(July-August, 2014)

GLOBAL JOURNAL OF COMMERCE & MANAGEMENT PERSPECTIVE (Published By: Global Institute for Research & Education)

www.gifre.org

MEASURING GAP IN SKILL CHECK OF WORKERS UNDER PERFORMANCE APPRAISAL SYSTEM IN CEMENT COMPANIES OF RAJASTHAN

Anil. K. Bhatt¹& Renu Nathawat²

¹Associate Professor, Shrinathji Institute of Management, Nathdwara, Rajasthan, India ²Research Scholar, Pacific University, Udaipur, Rajasthan, India

Abstract

Performance Appraisal System (PAS) is always a matter of conflict for assessing subordinates performance. Since the effectiveness of organizations depends upon measuring workers skills and converting it in the favour of organisation however, the subordinates always believe that their skills are not checked properly under the current PAS. This paper focuses on measuring employee's skills for effective PAS for the workers of Cement Industry in the geographical area of South Rajasthan, for this purpose a questionnaire was administered by taking 31 items, survey of workers and managers of 4 cement companies were being conducted by taking perception of 121 workers and 99 managers. To identify gap in PAS testing of hypotheses were done with SPSS-19 software, by applying correlation, multiple regressions and ANOVA. 9 variables were selected from workers and managers perception. These variables were further provided to cement companies to reduce these gaps and making the PAS effective in cement companies.

Keywords: Performance Appraisal System, Cement companies, Workers and Managers, Perception Gap, Multiple Regression and ANOVA.

1. Introduction

Performance Appraisal is a systematic attempt to discriminate among strength and weaknesses an individual has across many job elements and to distinguish the more efficient workers from the less efficient workers (Jacobs et al, 1980). It is measurement of how well someone performs job-relevant tasks (Parrill, 1999). These measurements are normally done by the direct supervisor of the ratee and can serve different organisational purposes. Performance Appraisal System (PAS) deals with with organizational mission, vision & goal, as a strategic concept under which Key result area of all the employees will be checked if employees are achieving its performance up to the mark. It is a strategic approach of increasing the effectiveness of organizations by improving the performance of the employees and by developing the capabilities of teams and individual contributors (Baron & Armstrong, 1998). Borman and Motowidlo (1993) conceptualized job performance as comprising task performance and contextual performance. They suggested that task performance relates to the proficiency, with which employees perform core technical activities that are important for their jobs, whereas contextual performance is defined as extra task proficiency that contributes more to the organizational, social, and psychological environment to help achieving organizational goals. Contextual factors include aspects like persisting with enthusiasm and extra effort, volunteering to carry out duties not formally part of one's job, and endorsing and supporting organizational objectives (Borman & Motowidlo 1993).

To make the PAS effective it is essancial that the workers possess some important skills which are constantly checked for attaining the organisational goals. Since the people to bring their knowledge and skills, that increases their chances of success. It is equally important that the more challenging the goal, the more people will draw on their full repertoire of skills. Raju and Collins (1998) state that peer and subordinate ratings are particularly useful because they provide two different and important perspectives on ratee skill and behaviour. The reward system would typically address individual needs such as working in a team, recognition, opportunity to influence decisions, skills development, career opportunities, and a sense of achievement. Tziner and Kopelman (2002) stated that training should provide trainees with broad opportunities to practice the specified skills and on their practice appraisal performance. There are five groups of competencies to be appraised which are a combination of specific behaviour and skills: (1) specialist and methodological skills, (2) personal skills, (3) interpersonal skills, (4) entrepreneurial skills and (5) management skills. These skills of the workers and managers are assessed under this research paper.

2. Objectives

The objectives of this study were as follows:

- i. To measure the Perception of workers and managers on Skill check dimension.
- ii. To identify the areas where gap in the perception is found.
- iii. To suggest a way to the management for reducing this perception gap.

3. Review of Literature

The reviews of skill check of the workers can be provided as under:

Chouhan,(2014) defined intellectual skills as the skills required to deal with uncertainty, or to deal with changes and handle problems. Further facets of the meaning of intellectual skills in the assembly-line context are: The ability to carry out many jobs in a particular workshop and Broad knowledge of the structure, functions and mechanism of the equipment, products and the production process itself.

Koike, (1994) put forth two proposals regarding the issue of whether production employees always conduct difficult and unusual operations that require the application of intellectual skills. The first proposal was to standardize unusual operations and prepare a manual as a guideline for employees to handle such operations. The second proposal was to develop integrated rather than separated systems for allocating jobs. A careful examination of these proposals shows that they have limitations at the practical implementation level. In respect of the first proposal, limitations exist because of the variety in the nature of potential problems and the difficulty associated with incorporating all such problems into a written manual hampering quick response to problems.

Stasz (2001) identified four broad areas of skill, academic or cognitive skills, generic skills, technical skills and work-related attitudes. School disciplines seem to play an important role in helping people to acquire knowledge about various subjects, and this knowledge is expected to be broadly transferable across a wide range of situations and circumstances. Standardized tests are employed for assessing these skills. Generic skills such as problem solving, communications and teamwork, on the other hand, are believed to be broadly transferable across work settings, with variations engendered by work setting-specific processes. Stasz further stressed problem solving, as a general term, representing a particular competency, the meaning of which differs across tasks and situations. For example, in educational settings problem solving could mean solving mathematical problems whereas in a factory environment it may carry the meaning of spotting the causes of defective products and diagnosing and eliminating such causes.

Shibata (2002), who studied wage and performance appraisal systems of unionized Japanese and American firms, pointed out that personal wages and skill-based wages of Japanese employees were determined by the employees' skill-based job grades, performance appraisals and seniority. In contrast, both hourly wages for blue-collar employees and weekly or annual wages for white collar employees in unionized American firms were based on job attributes.

Green and James (2003), exploring differences between managers' and employees' perceptions of skill, supported to a certain extent this composition of generic skills, including verbal, physical, problem-solving and planning skills. Their view suggested that these skills give a mix of the academic, non-academic and organizational elements. Thus the word "generic skills" is broader in meaning and makes concrete sense only when it is placed in a specific work context. In contrast, technical skills are the specific skills needed in an occupation, and are usually codified in job descriptions.

Cutler, (1992), in their research paper on "Vocational Training and British Economic Performance", revealed that performance appraisal stresses both employer and employee should focus on the complementary purpose of the organisation's furtherance. On the one hand individuals are a potential business resource through the enhancement of their personal skills. While on the other, they are seen as any other investment in equipment.

Fletcher, at. al., (1992) in their book on "Performance Appraisal and Career Development", revealed that A good performance appraisal system could improve the performance of the staff through feedback and development plans, give employees a clearer understanding of performance standard, and improved communication between employees and their managers. The goal of feedback is the shaping of desired performance through the immediate receipt of intrinsic rewards contingent upon success. Where skillfully employed, feedback of performance evaluations can produce high levels of motivation and of desirable performance behaviour

Buzzotta, at. al., (1999) in their research paper on "Improve your Performance Appraisal" conclude that there is of course no one "right" way of operating appraisal scheme, just as there is no such thing as a perfect appraisal system. Effective performance appraisals are difficult to do. They require a full understanding of the work job and of his or her performance. They demand psychological insight and interactive skills. Even the best appraisers rarely say an appraisal is simple and easy (Verma, P., 2014).

Bratton, at. al. (2003) in their book entitled "Human Resource Management, Theory and Practise", explains PAS with the words as Performance appraisal was also defined as a structured formal interaction between employee and manager that usually takes the form of a periodic interview, in which the work performance of the employee is examined and discussed, with a view to identifying weaknesses and strengths as well as opportunities for improvement and skills development. Performance appraisal is based on results obtained by the employee in his job, not on employee's personality characteristics.

Varma at. al., (2005) in their research paper on "The role of interpersonal affect in performance appraisal: evidence from two samples – the US and India", revealed the interpersonal affect, a like–dislike relationship between a supervisor and his/her subordinate, has traditionally been conceptualized as a source of bias in performance appraisals. However, some researchers have argued that the interpersonal affect may not be a bias, especially where it develops as a result of past performance. In this field study, using data from 190 supervisors in the US, and 113 supervisors in India, we delineate the relationship between interpersonal affect and performance ratings. In both samples, interpersonal affect and performance level were found to have significant effects on performance ratings. Results from the US sample indicated that raters are able to separate their liking for a subordinate from actual performance when a signing performance rating, suggesting that the interpersonal affect does not operate as a bias in the appraisal process. Results from the Indian sample, however, suggest that supervisors inflate ratings of low performers, suggesting that local cultural norms may be operating as a moderator.

Rao, (1986) in the study entitled "Integrated HRD Systems" highlights that rewarding employee performance and behaviour is an important part of HRD, for appropriate rewards not only recognize and motivate employees but they also communicate the organization's values to the employees. Moreover, rewarding encourages the acquisition and application of positive attitudes and skills (Chouhan, V. at al., 2013).

Jean-François Henri, (2004) and Chouhan, V.,(2014) in their research paper on "Performance measurement and organizational effectiveness: bridging the gap", revealed that Performance measurement models have moved from a cybernetic view whereby performance measurement was based mainly on financial measures and considered as a component of the planning and control cycle to a holistic view based on multiple nonfinancial measures where performance measurement acts as an independent process included in a broader set of activities. This paper contributes to the performance measurement literature by establishing the origins of the performance measurement models and by shedding light on unexplored fertile areas of future research.

4. Research Methodology and Hypothesis

4.1 Collection of Primary Data:

The data for this research is collected from primary source by a well fabricated questionnaire; this was filled in by the workers and Managers of the selected cement companies. Through questions attempt was made to find out weaknesses in mechanisms and strategies of the present performance appraisal system focusing on their skill check and suggestions for making performance appraisal system more effective. This questionnaire was administered by taking 31 items on Likert Scale, survey of workers and managers of 4 cement companies were being conducted by taking perception of 121 workers and 99 managers.

4.2 Data analysis Tool:

To identify gap in PAS testing of hypotheses were done with SPSS-19 software, by applying correlation, multiple regressions and ANOVA. 9 variables were selected from workers and managers perception.

4.3 Hypothesis

To identify key variables in current performance appraisal system multivariate regression analysis has been used. The perception of the workers and managers are sought in relation to parameter of Skill Check of employees. The following hypothesis was developed:

- H₀: The attributes configuring Performance appraisal of organisation on Skills Check dimension has no influence over the PAS.
- H₁: The attributes configuring Performance appraisal of organisation on Skills Check dimension significantly influence the PAS.

5. Data Analysis

As per the objective of the study the agreement of the managers related with the various attributes were checked with the broader hypothesis. Data has being taken on five point Likert Scale (1 for highly disagree and 5 for highly agree) from the workers and managers for skill check under Current performance appraisal system in terms of their perception. **Table- 1: Multivariate Regression Analysis of Skills Check**

Descriptive Statistics

Std. Deviation Mean Ν Current PA System 3.0909 .91575 99 VAR00006 4.0000 51508 99 VAR00007 4.0000 .68512 99 VAR00008 4.0202 .60575 99 99 VAR00009 3.8788 .67420 53452 99 VAR00010 4.0000 3.7677 99 VAR00011 .69735 VAR00012 3.7677 .84308 99 4.0505 .71961 99 VAR00013 VAR00014 3.8889 .44924 99 VAR00015 3.9798 .62237 99 99 VAR00016 3.8990 .59753 99 VAR00017 4.0707 .62682 VAR00018 3.8586 .65481 99 VAR00019 3.9495 50252 99 VAR00020 3.6869 79085 99 3.8788 99 VAR00021 .57628 VAR00022 4.0303 .66170 99 VAR00023 3.8586 75607 99 99 VAR00024 3.7172 .68572 VAR00025 3.6263 .82790 99 VAR00026 3.9697 57949 99 VAR00027 3.9899 .61437 99 99 VAR00028 3.8182 .78719 VAR00029 3.7172 .78299 99 VAR00030 3.8687 70922 99 99 VAR00031 3.8485 .61218 VAR00032 3.9899 99 .56234 VAR00033 4.0303 .74853 99 VAR00034 99 3.7677 55011 VAR00035 3.8889 .66837 99 VAR00036 4.0101 .66232 99

Correlations

		Curre t PA S	_	MS_ 2	MS_ 3	PS_1	PS_2	PS_3	PS_4	PS_5	PS_6	PS_7	IS_1	IS_2	IS_3	IS_4	IS_5	IS_6	IS_7	IS_8	ES_1	ES_2	ES_3	ES_4	ES_5	SE_6	MGT _1	MGT _2	MG T_3	MGT _4	MGT _5	MGT _6	MGT _7
P e	Curren t PAS																																
a			8 1.00																														
r	MS_2	.114	4.520	1.00																													
s	MS_3	040	.523	.393	1.00																												
0	PS_1	.002	.147	.199)																										
n	PS_2	.27	.371	.474			1.00																										
С	PS_3	.049	9.170	.214	.229	.829	.329	1.00																									
0	PS_4	13																															
r	PS_5	03								1.00																							
Г	PS_6	.124																															
1	PS_7	.36										1.00																					
a	IS_1	170																															
t	IS_2	04′												1.00																			
i	IS_3	.022												.522																			
0	IS_4	.16	_										.527			1.00																	
n	IS_5	.012	-														1.00																
	IS_6	.06																1.00															
	<u>IS_7</u>	.09							.251							.588				1 0 0													
	IS_8	.12							.140					.237			.505			1.00													
	ES_1	040																		137													
	ES_2	022																		.013			1.00										
	ES_3	.12							015											.293			1.00										
	ES_4	.20																		.304			.000	1.00	1.00								
	ES_5 SE_6	.00							034										1 1	.042			.386		1.00	1.00							
	MGT																			.087			.536										
	MGT																			.350			.505		.662								
	MGT_								.009							.468		.343		.309			.500		.002							+	
	MGT																036			046		1	.496		.650	.537				1.0		-+	
	MGT_			162					.190											.116			.138			.391				.439	1.0	+	
	MGT_								.135								0.009			.251											.567	1.00	
	MGT				.127	.117	.404	.182	.059	.192			.415		.380		.084			.268	.546	.398			.747	.537	.611	.759	.603	.617		.809	1.00

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	PS_7	•	Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
2	IS_1		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
3	IS_4		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
4	ES_1		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
5	PS_2		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
6	MS_1		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
7	ES_5		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
8	MS_2	•	Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).
9	PS_5		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).

a. Dependent Variable: Current PA System

Model Summary

		R	Adjusted R	Std. Error of	R Square				Sig. F
Model	R	Square	Square	the Estimate	Change	F Change	df1	df2	Change
1	.361 ^a	.131	.122	.85826	.131	14.567	1	97	.000
2	.463 ^b	.214	.198	.82006	.084	10.248	1	96	.002
3	.518 ^c	.268	.245	.79579	.054	6.945	1	95	.010
4	.610 ^d	.373	.346	.74060	.105	15.685	1	94	.000
5	.653 ^e	.426	.395	.71223	.053	8.640	1	93	.004
6	.693 ^f	.480	.446	.68156	.054	9.558	1	92	.003
7	.724 ^g	.524	.488	.65542	.044	8.484	1	91	.005
8	.770 ^h	.593	.557	.60968	.069	15.165	1	90	.000
9	.784 ⁱ	.615	.576	.59656	.022	5.002	1	89	.028

i. Predictors: (Constant), PS_7, IS_1, IS_4, ES_1, PS_2, MS_1, ES_5, MS_2, PS_5

$ANOVA^{j} \\$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	10.730	1	10.730	14.567	.000a
	Residual	71.452	97	.737		
	Total	82.182	98			
2	Regression	17.622	2	8.811	13.102	.000b
	Residual	64.560	96	.672		
	Total	82.182	98			
3	Regression	22.020	3	7.340	11.591	.000c
	Residual	60.162	95	.633		
	Total	82.182	98			
4	Regression	30.623	4	7.656	13.958	.000d
	Residual	51.559	94	.548		
	Total	82.182	98			
5	Regression	35.006	5	7.001	13.802	.000e
	Residual	47.176	93	.507		
	Total	82.182	98			
6	Regression	39.446	6	6.574	14.153	.000f
	Residual	42.736	92	.465		
	Total	82.182	98			
7	Regression	43.091	7	6.156	14.330	.000g
	Residual	39.091	91	.430		
	Total	82.182	98			
8	Regression	48.728	8	6.091	16.386	.000h
	Residual	33.454	90	.372		
	Total	82.182	98			
9	Regression	50.508	9	5.612	15.769	.000i
	Residual	31.674	89	.356		
	Total	82.182	98			

i. Predictors: (Constant), PS_7, IS_1, IS_4, ES_1, PS_2, MS_1, ES_5, MS_2, PS_5

G.J.C.M.P., Vol.3(4):157-163 7285

j. Dependent Variable: Current PA System **Coefficients**^a

	efficients ^a		d ardized	Standar dized						Colline		
		Coef	ficients	Coeffi cient			Cor	relations	1	Statistics Toler		
М	odel	В	Std. Error	Beta	t	Sig.	Zero order	Par tial	Part	ance	VIF	
1	(Constant)	.975	.561		1.738	.085						
	PS_7	.532	.139	.361	3.817	.000	.361	.361	.361	1.000	1.000	
2	(Constant)	2.261	.670		3.375	.001						
	PS_7	.664	.139	.451	4.764	.000	.361	.437	.431	.912	1.096	
	IS_1	465	.145	303	-3.201	.002	170	311	290	.912	1.096	
3	(Constant)	1.309	.744		1.760	.082						
	PS_7	.604	.137	.411	4.405	.000	.361	.412	.387	.887	1.127	
	IS_1	669	.161	436	-4.161	.000	170	393	365	.700	1.428	
	IS_4	.503	.191	.276	2.635	.010	.165	.261	.231	.703	1.423	
4	(Constant)	1.094	.694		1.576	.118						
	PS_7	.595	.128	.405	4.665	.000	.361	.434	.381	.887	1.127	
	IS_1	765	.152	499	-5.046	.000	170	462	412	.682	1.465	
	IS_4	1.329	.274	.729	4.851	.000	.165	.447	.396	.295	3.388	
	ES_1	711	.179	532	-3.960	.000	040	378	324	.370	2.705	
5	(Constant)	.537	.694		.774	.441						
	PS_7	.397	.140	.270	2.838	.006	.361	.282	.223	.682	1.467	
	IS_1	886	.151	578	-5.850	.000	170	519	460	.632	1.583	
	IS_4	1.352	.264	.742	5.130	.000	.165	.470	.403	.295	3.391	
	ES_1	813	.176	609	-4.619	.000	040	432	363	.355	2.815	
	PS_2	.527	.179	.308	2.939	.004	.271	.292	.231	.563	1.775	
6	(Constant)	1.336	.713		1.875	.064						
	PS_7	.439	.135	.299	3.262	.002	.361	.322	.245	.675	1.482	
	IS_1	872	.145	569	-6.009	.000	170	531	452	.631	1.585	
	IS_4	1.447	.254	.794	5.694	.000	.165	.510	.428	.291	3.440	
	ES_1	728	.171	545	-4.268	.000	040	407	321	.346	2.889	
	PS_2	.588	.173	.343	3.403	.001	.271	.334	.256	.556	1.799	
	MS_1	488	.158	275	-3.092	.003	108	307	232	.716	1.397	
7	(Constant)	1.479	.687		2.153	.034						
	PS_7	.481	.130	.327	3.690	.000	.361	.361	.267	.667	1.500	
	IS_1	833	.140	543	-5.943	.000	170	529	430	.625	1.599	
	IS_4	1.903	.290	1.044	6.557	.000	.165	.566	.474	.206	4.850	
	ES_1	515	.180	386	-2.864	.005	040	288	207	.289	3.466	
	PS_2	.534	.167	.312	3.195	.002	.271	.318	.231	.549	1.821	
	MS_1	746	.176	420	-4.244	.000	108	406	307	.535	1.871	
	ES_5	473	.162	407	-2.913	.005	.009	292	211	.268	3.730	
8	(Constant)	1.338	.640		2.090	.039						
	PS_7	.424	.122	.288	3.474	.001	.361	.344	.234	.657	1.522	
	IS_1	959	.134	626	-7.141	.000	170	601	480	.589	1.698	
	IS_4	2.296	.288	1.260	7.967	.000	.165	.643	.536	.181	5.529	
	ES_1	414	.169	310	-2.449	.016	040	250	165	.282	3.549	
	PS 2	.336	.164	.196	2.055	.043	.271	.212	.138	.496	2.015	
	MS 1	-1.167	.196	657	-5.954	.000	108	532	400	.372	2.689	
	ES_5	630	.156	541	-4.028	.000	.009	391	271	.250	3.995	
	MS_2	.502	.129	.376	3.894	.000	.114	.380	.262	.486	2.056	
9	(Constant)	1.382	.627		2.205	.030						
	PS_7	.475	.122	.323	3.907	.000	.361	.383	.257	.634	1.577	
	IS_1	879	.136	574	-6.456	.000	170	565	425	.548	1.824	
	IS_4	2.223	.284	1.220	7.830	.000	.165	.639	.515	.178	5.603	
	ES_1	428	.166	321	-2.584	.011	040	264	170	.281	3.554	
	PS_2	.449	.168	.262	2.674	.009	.271	.273	.176	.451	2.215	
	MS 1	-1.117	.193	628	-5.784	.000	108	523	381	.367	2.726	
	ES_5	618	.153	531	-4.038	.000	.009	394	266	.250	3.999	
	MS_2	.525	.127	.392	4.146	.000	.114	.402	.273	.483	2.069	
	PS_5	248	.111	195	-2.237	.028	038	231	147	.571	1.753	

a. Dependent Variable: Current PA System

Assessing Overall Model Fit

Table 1 shows the final Regression model with 9 independent variables (PS_7, IS_1, IS_4, ES_1, PS_2, MS_1, ES_5, MS_2, PS_5) explains almost 57.6% of the variance of current PAS. Also, the standard errors of the

G.J.C.M.P., Vol.3(4):157-163 7285

(July-August, 2014)

estimate has been reduced to 0.59656, which means that at 95% level, the margin of errors for any predicted value of Current PAS can be calculated as \pm 1.169258 (1.96 X .59656). The three regression coefficients, plus the constraints are significant at 0.05 levels. The impact of multicolinerarity in the 9 variables is substantial. They all have the tolerance value less than .571, indicating that over 42 % of the variance is accounted for by the other variables in the equation. The ANOVA analysis further provides the statistical test for overall model fit in terms of F Ratio. The total sum of squares (82.182) is the squared error that would accrue if the mean of Current PAS has been used to predict the dependent variable. Using the values of PS_7, IS_1, IS_4, ES_1, PS_2, MS_1, ES_5, MS_2, PS_5 this error can be reduced by 61.4587% (50.508/82.182). This reduction is deemed statistically significant with the F ratio of 15.769 and significance at level of 0.000.

6. Conclusion

In summary, the performance appraisal process is highly structured and there are clear guidelines established what ratee and rater should do to make the performance appraisal successful. Especially for performance feedback and goal-setting a lot of recommendations are given which match the findings from literature. It is very important to identify that which skills of the employees must be checked so that they will become an assets and provide help in achieving the organisational and their own personal goal. The current study concluded that nine variables i.e., PS_7, IS_1, IS_4, ES_1, PS_2, MS_1, ES_5, MS_2, PS_5 explains the skill check of employees for Performance appraisal tools. These skills are of great importance; these features should also be considered in the overall assessment. Hence, the line manager decides whether the "Overall Performance Assessment" taking into account these skills of workers for assessment on the basis of the known scale.

References

- 1. Chouhan, V., Verma, Pushpa, Sanghvi, Himanshu and Gupta, Apurv (2013), Assessing Worker's and Manager's Perception on Judgment Accuracy in Performance Appraisal System (PAS), International Journal of Engineering, Business and Enterprise Applications (IJEBEA), 5(1), pp. 95-99.
- 2. Verma, Pushpa, Chouhan, V., (2014), Measuring validity of performance appraisal tools in Performance Appraisal System, Nirnay the Journal of Decision Science, 6(1), pp 57-64.
- **3.** Chouhan, V. & Verma, Pushpa, (2014), Improving effectiveness of Performance appraisal tool: Who thinks that it uses improved techniques?, Business Spectrum, 4(1), pp 1.-12.
- **4.** Koike, K. (1994), Learning and incentive systems in Japanese industry. In M. Aoki & R. Dore (Eds.), The Japanese firm: The sources of competitive strength, pp. 41-65, Oxford: Oxford University Press.
- 5. Stasz, C. (2001), Assessing skills for work: Two perspectives. Oxford Economic Papers, 53(3), pp 385-405.
- 6. Shibata, H. (2002), Wage and performance appraisal systems in flux: A Japan-United States comparison. Industrial Relations, 41(4), pp 629-652.
- 7. Cutler, T., (1992), Vocational Training and British Economic Performance", Work, Employment and Society, 6(2), pp 161-183.
- 8. Fletcher, C. and Williams, R., (1992), Performance Appraisal and Career Development, Nelson: Thornes Limited.
- 9. Buzzotta, V.R & Beatly, A., (1999), Improve your Performance Appraisal.
- **10.** Bratton, J and Gold, J., (2003). Human Resource Management, Theory and Practise, (3rd ed)
- **11.** Varma, Arup, Pichler, Shaun, Srinivas, Ekkirala S (2005), The role of interpersonal affect in performance appraisal: evidence from two samples-the US and India, International Journal of Human Resource Management, 16 (11), pp 2029-2044.
- 12. Rao, T. V. and D. F. Pereira, (1986), Recent Experience in Human Resource Development, Oxford and IBH Publishing Co., New Delhi, pp 3-4.
- **13.** Jean-François Henri, (2004), Performance measurement and organizational effectiveness: bridging the gap", Managerial Finance, 30(6), pp 93 123.
- 14. Tziner, A. & Kopelman, R.E. (2002). Is there a Preferred Performance Rating Format? A Non-psychometric Perspective. Applied Psychology: An International Review, 51 (3), pp 479-503
- **15.** Parrill, S. (1999). Revisiting Rating Format Research: Computer-Based Rating Formats and Components of Accuracy. (Unpublished manuscript). Virginia Polytechnic and State Institute, Blacksburg, VA.
- 16. Jacobs, R. et al (1980). Expectations of Behaviourally Anchored Rating Scales. Personnel Psychology, 33, pp 595-646.
- 17. Baron, A. & Armstrong, M. (1998). 'Out of box'. People Management, 23, pp 38-41