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Abstract

In this paper, we study M; surfaces of biharmonic B-general helices
according to Bishop frame in the Heisenberg group Heis?. Additionally,
we illustrate our main theorem.
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1 Introduction

Developable surfaces have several practical applications. Many cartographic
projections involve projecting the Earth to a developable surface and then "un-
rolling" the surface into a region on the plane. Since they may be constructed
by bending a flat sheet, they are also important in manufacturing objects from
sheet metal, cardboard, and plywood.

In this paper, we study M; surfaces of biharmonic B-general helices ac-
cording to Bishop frame in the Heisenberg group Heis®. We give necessary
and sufficient conditions for $B-general helices to be biharmonic according to
Bishop frame. We characterize the M; surfaces of biharmonic B-general he-
lices in terms of Bishop frame in the Heisenberg group Heis®. Additionally, we
illustrate our main theorem.
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2 The Heisenberg Group Heis®

Heisenberg group Heis® can be seen as the space R? endowed with the following
multipilcation:

1 1
Heis? is a three-dimensional, connected, simply connected and 2-step nilpotent
Lie group.
The Riemannian metric g is given by

g = da® +dy? + (dz — xdy)>.

The Lie algebra of Heis® has an orthonormal basis

0 0 120 -9 (2.2)
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3 Biharmonic B-(General Helices with Bishop
Frame In The Heisenberg Group Heis®

Let v : I — Heis® be a non geodesic curve on the Heisenberg group Heis?
parametrized by arc length. Let {T, N, B} be the Frenet frame fields tangent
to the Heisenberg group Heis® along ~ defined as follows:

T is the unit vector field 4" tangent to ~, IN is the unit vector field in
the direction of V1T (normal to ), and B is chosen so that {T,N,B} is
a positively oriented orthonormal basis. Then, we have the following Frenet
formulas:

VTT = KJN,
VN = —kT+ 7B, (3.1)
VTB == —TN,

where x is the curvature of v and 7 is its torsion and

g(T,T) = 1, g(N,N)=1, ¢(B,B) =1, (3.2)
g(T,N) = ¢(T,B)=g(N,B)=0.

In the rest of the paper, we suppose everywhere x # 0 and 7 # 0.



New Surfaces of Biharmonic B-General 725

The Bishop frame or parallel transport frame is an alternative approach to
defining a moving frame that is well defined even when the curve has vanishing
second derivative. The Bishop frame is expressed as

VTT == klMl + k2M27

VT]-\Z[l = _lea (33)
VTMQ - _kQTu
where
9(T7T) = 1, Q(MhMl) =1, 9(M2,M2) =1, (3-4)

g(T,My) = ¢(T,My) =g(M;,My)=0.

Here, we shall call the set {T,M,, M,} as Bishop trihedra, k; and ks as
Bishop curvatures. where 0 (s) = arctan i—i, 7(s) = 0’ (s) and k(s) = \/k3 + k3.

4 M,; Surface of Biharmonic ‘B-General He-
lices with Bishop Frame In The Heisenberg
Group Heis®

The purpose of this section is to study M; surfaces of biharmonic B-general
helices with Bishop frame in the Heisenberg group Heis?®.

The M, surface of vy is a ruled surface

P (s,u) =vg () + uMy (s). (4.1)

Theorem 4.1. Let vy : I — Heis® be a unit speed biharmonic B-general
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heliz with non-zero natural curvatures. Then the My surface of vy is

sin 0 k3 + k3 1
P y = 2,12 . L 2 — 0)2 +
(S U) [(]Zir;k; — cos Q)% ln[( Sin29 COSs ) S CO]
e
+u sin|( slin2 92 — CoS 9)%8 + (o + Colen
sin 6 k2 + k2 1
e (—kftkf — cosf)? cosl( sm20 0)2s+ Gl
k2 + k3
—u cos|( slin2 92 — cos 9)%S + (ol + (3les (4.2)
sin 6 k24K 1
+[—[<k%+2k§ " oot} sin(~ —cos0)zs+ (o] + (o
sin 6 k3 + k32 !
_ — cosf)z
TEE ooyt W sinzg Ol TG
in® 0 in2[(5K — cos0)rs +
+ (cos ) s + — k;sm 1 (f - I 512220k2 = )2f ol
(ﬁ—cosé’)i 2 4( Sﬁ;; —cosf)2
sin @ ]ﬁz + k)z 1
- k2+k€1 - cos[(——5 % — cos)2s + (o] + Cyles,
(p —cosf)2 SII

where (g, ¢y, Cy, (3, (4 are constants of integration.

Proof. Using orthonormal basis (2.2) and (3.8), we obtain

: R . Y .
T = (sinfcos[(——5- —cosf)2s+ (g, sinfsin[(———= — cos#)2s + (],
sin® sin® 6
in” 0 ki + k3
cosf + k2+k251n T sin?[(— 292 —cos@)%s%—(’o] (4.3)
(T —conp)h o
kRS 1
+(; sin @ sin|( ;in2 92 —cosf)2s + (yl),

where (; is constant of integration.

k2 + k3 1 k2 + k2 1
T = sinfcos|( 1,—'—2 2 —cos0)2s + (gle; + sinfsin|( 1.—1; 2 cosf)2s+ (yles
sin® 6 sin”
+ cos fes. (4.4)

On the other hand, using Bishop formulas (3.3) and (2.1), we have

1-+2 92 —cos )25+ (ple; — cos|( 1,+2 2 _ cos 0)
sin sin

N|=

M, = sin|(

s+ (olea. (4.5)
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Using above equation, we have (4.2), the theorem is proved.

Thus, we have following theorem.

Theorem 4.2. Let vy : [ — Heis® be a unit speed biharmonic B-general
helix with non-zero natural curvatures. Then the normal surface of vy are

sin 0 kR

= — cosf)z
rr (s [(kj;ke% — Cos 9)% sin( sin2f )25 Go
N )
+u Sln[( ;inQ 92 — COS 9)58 + CO] + €2]7
sin 0 k% + k% 1
pmisw = (K _ cos0)s cosl(Cpzg —eos0)?s + ol
k3 + k3 ,
ueosl (TR st 4 ¢l 4 ¢l
sin 6 . k% -+ /{7% 1
e = [(—kﬁ]}% — cos0)2 sinl(“zg —eos0)?s Gl
k? 4+ k2 1
il — cos0)¥s + ) + )
sin 0 k’% + ]{Jg 1
- (B _ cos0)s cosl(Cpzg —eos0)?s + ol
k3 + k3 |
—u cos|( slin2 92 —cos0)2s + (o] + (]
sin 0 o K+ K2 1
+[_[(—k%+2k9§ — Cos 9)% o sin?f cos 0)2s + Col + Gl
sin 0 k? 4+ k2 1
[_(k§+k§ ~ cost)? cos|( slin2 2 —cos6)2s + (o) + (4]
sin? 0
in%6 sin 2[(FHE _ o9 35+
+ (COS 9) s+ 52 kzsul 1 § - [( 81]1;.122 9k2 ) 1 CO]
(Sﬂ;; — cos)z 2 4( 5;5 —cosf)z
¢, sind k2 4 K2 ,
— _ 0 B)
<k$+2k9§ B cos@)% cos( g 08 )25+ Col + (4l

where (o, (1, Cy, (5, (4 are constants of integration.
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