in a halt state H or a static endless cycle (condition ‘C’) respectively.
The RHS of the regular rules of types LH and RH is the final halting CS
reached, and the RHS of regular rules of types LC and RC is one of the CSs
that is repeated in the computation.

5 Regular rules: representing TM computa-

tions in terms of computation rules

The following algorithm generates a subset of the set of all rules of length n
for any TM, which is defined to be the set of all regular rules (RR) of length
n for the TM. Note that unfortunately ‘RR’ could stand for ‘regular rule’ or
one of the ‘types’ of a rule but there should be no confusion because of the
context.

Algorithm 5.1. The regular rules of length 1 are simply the instructions
of the TM. Add each symbol in turn at the pointer position in the RHS of
each regular rule of length n with one of the following types: LL, LR, RL, RR
that has a distinct RHS, to generate the LHS of a new regular rule of length
n + 1. For each of these, run the TM until either (1) a halting state H is
reached, or (2) a reentered CS is reached indicating and endless static cycle,
or (3) the pointer reaches just past one of the ends of the part of the tape
with specified symbols. In cases (1) and (3) the RHS of the regular rule is
the final CS reached, and in case (2) there is not really a RHS, but any RHS
in the repeating loop could be used. The ‘type’ C indicates this exceptional
circumstance so this will not be a problem. Repeat the whole procedure starting
with n = 1 and adding 1 to n in each cycle until the desired value of n is
reached.

It is easily verified that the regular rules generated by this algorithm have
one of the 8 types defined above. The importance of this algorithm is the
following obvious theorem:



714 John Nixon

Theorem 5.2. Every computation of a TM that does not halt or cycle, using
only a portion of the tape of length n and continuing until the pointer reaches
just past where the specified symbols are given and passing every square in that
portion, can be represented by a unique sequence of n applications of the regular
rules from Algorithm 5.1, where the ith regular rule in the sequence has length
i. The application of each regular rule involves reading a symbol on the part of
the tape not yet passed by the pointer. If the computation halts, the last regular
rule applied is a halting regular rule i.e. the last regular rule’s type has H as
its second symbol. Likewise if the computation goes in an endless static cycle,
the repetition is within the last applied regular rule (having type LC or RC).

Proof. Divide the sequence of computation steps into a sequence of subse-
quences of steps, such that each subsequence ends and a new one starts when
the pointer moves to each position on the tape that has not been passed be-
fore. The first subsequence of TM steps is the single TM step which is first to
be executed in the computation (length 1). The ith subsequence of TM steps
operates on a string of symbols on the TM’s tape of length i though not all
these symbols in this string have to be read during its execution. The effect
of this subsequence of TM steps is a RR of length i of the type generated
by algorithm 5.1 because the LHS of this RR has one symbol added at the
pointer to a RHS of an RR of length i−1, as in Algorithm 5.1. The remaining
statements of the theorem are now obvious.

A faster but equivalent algorithm to Algorithm 5.1 can be obtained by
making maximum use of the previously found regular rules instead of running
the TM from scratch each time.

Algorithm 5.3. The regular rules of length 1 are simply the instructions
of the TM. Add each symbol in turn at the pointer position in the RHS of each
regular rule of length n of type LL, LR, RL, or RR that has a unique RHS to
generate the LHS of a new regular rule of length n+1. For each of these LHS’s,
repeatedly match it with the left hand side of one of the regular rules of length
n − 1 and use that regular rule to make the substitution it indicates. Do this
until either (1) a reentered CS is reached among the results of the substitution
steps indicating and endless static cycle, or (2) a regular rule being applied
itself ended in a halt state H or a static endless cycle i.e. the applied regular
rule has type LH, LC, RH, or RC, or (3) the pointer reaches just past one
of the ends of the part of the tape with specified symbols. Repeat the whole
procedure from n = 1 adding 1 to n in each cycle until the desired value of n
is reached.

The validity of this algorithm and its equivalence with Algorithm 5.1 is the
essence of the next theorem. It is one of the most important results of the
paper, and the proof has a lot of tedious detail but there is nothing difficult



Turing Machines 715

there. First I need to set up some notation. For each k ≥ 1, let Lk and R′

k

be the sets of all LHS’s and RHS’s of regular rules of length k respectively for
the TM, except that in the stationary cycling case an element of R′

k will not
be assigned. For a regular rule of length k, the RHS is (1) empty in the static
cycling case ‘C’ or (2) is a halting CS i.e. a CS having state ‘H’ or (3) is a
CS having the pointer immediately to the right or left of the string of known
symbols. I define Hk and Rk to be the subsets of R′

k corresponding to cases
(2) and (3) respectively, so that R′

k = Hk ∪Rk. By definition, each member of
Lk+1 is obtained by adding an extra symbol at the pointer to a member of Rk.

Theorem 5.4. For each LHS of a regular rule of length n + 1, and for any
stage in the sequence of substitutions starting from it, one of the regular rules
of length n will match until the algorithm is terminated by one of the conditions
(1), (2) or (3) above. The result of algorithm 5.3 is the same as the result of
Algorithm 5.1 for any TM.

Each of the regular rules obtained from Algorithm 5.3 is of one of the 8 types
mentioned above i.e. LL, LR, RL, RR, LH, LC, RH, RC. The derivation has
an alternating sequence of regular rules of types LR, and RL (that can have
zero or more members) terminated by a regular rule of any of the types LL or
RR, LC, LH, RC, RH. The second symbol of the type of a regular rule must
match the first symbol of the type of the following regular rule in the derivation,
so for example a regular rule of type LL can only follow a regular rule of type
RL, and a regular rule of type RR can only follow a regular rule of type LR.
The type of the derived regular rule is given by the first symbol of the type of
the first derivation regular rule followed by the second symbol of the type of
the last derivation regular rule. If the derivation becomes a static repeating
cycle or halts, the last symbol of the type of the derived regular rule is C or H
respectively.

Proof. The first part of the theorem needs a proof that each member of Ln+1

is a subset of a member of Ln determined by the addition of a single extra
symbol to that member of Ln at the opposite end of the string of symbols to
the pointer. Using the relationship between Rn and Ln+1 defined in Algorithms
1 and 2 this is equivalent to the statement that each member of Rn is a subset
of a member of Rn−1. It is this statement that will be proved by induction.
This is obviously true for n = 2 because the substitution steps are then just
single TM steps and the end result of computing on a 2-square length of tape
(if a halting condition is not reached) is a CS of length 2 that must be a subset
of the CS which is the RHS of the last regular rule applied.

Let x ∈ Ln+1. It has an extra symbol say s1 at the pointer added to a
member y of Rn, which is itself by assumption a subset of a member say z of
Rn−1 determined by a single extra symbol say s2 at the opposite end of the
string of symbols from the pointer. Therefore s1 and s2 are at opposite ends



716 John Nixon

of the string of symbols in Ln+1. Adding back the symbol s1 at the pointer
to z gives t ∈ Ln that contains x. Therefore a regular rule of length n can be
applied to x. The result, say w, is a subset of a member of R′

n. The subset
is formed by adding the extra symbol s2 to the member of R′

n provided it is
actually a member of Rn. If this is true i.e. the applied regular rule does not
have a type where its second symbol is ‘C’ or ‘H’, w either has the pointer at
the same end of the string of symbols as x with new symbol not yet known
and the derivation terminates, or with the pointer at symbol s2. Which is the
case depends on whether the type of the applied regular rule (1) does not send
the pointer to the opposite end of the string (type RR or LL) or (2) does so
(type RL or LR) respectively. In case (2) the result is a member of Ln+1 and
the argument can be repeated, now with the pointer at the opposite end of the
string of symbols to where it started. In case (1) the sequence of substitutions
terminates and the result is the end point of the computation on the n + 1
square length of tape (because the next symbol to be read is not yet known),
and is obviously the same endpoint that would be reached by using single TM
steps, and the result is by definition in Rn+1 and is a subset of the member
of Rn which is the RHS of the last applied regular rule. By definition, every
member of Rn+1 can be obtained by this argument, therefore every member
of Rn+1 is a subset of a member of Rn. If the last applied regular rule is such
that the second symbol of its type is ‘C’ or ‘H’, this terminates the derivation
and then this type obviously applies to the derived regular rule also. If the
argument has to be repeated, either an endless stationary cycle (condition
‘C’) occurs or the computation ends in an applied rule of type ‘H’ or ‘C’, or it
terminates with an applied rule of type ‘LL’ or ‘RR’, when the above argument
holds. This completes the proof by induction. The remaining statements of
the theorem are now obvious.

Consider the following example of a TM (TM1).

(a1) A0→ B1

(a2) A1→ C 1

(a3) B0→ C1

(a4) B1→ H1

(a5) C0→ A 0

(a6) C1→ A0

(1)

I find it convenient and rapid to do the computations proceeding down the page
because most of the symbols don’t need to be changed in one substitution step
and they are merely copied from one line to the next when a computation rule
is applied. R1 is the set {B1 , C 1, C1 , A 0, A0 }. Note that the halting CS
H1 was omitted. The set L2 is therefore

{B10, B11, C01, C11, C10, C11, A00, A10, A00, A01} .



Turing Machines 717

The notation
B10

C11
(2)

represents a computation of 1 step using the computation rule B0→ C1 and
shows that B10 → C11 . The following computation of 3 steps shows that
C11→ A 01:

C11

A01

C01

A 01

(3)

Likewise all the computations starting from L2 are

B10→ C11 B11→ H11 C01→ A 01 C11→ A 01

C10→ C 10 C11→ A10 A00→ C11 A10→ C 10

A00→ B01 A01→ A 01

(4)

This shows that

R′

2 = {C11 , H11 , A 01, B01 , C 10, A10 }

and
R2 = {C11 , A 01, B01 , C 10, A10 } .

Similarly

L3 = {C110, C111, A001, A101, B010, B011, C010, C110, A100, A101} . (5)

In the sense defined by Theorem 1, the regular rules for a TM completely
describe its behaviour. This however is not a satisfactory description because
there are always an infinite number of regular rules for a TM except in trivial
cases.

There is a redundancy in the output of Algorithm 5.3 that generates the
regular rules (RR). For example the rule B10 → C11 when interpreted as
a string substitution is redundant because the rule B0 → C1 from which it
is derived in 1 step has exactly the same effect in the subset of cases where
there is the symbol 1 immediately to the left of the pointer at the beginning.
Therefore B10 → C11 is clearly redundant and does not allow any speed
up of the computation. However for example C11 → A 01 in three steps is
clearly not redundant. In many cases Algorithm 5.3 will generate RR of length
n + 1 that are derived in one step from a RR of length n. In that case the
RR of length n + 1 is redundant and should not be recorded. This RR has
the same redundant symbol on its LHS and RHS and clearly cannot have type



718 John Nixon

LR or RL. In this case I will refer to the regular rule as being reducible. For
example B10 → C11 is reducible to B0 → C1 . Rules derived in more than
one step or have length 1 are irreducible. Every reducible regular rule (RRR)
r has a unique irreducible regular rule (IRR) I(r) which derives it. Only IRR
should be recorded. r = I(r) if and only if r is irreducible so for example
I(B10 → C11 ) = B0 → C1 . But note that I(r) cannot necessarily be
obtained from r by removing all the symbols that appear to be redundant on
both sides, For example C11→ A 01 does not imply the rule C1→ A 0 which
is actually not true for this TM.

The final result of computing on a segment of tape of length n as in Theo-
rem 5.2 is, if a halt or a cycle has not occurred, in Rn i.e. it is in R+

i for some
i ≤ n, where I introduce the notations R+

i is the set of RHS’s of IRR of length
i and R0

i is the set of RHS’s of RRR of length i so that Ri = R+
i ∪ R0

i .
These ideas suggest a faster method than using Algorithm 5.3 for obtaining

the IRR which is described later together with a computer implementation
of it [2]. The rough idea is to proceed similarly to Algorithm 5.3 but omit
recording RRR i.e. rules resulting from derivations with only one step. To
find the matching regular rule, search backwards through the current set of
IRR with lengths less than that of the one being derived. This will ensure that
the longest applicable IRR will be used. Stop if there is some positive integer
l such that there are no IRR of length l, because then there are no IRR of
length ≥ l.

There is a version of Theorem 5.2 that applies to the IRR. Because the
RRR have been eliminated, instead of applying a regular rule r of length n,
I(r) must be used instead in any derivation.

Theorem 5.5. Every computation of the TM that does not halt or enter a
stationary cycle, using only a portion of the tape of length n and passing every
position in that length and continues until the pointer reaches just past where
the symbols are given, can be obtained by a unique sequence of n applications
of the IRR. The ith rule in the sequence is a rule of length less than or equal
to i. The application of each rule involves reading a symbol on the part of the
tape not yet passed by the pointer.

At each stage a RR r of length n can be applied to continue the computation,
which can be replaced by its irreducible form I(r) of length say l ≤ n, so the
result of applying the rule is a subset of the RHS of I(r).

If the computation halts or cycles, this sequence is truncated where the last
applied rule is respectively an irreducible halting rule (type LH or RH) or an
irreducible cycling rule (type LC or RC).

It seems obvious that if a proper subset of the set of irreducible rules is
used in place of the complete set, then Theorem 5.5 would not hold. Therefore
a set of irreducible rules will be defined as complete if and only if it satisfies
Theorem 5.5.



Turing Machines 719

If a proper subset of the IRR, S considered, then there is some computation
of length n that cannot be obtained by a sequence of n applications of rules
in S where the ith rule in the sequence has length less than or equal to i and
involves reading a symbol on the part of the tape not yet passed by the pointer.
Suppose from the complete set of irreducible rules for a TM, rule r was omitted
to get the set S. Now consider a computation where r is needed to make a
substitution step. This obviously exists by Theorem 5.4 for any regular rule
r. Now consider the representation of it by irreducible rules without r, i.e.
the set S. At the point where r would be needed to make the substitution
step, one must fall back on a shorter irreducible rule which will necessarily
lead to more substitutions being needed than if r was allowed to be used, and
more than one substitution step would correspond to the addition of the single
symbol where rule r was applicable. These arguments establish the following
characterisation of completeness of the set of IRR.

Theorem 5.6. A set of IRR for a TM is complete if and only if for every
distinct RHS of an IRR that is non-halting and is not a stationary cycling
rule, and every possible new symbol that could be read, the CS that combines
this RHS with the new symbol read, matches the LHS of one of the set of IRR
(the longest one possible must be taken) such that after this rule is applied
there are only three possible conditions that can arise: (1) new symbol needs
to be read to continue the computation further (2) the last IRR applied is a
stationary cycling rule (3) the last IRR applied is a halting rule

6 Analysis of an example of a Turing Machine

with a finite number of irreducible regular

rules

Returning to example TM1, the result (6) contains the list of all the IRR
derivable from it together with the number of TM steps needed for each. This
was verified by the computer program [2]. Note that not all of these rules
can be obtained by generating the list of new LHS’s for the IRR from the
previous RHS’s of the IRR of length shorter by 1. This is because sometimes
an RRR has a RHS that can lead to a LHS of a new IRR. There are three
examples of this in this list, (b7), (b10) and (b11). These are also the set
of unreachable CSs in Table (1) below. (It is a good exercise to verify this
while generating all the RR up to length 6 because in this example there are
not many computations to be carried out.) This unfortunately means that
the algorithm for generating the IRR is more complex than might naively
have been expected. The algorithm employed in the program [2] is based on
Theorem 10 described later.



720 John Nixon

(b1) C11→ A 01 3

(b2) C10→ C 10 2

(b3) A00→ C11 2

(b4) A01→ A 01 2

(b5) C110→ A 010 5

(b6) A001→ A110 3

(b7) A101→ C 101 3

(b8) A0010→ B1101 4

(b9) A1101→ A 0101 6

(b10) C0110→ B1101 9

(b11) A01101→ H11011 11

(b12) A00101→ H11011 5

(6)

In any computation of this TM, Table 1 shows all the CSs and the corre-
sponding IRR that must be applied to continue the computation as defined in
Theorem 5.6. For each case there is at least one possible new rule that can
be applied depending on the context of nearby symbols, and just one longest
IRR, which is the one stated, after which a new symbol must be read.

This TM is simple enough to have a finite number of IRR. A consequence
of this is that Table 1, that was constructed using all the (IRR, new symbol)
combinations, has a finite number of rows. For each of the distinct results in
the last column of Table 1, being the result of the application of an IRR, again
one of the IRR in lists (1) or (6) can be applied to continue the computation to
the point where the next symbol must be read etc.. For example rule a5 with
a 0 at the pointer could be followed by IRR b3, b6, b8, or b12, but following a5
with b6 would imply knowing about the 1 on the right, so b6 would have been
preceded by b1 or b4 if using the IRR optimally in the sense of Theorem 5.5.
Table 1 shows that the TM can be effectively speeded up by replacing it by
the set of IRR and at each step using the table to determine the next step and
its effect depending on the new symbol read.

Table 1 with Theorem 5.6 shows the completeness of the combined list (1)
and (6) of IRR. In this example Theorem 6.1 also applies demonstrating that
its set of IRR is finite and is therefore complete.

It is interesting to note that if the IRR whose LHSs are obtained from the
RHSs of RRR are omitted from Table (1), the set of rules appearing in the
first and third columns would be the same. This suggests that this subset of
the IRR has some other significance.

Theorem 6.1. If every RR of length n with the pointer at the left in its LHS
is reducible, then every RR of length greater than n with the pointer at the left



Turing Machines 721

Table 1: For each irreducible regular rule (IRR) of TM1 and each new symbol
read, the next IRR to be applied is given and its effect

IRR RHS of rule + symbol Next IRR Result of rule
a1 B10 a3 C11
a1 B11 a4 H11
a2 C01 a5 A 01
a2 C11 b1 A 01
a3 C10 b2 C 10
a3 C11 a6 A10
a5 A00 b3 C11
a5 A10 a2 C 10
a6 A00 a1 B01
a6 A01 b4 A 01
b1 and b4 A001 b6 A110
b1 and b4 A101 a2 C 101
b2 C010 a5 A 010
b2 C110 b1 A 010
b3 C110 b5 A 010
b3 C111 a6 A110
b5 A0010 b8 B1101
b5 A1010 a2 C 1010
b6 A1100 a1 B1101
b6 A1101 b9 A 0101
b7 C0101 a5 A 0101
b7 C1101 b1 A 0101
b8 and b10 B11010 a3 C11011
b8 and b10 B11011 a4 H11011
b9 A00101 b12 H11011
b9 A10101 a2 C 10101



722 John Nixon

in its LHS is also reducible. Let nL, if it exists, be one less than the smallest
such value of n, i.e. the largest value of n such that some RR exists of length
n with the pointer at the left in its LHS that is irreducible. Then for every RR
r with the pointer at the left in its LHS, I(r) is another RR of the same type,
with length ≤ nL.

Proof. Let r′′ be a RR of length n + 1 with the pointer on the left in its
LHS which is say qss1s2 . . . sn. Then by Algorithm 5.3 there exists a RR r′

of length n such that its RHS. is q s1s2 . . . sn. By the induction hypothesis
r′ is reducible. Then r′ must have type LL, type RL being excluded because
the pointer cannot go so far in the single substitution for its derivation from
a RR r of length n − 1. So r′ is derivable from a RR r of length n − 1 with
RHS. q s1s2 . . . sn−1 i.e. the same as the RHS of r′ with 1 symbol removed.
Therefore from Algorithm 5.3 there is a RR t of length n with LHS matching
the RHS of r and with symbol s i.e. qss1s2 . . . sn−1. The RR t is derivable in
1 step by the induction hypothesis, therefore t is of type LL. Therefore t can
be used to derive the RHS of r′′ in 1 step. Induction on the length of the rules
completes the proof.

The following diagram relates the 4 different RRs used in this proof, with
the subscripts denoting the length of the rules. The vertical arrows represent
the relation “the RHS of the first RR determines the LHS of the second RR
by the addition of symbol s”.

rn−1
used in the derivation of
−−−−−−−−−−−−−−→ r′n





y





y

tn
used in the derivation of
−−−−−−−−−−−−−−→ r′′n+1

Similar arguments of course hold in the mirror image case where the pointer
starts at the right and nR is defined to be the corresponding parameter. Either
or both of these values may not exist therefore in the set of all TM’s, there are
4 cases to consider, neither nL nor nR exist,nL only exists, nR only exists, and
both nL and nR exist.

Suppose nL exists. Consider a computation on a portion of the tape of
length n, where n > nL. Using the representation of it as a sequence of
substitutions given by Theorem 5.5, after m substitutions, where m ≥ nL, m
of the original symbols on the tape have been read, and if the next symbol
to be read is on the left, the next IRR r to be applied must be such that
length(r) ≤ nL. This must leave the pointer at a location where a symbol has
not been read before i.e. on the left, so all remaining original symbols to be
scanned will be on the left. This establishes



Turing Machines 723

Theorem 6.2. If nL exists, then in any computation of the TM if at some
stage in the computation at least nL of the original symbols on the tape have
been read, and the next original symbol on the tape to be read is on the left of
these, then all the subsequent substitution cycles in Theorem 5.5 use regular
rules of type LC, LH or LL with length ≤ nL, therefore the computation from
that point onward is carried out within a moving window of length nL that
moves 1 step to the left each time the pointer reaches a location where it has
never been before, unless terminated by a regular rule of type LC or LH.

Of course, there is a corresponding left-right reversal of this theorem in-
volving nR and right-moving substitution steps. Now it is possible to describe
(exercise) the types of behaviour of TM’s when either nL or nR or both exist.
In TM1, from (6), both nL and nR exist, and are both 5.

7 Analysis of TM’s with an infinite number of

irreducible regular rules

In the following example (TM2) a similar analysis shows that the number of
IRR is infinite but it appears that the IRR can all be obtained by simple
formulae. TM2 is as follows:

(1) A0→ B1

(2) A1→ A 1

(3) B0→ A 0

(4) B1→ C0

(5) C0→ D1

(6) C1→ C1

(7) D0→ B0

(8) D1→ H1

(7)

It is easy to check that the IRR for TM2 with lengths up to 4, together
with the number of TM steps needed for each, are as follows:



724 John Nixon

(1) B10→ A 10 2

(2) A01→ C10 2

(3) A00→ A 10 3

(4) B00→ A 10 4

(5) A010→ D101 3

(6) A011→ C101 3

(7) B100→ A 110 5

(8) A0110→ D1011 4

(9) A0111→ C1011 4

(10) B0100→ D1011 9

(11) B1100→ A 1110 6

(8)

After continuing with these computations a little further it is easy to con-
jecture general results for the IRR as follows:

Rule # TM steps condition

(a) B10→ A 10 2

(b) A00→ A 10 3

(c) A01n+10→ D101n+1 n+ 3 n ≥ 0

(d) A01n+2 → C101n+1 n+ 3 n ≥ −1

(e) B01n00→ D101n+1 2n+ 7 n ≥ 1

(f) B1n+100→ A 1n+20 n+ 5 n ≥ −1

(9)

Note that apart from the first two rules, the other IRR with the parameter n
are expressed so that they all have the same length (n+ 3). This is necessary
to avoid the possibility of circularity in the induction proof of the following
theorem that simultaneously uses induction on n to prove that all these sets
of rules are IRR.

Theorem 7.1. For TM2, the set of rules given by (9) are all IRR.

What needs to be proved here is that these rules are (i) valid (i.e. the
computations are correct) (ii) regular (iii) irreducible.

Proof. To establish validity by induction on the length of the rules it is straight-
forward to first check that the rules in (9) hold for length≤ 4. For the induction
step, take the LHS’s of each of the rules in (9) and replace n by n+ 1. Apply
the rules in (7) and (9) as necessary to continue the computation until the
procedure terminates in each case. The symbols above the arrows indicate
either the number of machine steps or the regular rule being used. The re-
sults are as follows, with the total number of TM steps indicated at the right.



Turing Machines 725

These results are all the same as the corresponding conjectured results with
n replaced by n + 1, so that validity can be extended to the next value of n.
This proof also shows that the derived rules are irreducible because more than
one derivation step is involved in each case.

Rule # TM steps

(c′) A01n+20
d
→ C101n+10

1
→ D101n+2 n+ 4

(d′) A01n+3 d
→ C101n+11

1
→ C101n+2 n+ 4

(e′) B01n+100
f
→ A01n+20

d
→ C101n+10

1
→ D101n+2 2n+ 9

(f ′) B1n+200
f
→ A11n+20

1
→ A 1n+30 n+ 6

To establish that these rules are regular, the same type of reasoning works in
all four cases. This reasoning is based on Algorithm 5.1 and works backwards
from the rule being assessed and ends in a rule that is so short that it is
obviously regular. The regularity of the rule being assessed follows from the
regularity of the next rule in the sequence, and so on, hence the result is proved.
I will only quote the LHS of the rules being referred to. In this manner the
proof of the regularity of A01n+3 is indicated by following:

A01n+3 ← A11n+2 ← A11n+1 · · · ← A1 (10)

The first step is argued as follows: A01n+3 is the LHS of a regular rule if and
only if A 1n+3 is the RHS of a regular rule by algorithm 5.1. But because
A11n+2 → A 1n+3, the regularity of A01n+3 follows from the regularity of
A11n+2. The fact that only 1 TM step is needed makes the argument as simple
as possible. Note that the argument cannot work in the other direction and
the left pointing arrows indicate this. The · · · represents an obvious induction
argument. The proofs of the other regularity statements are indicated thus:

B01n+100← D01n+10← C01n1← C01n−11 · · · ← C01← B1 (11)

B1n+200← D1n+20← C1n+10← C1n1← C1n−11 · · · ← C1 (12)

A01n+20← A11n+10← A11n0 · · · ← A10← B0 (13)

To establish completeness of the set of IRR using Theorem 5.6, Table 2
similar to Table 1 is easily constructed showing which IRR is needed to continue
the computation following each IRR and symbol pair such that after this rule
application a new symbol needs to be read unless a halting or cycling condition
occurs.

The body of Table 2 gives the next rule to be applied, given the first rule
and the next symbol read. Note that in each case after the new rule is applied,



726 John Nixon

next symbol
rule 0 1
1 a 4
2 d, n = 0 2
3 b 2
4 5 6
5 7 8
6 5 6
7 f, n = 0 4
8 halt halt

a or b c, n = 0 2
c or e 7 8
d 5 6
f c 2

Table 2: Table establishing the completeness of the IRR for TM2.

the computation needs a new symbol to continue, and all the rules are IRR
from (7) or (9).

Putting all these results together for TM2 we have

Theorem 7.2. Given TM2 defined by (7), the complete infinite set of IRR for
TM2 consists of the rules in (7) and (9).

8 A small TM with a complex behaviour

Consider TM3 which has the machine table given by:

(1) A0→ B1

(2) A1→ H1

(3) B0→ C 1

(4) B1→ A1

(5) C0→ A0

(6) C1→ C 0

(14)

The IRR derived from TM3 of length up to 5 together with the number of
TM steps needed for the derivation of each are as follows:



Turing Machines 727

Rule # TM steps

(1) B10→ C 01 2

(2) C00→ B01 2

(3) C01→ H01 2

(4) B010→ A011 5

(5) C001→ A011 3

(6) B110→ C 001 3

(7) C000→ A011 7

(8) B1110→ C 0001 4

(9) C0000→ B0111 8

(10) C0001→ H0111 8

(11) B01110→ A01111 13

(12) C00001→ A01111 9

(13) B11110→ C 00001 5

(14) C00000→ A01111 21

(15)

Note that in these results the general formulae appear to be mostly alter-
nating between the even and odd numbers of symbols. This is confirmed by
continuing the calculations to larger values of n. The general formulae for the
set of IRR can be conjectured as follows where the numbers of machine steps
are defined by the 7 functions yet to be determined, and they are all valid
when n ≥ 0:

Length Rule # TM steps
(a) 2n + 2 B12n+10→ C 02n+11 a(n)
(b) 2n + 2 C002n+1 → B012n+1 b(n)
(c) 2n + 2 C002n1→ H012n+1 c(n)
(d) 2n + 3 B012n+10→ A012n+2 d(n)
(e) 2n + 3 C002n+11→ A012n+2 e(n)
(f) 2n + 3 B12n+20→ C 02n+21 f(n)
(g) 2n + 3 C002n+2 → A012n+2 g(n)

(16)

The proof of validity of these rules is again by induction on n. Applying the
same method as before gives the following results with the total number of
TM steps indicated at the right. These results (17) are all the same as the
corresponding conjectured results with n replaced by n + 1, provided that
Equations 18 relating the numbers of TM steps are satisfied. In these results,
only the IRR are used as Theorem (5.5) indicates and the even (a-c) and odd
(d-g) length rules have to be established simultaneously. The length of the



728 John Nixon

rules increases by 2 for each increase of n by 1. The argument is as follows:

Rule # TM steps

(a′) B12n+30
f
→ C102n+21

(1)
→ C 02n+31 f(n) + 1

(b′) C002n+3 g
→ A012n+20

(1)
→ B012n+3 g(n) + 1

(c′) C002n+21
g
→ A012n+21

(1)
→ H012n+3 g(n) + 1

(d′) B012n+30
a′

→ C002n+31
b′

→ B012n+31
(1)
→ A012n+4 f(n) + g(n) + 3

(e′) C002n+31
b′

→ B012n+31
(1)
→ A012n+4 g(n) + 2

(f ′) B12n+40
a′

→ C102n+31
(1)
→ C 02n+41 f(n) + 2

(g′) C002n+4 b′

→ B012n+30
d′

→ A012n+4 f(n) + 2g(n) + 4

(17)

where the equations relating the numbers of TM steps are

a(n+ 1) = f(n) + 1

b(n+ 1) = g(n) + 1

c(n+ 1) = g(n) + 1

d(n+ 1) = f(n) + g(n) + 3

e(n+ 1) = g(n) + 2

f(n+ 1) = f(n) + 2

g(n+ 1) = f(n) + 2g(n) + 4

a(0) = 2, b(0) = 2, c(0) = 2, d(0) = 5, e(0) = 3, f(0) = 3, g(0) = 7

(18)

from which it follows that f(n) = 2n+ 3 and

g(n+ 1)− 2g(n) = 2n+ 7. (19)

A solution of (19) for g(.) of the form g(n) = An+B can be easily found which
is given by g(n) = −2n − 9. The general solution of the reduced equation
g(n + 1) − 2g(n) = 0 is easily shown to be C2n, where C is an arbitrary
constant, therefore the general solution of (19) is g(n) = C2n − 2n − 9. The
initial condition determines C = 16 therefore g(n) = 16.2n − 2n− 9. Now all
these functions can be determined as follows in this order:

f(n) = 2n+ 3

g(n) = 2n+4 − 2n− 9

a(n) = 2n+ 2

c(n) = 2n+3 − 2n− 6

d(n) = 2n+3 − 3

e(n) = 2n+3 − 2n− 5

b(n) = 2n+3 − 2n− 6.

(20)



Turing Machines 729

Note that the initial conditions for a to e are not involved, so these could
be deduced from the other equations.

What is interesting about this argument is that if some partial informa-
tion about the IRR in general can be conjectured correctly, (in this case the
form of the initial and final CS’s), it might still be possible to complete the
induction proof after solving some other recurrence relations for the remaining
information (here the number of machine steps).

This establishes validity of (16) and (20), and that these rules are irre-
ducible follows from (17) which shows that the number of steps of derivation
is greater than 1 in each case. The proof that these rules are regular follows a
similar form to the previous example. The only extra symbol used here is ≡
which is used to replace the symbol at the pointer because this does not affect
the regularity of the CS. The proofs are indicated as follows:

B12n+10← A12n0← B12n−11 ≡ B12n−10 · · · B10← A0

C00n ← C10n−1 ≡ C00n−1 · · · C00← C1 ≡ C0

B012n+10← A012n0← B012n−11 ≡ B012n−10 · · · B011← A00← C0

C00n1 ≡ C10n1← C10n−11 · · · C11← B0

B12n+20 ≡ B12n+21← A12n+10← B12n1 · · · B1

(21)

The completeness of the set of IRR can be established as before using
Theorem (5.6). The table is as follows:

next symbol
rule 0 1
1 a, n = 0 4
2 halt halt
3 c, n = 0 6

4 or 5 1 2
6 b, n = 0 6
a e 6
b d 4
c halt halt

d or e 1 2
f c, n← n + 1 6
g 1 2

Table 3: Table establishing the completeness of the IRR for TM3.

The body of the Table 3 gives the next rule to be applied, given the first
rule and the next symbol read. Note that in each case after the new rule is
applied, the computation needs a new symbol to continue, and all the rules
are IRR.



730 John Nixon

9 More complex examples and the branching

tree structure of the irreducible regular rules

After analysing these examples I started looking at a far more complex example
(TM4) with 24 instructions.

Although this example was too complex for me to completely analyse like
the above examples, the partial analysis I did revealed an important property
of the IRR and lead to an efficient algorithm [2] for computing the IRR for
any TM. By trying to use the above technique it is obvious that it is not going
to be easy to conjecture the general formula for the IRR. The reason is that
their number appears to grow exponentially with the length of the regular rule,
although computing each case to get the RHS seems to be easy. The example
was as follows:

A0→ F 2 A1→ D 3 A2→ A1 A3→ B2
B0→ E 2 B1→ D3 B2→ C1 B3→ A0
C0→ F 3 C1→ A1 C2→ C 2 C3→ D 3
D0→ B0 D1→ A0 D2→ B 2 D3→ D 1
E0→ E3 E1→ E 3 E2→ A1 E3→ B1
F0→ B2 F1→ C 2 F2→ A 0 F3→ F2

(22)

The first thing needed is formulae for all the LHS’s of the IRR, then the
formulae for their RHS’s. The computer program [2] can generate the lists of
such regular rules up to any given length in principle and sort them sensibly.
After looking at these lists for this TM it was noticed that one could draw out
their LHS’s as branches of a tree rooted at the top with one main branch for
each machine state. It is also obvious that there is some regularity because
some sub-branches are identical to others at the same or different levels, which
suggests a recursive description but it just evades an obvious formula. In fact
it seems that a finite state machine is likely to be the description of these LHS’s
of regular rules, which would allow the choice of the next symbol in a LHS to
depend not only on the current symbol but on which node that symbol is in a
diagram.

To make the logical arguments easier to follow to demonstrate the ’tree’
property of the IRR, the following abbreviations are introduced:
D(r) is the number of derivation steps for regular rule r as defined in Algo-
rithm 5.3.
l(r) means the length of rule r.
IRR(l) is the set of irreducible regular rules of length l i.e. regular rules r such
that l(r) = l and D(r) > 1.
RRR(l) is the set of reducible regular rules of length l i.e. regular rules r such
that l(r) = l and D(r) = 1.
RR(l) = RRR(l) ∪ IRR(l) is the set of regular rules of length l.



Turing Machines 731

Theorem 9.1. For every rule r′ ∈ IRR(n+1) there is a unique corresponding
rule r ∈ IRR(n) such that LHS(r′) ⊂ LHS(r).

If a rule r ∈ IRR(n) is such that LHS(r′) ⊂ LHS(r) then r will be said to
match r′, because the LHS of r is a substring of the LHS of r′ with 1 symbol
deleted at the end opposite end of the string of symbols to the pointer.

This theorem therefore guarantees that the LHSs of rules in
IRR =

⋃

∞

n=1 IRR(n) have a tree structure that can ‘grow’ as the length of the
rules increases.

Proof. From Theorem 5.4, every rule r′ ∈ RR(n + 1) has a matching (on the
LHS) rule r ∈ RR(n). This is in particular true for all rules r′ ∈ IRR(n + 1).
Suppose r ∈ RRR(n) so cannot have type LR or RL, therefore r′ must be
derived from r in one step (see Theorem 5.4). i.e. r′ ∈ RRR(n + 1). This
contradicts the assumption, so r /∈ RRR(n) therefore r ∈ IRR(n).

After computing these ‘trees’ for TM4 a few steps it becomes obvious
that some die out quickly, while others are maintained indefinitely as sin-
gle branches, while others grow exponentially with repeating patterns. Also
doing some analysis by hand for this example revealed that the reasoning used
to construct the IRR(n) was quite complex but could be simplified by use of
the following two theorems.

Theorem 9.2. If q1s2 . . . sn−1sn → q2 s′2 . . . s
′

n is a RR then the following
statements are equivalent: (1) q1s1s2 . . . sn−1sn is the LHS of an IRR and (2)
q1s1s2 . . . sn−1 is the RHS of a RR.

This is the right-left reversed form.
If q1snsn−1 . . . s2 → q2s

′

n . . . s
′

2 is a RR then the following statements are
equivalent: (1) q1snsn−1 . . . s1 is the LHS of an IRR and (2) q1 sn−1 . . . s1 is
the RHS of a RR.

Proof. If q1s1s2 . . . sn−1sn is the LHS of an IRR, then simply because it is the
LHS of a RR, by the definition of the set of RRs, q1s1 . . . sn−1 is the RHS of
a RR. Conversely, suppose q1s1 . . . sn−1 is the RHS of a RR, and r is the RR
q1s2 . . . sn−1sn → q2 s′2 . . . s

′

n. Applying the RR r to q1s1 . . . sn−1sn, which is
the LHS of a RR, gives q2s1s

′

2 . . . s
′

n. Because here there is a symbol at the
pointer, this derivation can be continued and therefore it requires more than
one step, so the rule derived from this LHS is an IRR.

Theorem 9.3. q1s1 . . . sn−1sn is the RHS of a RRR if and only if there are
states q′ and q′′ and strings of symbols s′t . . . s

′

n and s′′1 . . . s
′′

n−1 and an integer t
such that 2 ≤ t ≤ n and q′s′t . . . s

′

n → qst . . . sn is an IRR and q′′s′′1 . . . s
′′

n−1 →
q′s1 . . . st−1s

′

t . . . s
′

n−1 (type LR or RR) is a RR.



732 John Nixon

Proof. If qs1 . . . sn−1sn is the RHS of a RRR r′ then its irreducible form I(r′) =
r has RHS equal to qst . . . sn for some t such that 2 ≤ t ≤ n and there
is a sequence of rules r(1), r(2) . . . r(t) such that r(1) = r′ and r(t) = r and
l(r(i)) = n − i + 1 and each rule in the sequence is derived from the next
in one step. By Theorem (5.4) r(1) . . . r(t) have type RR or LL and must be
clearly RR in this case with the pointer ending on the right. Therefore this
IRR r can be written as q′s′t . . . s

′

n → qst . . . sn . Then r′ can be written as
q′s1 . . . st−1s

′

t . . . s
′

n−1s
′

n → qs1s2 . . . sn because the symbols on the left are not
involved and can be simply added to both sides of the rule, one at a time, for
each step in the recursive definition of the RR in Algorithm (5.1). Therefore
from the definition of RR in Algorithm 5.1, q′s1 . . . st−1s

′

t . . . s
′

n−1 is the RHS
of a RR.

Conversely, adding the symbol s′n at the pointer position to the RHS of the
second RR in the theorem gives q′s1 . . . st−1s

′

t . . . s
′

n−1s
′

n is the LHS of a RR.
Applying the first RR to this gives qs1 . . . st−1st . . . sn−1sn in one step.

Theorem 9.3 can be represented more succinctly as follows

qs1 . . . sn is the RHS of a RRR⇔

∃q′, q′′, s′t . . . s
′

n, s
′′

1, . . . s
′′

n−1, t : 2 ≤ t ≤ n such that
[

q′s′t . . . s
′

n → qst . . . sn is an IRR and

q′′s′′1 . . . s
′′

n−1 → q′s1 . . . st−1s
′

t . . . s
′

n−1 is a RR of type LR or RR

]

This is the right-left reversed form.

q sn . . . s1 is the RHS of a RRR⇔

∃q′, q′′, s′t . . . s
′

n, s
′′

1, . . . s
′′

n−1, t : 2 ≤ t ≤ n such that
[

q′s′n . . . s
′

t → q sn . . . st is an IRR and

q′′s′′n−1 . . . s
′′

1 → q′ s′n−1 . . . s
′

tst−1 . . . s1 is a RR of type RL or LL

]

I wrote both mirror image forms of theorems 9.2 and 9.3 because it makes
it easier to apply them by hand for finding extensions to the LHS’s of rules in
IRR(n) to obtain the LHS’s of rules in IRR(n+ 1).

I give in outline one example next based on TM4 (22) to illustrate the
procedure. The rule B12322→ A01211 ∈ IRR(5). The problem is to find the
LHS’s of all members of IRR(6) of the form B12322x→ . . .. By theorem 9.2,
B12322x is the LHS of an IRR if and only if B 2322x is the RHS of a RR.
B 2322x is the RHS of an IRR if and only if x = 3, found from a previously
computed list of IRR(5). Is B 2322x the RHS of a RRR? To answer this,
Theorem 9.3 can be applied in its reversed form with n = 5 reducing this



Turing Machines 733

question to

∃q′, q′′, s′t . . . s
′

5, s
′′

1, . . . s
′′

4, t : 2 ≤ t ≤ 5 such that






q′s′5 . . . s
′

t → B [initial substring of length 6− t of 2322x] is an IRR and

q′′s′′4 . . . s
′′

1 → q′ s′4 . . . s
′

t[final substring of length t− 1 of 2322x] is an RR

of type RL or LL







To determine whether this is true or not, start searching with t = 2 and
increasing to 5. The first question should again be answered by reference to
the previously computed set of IRR of length ≤ 4. If the answer is yes, the
string(s) s′5s

′

4 . . . s
′

t must be identified. The second question is of the same type
as before referring to a RR of length 4 i.e. 1 shorter than before. Thus whole
procedure is recursive.

I have implemented a fast algorithm for generating these trees, based on
automating the use of these theorems. The algorithm is fast because it does
not waste a lot of time generating the RRR.

The following example (TM5) proved to be more of a challenge than TM1,
TM2 or TM3 but not as tough as TM4.

A0→ B2 A1→ D 1 A2→ A0
B0→ C2 B1→ A 1 B2→ D0
C0→ C1 C1→ D 1 C2→ C2
D0→ A0 D1→ B2 D2→ C 1

(23)

For this TM, the computations for the IRR of length 2 and 3 mostly follow
the same sequences of CS’s, so this situation is best represented by (24). Here
the single-headed arrows each represent a single TM step, and the double
headed arrow represents the computation that can go in either direction. Thus
the endpoint (RHS) of the IRR here is a stationary cycle of two CS’s, and this
is the first example of a stationary cycle in this paper. Such an endpoint is
recognised when a CS reached by the computation is repeated (here A01), and
this is regarded as the endpoint of the computation except if the computation
starts at D01 when this CS is also the first to be reentered. Thus the LHS of
the IRR of length 2 are all the CS’s leading to these endpoints in more than
one step i.e. C21→ C 11 and C21→ C 11 from the first part of (24), and all
9 such rules obtained from the second and third parts of (24).

C21→ C21→ D21→ C 11

D02→ C01→ C11→ D11→ B21→ A21→ A01↔ D01

A01→ B21→ . . .D01

(24)



734 John Nixon

The computer generated IRR of length n such that 3 ≤ n ≤ 6 are as follows:

C121→ D 111(3) C221→ C 111(5)
C1121→ A0111(8) C2121→ C 1111(4) C0221→ A0111(12)
C1221→ D 1111(6) C2221→ C 1111(8) C12121→ D 11111(5)
C22121→ C 11111(7) C11221→ A01111(11) C21221→ C 11111(7)
C02221→ A01111(15) C12221→ D 11111(9) C22221→ C 11111(11)
C112121→ A0114(10) C212121→ C 16(6) C022121→ A0114(14)
C122121→ D 16(8) C222121→ C 16(10) C121221→ D 16(8)
C221221→ C 16(10) C112221→ A0114(14) C212221→ C 16(10)
C022221→ A0114(18) C122221→ D 16(12) C222221→ C 16(14)

(25)
of which I only verified those for n = 3 by hand.

The problem now as before is to conjecture and prove the general formulae
for the IRR of length n. The first step is to conjecture the formula for the
LHS’s of these rules. Let X be a CS in the LHS of an IRR of length n and
let X ′ be a CS in the LHS of a corresponding (in the sense of Theorem 9.1)
IRR length n + 1, and let Y be any other string. Then it is easy to check,
by three applications of it, that the following recursive definition defines the
LHS’s of the IRR up to length 6 (with the obvious definition of concatenated
strings representing CS’s) starting from those of length 3. This is therefore
conjectured to hold up to any length n > 3.

If the length of X is 3 then X = 121 or 221

For any string Ywith the pointer at its rightmost symbol :

If X = 22Y then X′ = 0X or 1X or 2X

If X = 12Y then X′ = 1X or 2X

If X = 21Y then X′ = 1X or 2X

(26)

Suppose X is a string satisfying 26 of length n + 3 then the conjectured
IRR using these LHS’s are as follows:

C







0
1
2







X →







A01
D 11
C 11







1n+2 where X = 22 . . . 1 and n ≥ 0 (1− 3)

C

{

1
2

}

X →

{

A01
C 11

}

1n+2 where X = 12 . . . 1 and n ≥ 0 (4− 5)

C

{

1
2

}

X →

{

D
C

}

1n+4 where X = 21 . . . 1 and n ≥ 1 (6− 7)

(27)

Suppose X ′ is a string one symbol longer than X i.e. with length n + 4
and satisfying 26 then X ′ can start with 02, 12, 22, 11, or 21. In the result
whose proof is required, namely 27 with n increased by 1, i.e. with X replaced



Turing Machines 735

by X ′, the cases when X ′ starts with 02 and 11 are not included (because in
27 itself, X starts with only 12, 21, or 22). This leaves the cases X ′ = 22Y ,
X ′ = 12Y , and X ′ = 21Y . Then referring again to 26, X ′ must be one of the
forms 122Y or 222Y with 22Y satisfying 26, or 212Y with 12Y satisfying 26,
or finally 121Y or 221Y with 21Y satisfying 26. Now the RHS’s corresponding
to C0X ′, C1X ′ and C2X ′ must be found. This leads to 15 computations of
which those starting from C0122Y , C0212Y , and C0121Y are not required
because they cannot contribute to 27. The remaining 12 computations are as
follows (repeated computations are indicated by . . .):

(1) C0222Y
27.3
→ C01n+4 24→ D01n+4 ↔ A011n+3

(2) C0221Y
27.7
→ C01n+4 . . .→ A011n+3

(3) C1122Y
27.2
→ D11n+4 24→ A011n+3 ↔ D01n+4

(4) C1222Y
27.3
→ C11n+4 23.8→ D 1n+5

(5) C1212Y
27.5
→ C11n+4 . . .→ D 1n+5

(6) C1121Y
27.6
→ D11n+4 . . .→ A011n+3 ↔ D01n+4

(7) C1221Y
27.7
→ C11n+4 . . .→ D 1n+5

(8) C2122Y
27.2
→ D21n+4 23.12→ C 1n+5

(9) C2222Y
27.3
→ C21n+4 24.1→ C 1n+5

(10) C2212Y
27.5
→ C21n+4 . . .→ C 1n+5

(11) C2121Y
27.6
→ D21n+4 . . .→ C 1n+5

(12) C2221Y
27.7
→ C21n+4 . . .→ C 1n+5

(28)

This demonstrates (27) by induction and shows that all the rules in (27)
are non-trivial in the sense that more than one derivation step is needed.
Note that in this set of results, many of the calculations are duplicated in
pairs with different symbols in the fourth place, and the result is the same.
Another possible source of confusion is that because of the cycle of 2 at the
end of (24).2, either of the results in the cycle can be taken as the endpoint
of the calculation. Specifically, (27).1 corresponds to (28).1 and (28).2, (27).2
corresponds to (28).4 and (28).7 etc..

To demonstrate that (27) are all regular rules, note that except in the
leftmost position in (27.1), the LHS’s in (27) have strings that are only 1’s and
2’s. This is obvious by referring to the definition of X in (26). In this case the
regularity of the rule follows from adding symbol 0 when 1 is to appear and 2



736 John Nixon

when 2 is to appear starting from either C1 or C2 , which are both regular
rules being RHS’s of single TM steps in Equation 23. For the other case, the
LHS of the rule starts C022 . . .. In this case the computation starting from
D0 with 1 added, then 0 leads to C022 . Then the above formula applies
extending the CS showing that all CS’s of the form C022{1, 2}∗ are RHS’s of
RR. These arguments are trivial because in these cases the TM only moves to
the right. Here {1, 2}∗ is any string containing only 1 and 2.

next symbol
rule CS 0 1 2

23.1, 23.11 B2 23.4 24.2 23.6
23.3, 23.10 A0 23.1 24.2 23.3
23.4, 23.9 C2 23.7 24.1 23.9
23.5 A 1 24.2 23.2 24.2
23.6 D0 23.10 23.11 24.2
23.7 C1 23.7 24.2 23.9
23.12, 24.1, 27.3, 27.5, 27.7 C 1 24.2 23.8 24.1
23.2, 23.8, 27.2, 27.6 D 1 24.2 24.2 23.12

Table 4: Table establishing the completeness of the IRR for TM5. The body
of the table has the next rule to be applied.

The above results show that the rules in (27) are IRR. Table 4 outlines the
demonstration of the completeness of the set of IRR, consisting of (23), (24)
and (27) according to Theorem (5.6). The numbered IRR refer to equations 23
and (24) numbered consecutively, (in both cases numbers are not shown) and
(27) numbered as shown. In this example there were a lot of cases that could
be combined as indicated by the lists of rules in the first column and the CS
reached in each case is a subset of a CS of length 1 that together with the new
symbol determines the next IRR to be applied to continue the computation.

What is noticeable in Table 4 is that in no circumstances is any rule followed
by a rule in (27). Therefore as this TM runs, there is never more than one
execution of any of the rules in (27). If such a rule is executed, it must happen
immediately. Also regarding the right-moving steps in 23, after more than 2
such steps they cannot be followed by a left-moving IRR. The exception is if
24 .1 is reached after 2 right-moving steps then the TM can cycle indefinitely
though left-moving IRR including 24 .1. This analysis ignores the cycling
condition 24.2 that can happen at many points and effectively stop the TM.
Although the behaviours of this TM are fairly complex, there is nothing here
similar to an interpretive cycle, so this TM is not expected to be universal in
any sense.



Turing Machines 737

10 Conclusions

Regular computation rules for any Turing Machine are defined so that, every
computation can be expressed as a sequence of application of these short-cut
computation rules such that a new rule is only applied when the pointer reaches
a point on the TM tape that has never been reached before. Generally, the
number of such rules very rapidly increases with the length of the rule (i.e.
the length of the tape segment to which it applies). Many such rules are
redundant in the sense that they are derived in one step from a shorter such
rule. The non-redundant set are the irreducible regular rules (IRR) that are
derived in more than one step. It was shown that the LHS’s of the IRR have
a tree structure because a truncation of such an LHS is also the LHS of an
IRR of shorter length. By analysing a series of examples of TM’s, it was found
possible except in one complex case to establish recursive formulae that define
all the IRR for the TM and draw conclusions about the behaviour of the TM.
This was aided by Theorems 9.2 and 9.3, that allow an efficient automation of
a procedure for obtaining all the IRR of a given length for any TM. It is not
expected to be possible to obtain such a formula by a mechanical procedure in
general from a TM, but once guessed correctly in a specific case such a formula
can be verified by induction. These results give information describing the
long-term behaviour of the TM for any input tape as the examples show. For
this purpose a table can be constructed giving, for each IRR applied and each
next symbol read, the corresponding next IRR to be applied.

Thus I conjecture that once the general formula for the IRR has been cor-
rectly guessed for a TM, it is possible to verify it with an induction argument.
Once a TM has been analysed in this way it leads to a satisfactory higher level
description of the computation that allows many questions to be answered for
it i.e. the TM is presented such that as much general analysis as possible has
been done for it. Nothing further can be said about it without the input tape
being specified.

Possible applications are many because of the universal nature of Turing
Machines. Theoretically any computational problem can be expressed as a
(probably inefficient) Turing Machine, so analysis of a TM to solve the problem
by this method could lead to information about the problem in general and
perhaps to more efficient computational procedures for it.

Functions mapping the set of real numbers to itself could be set up as
Turing Machines with the property that the IRR are all right-moving, or are
so after some point. The examples in this paper show that this can happen.
This property would ensure that a given degree of precision of the input (ini-
tial tape) would determine a corresponding degree of precision in the answer,
provided the moving-window in which the computation occurs has a left end
that advances to the right as the computation proceeds.



738 John Nixon

There seems to be a connection of this method with ‘term-rewriting’ [4],
Gröbner Bases and the Knuth-Bendix procedure [5], because the general prin-
ciple in the latter is to bring out the consequences of sets of algebraic relations
in a systematic way to get new results that were not obvious initially, the re-
sult being an effective way to determine in certain cases whether an algebraic
identity is true or not as a consequence of certain axioms. The procedure de-
scribed in this paper carries out a similar function for the Turing Machine table
to get the set of irreducible regular rules, that themselves define an equivalent
form of the Turing Machine such that one step of this is needed only when a
new tape location is read for the first time by the TM. The examples show
that many properties of a computation can be found from the results of this
generally applicable algorithm that were not obvious initially.

I think it is likely that there is also a connection with the methods I de-
veloped for solving systems of linear PDEs [6][7] with many independent and
dependent variables involving the use of commutator brackets, where the same
general principle applies.

References

[1] Marvin L. Minsky “Computation: Finite and Infinite Machines” Prentice-
Hall, Inc, Englewood Cliffs, N.J. U.S.A., 1967.

[2] Nixon, John TM analyser A computer program written in C++ for the
analysis of Turing Machines.

[3] Machlin R. and Stout Q.F. (1990) “The complex behavior of simple ma-
chines” Physica D 42, 85-98.

[4] Yap, Chee Keng , Introduction to Chapter 12 in “Fundamental problems
in Algorithmic Algebra” Oxford University Press, 2000.

[5] Knuth D. E. and Bendix P. B. “Simple Word Problems in Universal Al-
gebras.” In Computational Problems in Abstract Algebra (Proc. Conf.,
Oxford, 1967).
Pergamon Press, pp. 263-297, 1970.

[6] Nixon J., “Application of Lie groups and differentiable manifolds to gen-
eral methods for simplifying systems of partial differential equations”
J. Phys. A: Math. Gen. 24 (1991) 2913-2941.

[7] Nixon J., “Minimization of dimension for functional differential equations
and the thermodynamics of the classical one-dimensional fluid”
J. Phys. A Math. Gen. 27 (1994) 1407-1426.

Received: October 2013

http://e-hilaris.com/MA/2013/tie_v1.0.txt

	Introduction
	Definition of Turing Machines (TMs)
	Configuration Sets
	Computation Rules
	Regular rules: representing TM computations in terms of computation rules
	Analysis of an example of a Turing Machine with a finite number of irreducible regular rules
	Analysis of TM's with an infinite number of irreducible regular rules
	A small TM with a complex behaviour
	More complex examples and the branching tree structure of the irreducible regular rules
	Conclusions

