M₁ SURFACES OF BIHARMONIC **B-GENERAL HELICES**ACCORDING TO BISHOP FRAME IN HEISENBERG GROUP Heis³

Talat KÖRPINAR

Firat University, Department of Mathematics 23119, Elazığ, TURKEY

Essin TURHAN

Fırat University, Department of Mathematics 23119, Elazığ, TURKEY

Abstract

In this paper, we study \mathbf{M}_1 surfaces of biharmonic \mathfrak{B} -general helices according to Bishop frame in the Heisenberg group Heis³. Additionally, we illustrate our main theorem.

Mathematics Subject Classification: 31B30, 58E20.

Keywords: Biharmonic curve, Bishop frame, Heisenberg group.

1 Introduction

Developable surfaces have several practical applications. Many cartographic projections involve projecting the Earth to a developable surface and then "unrolling" the surface into a region on the plane. Since they may be constructed by bending a flat sheet, they are also important in manufacturing objects from sheet metal, cardboard, and plywood.

In this paper, we study \mathbf{M}_1 surfaces of biharmonic \mathfrak{B} -general helices according to Bishop frame in the Heisenberg group Heis³. We give necessary and sufficient conditions for \mathfrak{B} -general helices to be biharmonic according to Bishop frame. We characterize the \mathbf{M}_1 surfaces of biharmonic \mathfrak{B} -general helices in terms of Bishop frame in the Heisenberg group Heis³. Additionally, we illustrate our main theorem.

2 The Heisenberg Group Heis³

Heisenberg group Heis^3 can be seen as the space \mathbb{R}^3 endowed with the following multiplication:

$$(\overline{x}, \overline{y}, \overline{z})(x, y, z) = (\overline{x} + x, \overline{y} + y, \overline{z} + z - \frac{1}{2}\overline{x}y + \frac{1}{2}x\overline{y})$$
 (2.1)

Heis³ is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Riemannian metric q is given by

$$g = dx^2 + dy^2 + (dz - xdy)^2.$$

The Lie algebra of Heis³ has an orthonormal basis

$$\mathbf{e}_1 = \frac{\partial}{\partial x}, \quad \mathbf{e}_2 = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \quad \mathbf{e}_3 = \frac{\partial}{\partial z}.$$
 (2.2)

3 Biharmonic **B**-General Helices with Bishop Frame In The Heisenberg Group Heis³

Let $\gamma: I \longrightarrow Heis^3$ be a non geodesic curve on the Heisenberg group Heis³ parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the Heisenberg group Heis³ along γ defined as follows:

T is the unit vector field γ' tangent to γ , **N** is the unit vector field in the direction of $\nabla_{\mathbf{T}}\mathbf{T}$ (normal to γ), and **B** is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$\nabla_{\mathbf{T}} \mathbf{T} = \kappa \mathbf{N},$$

$$\nabla_{\mathbf{T}} \mathbf{N} = -\kappa \mathbf{T} + \tau \mathbf{B},$$

$$\nabla_{\mathbf{T}} \mathbf{B} = -\tau \mathbf{N},$$
(3.1)

where κ is the curvature of γ and τ is its torsion and

$$g(\mathbf{T}, \mathbf{T}) = 1, \ g(\mathbf{N}, \mathbf{N}) = 1, \ g(\mathbf{B}, \mathbf{B}) = 1,$$

 $g(\mathbf{T}, \mathbf{N}) = g(\mathbf{T}, \mathbf{B}) = g(\mathbf{N}, \mathbf{B}) = 0.$ (3.2)

In the rest of the paper, we suppose everywhere $\kappa \neq 0$ and $\tau \neq 0$.

The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. The Bishop frame is expressed as

$$\nabla_{\mathbf{T}}\mathbf{T} = k_1\mathbf{M}_1 + k_2\mathbf{M}_2,$$

$$\nabla_{\mathbf{T}}\mathbf{M}_1 = -k_1\mathbf{T},$$

$$\nabla_{\mathbf{T}}\mathbf{M}_2 = -k_2\mathbf{T},$$
(3.3)

where

$$g(\mathbf{T}, \mathbf{T}) = 1, \ g(\mathbf{M}_1, \mathbf{M}_1) = 1, \ g(\mathbf{M}_2, \mathbf{M}_2) = 1,$$

 $g(\mathbf{T}, \mathbf{M}_1) = g(\mathbf{T}, \mathbf{M}_2) = g(\mathbf{M}_1, \mathbf{M}_2) = 0.$ (3.4)

Here, we shall call the set $\{\mathbf{T}, \mathbf{M}_1, \mathbf{M}_2\}$ as Bishop trihedra, k_1 and k_2 as Bishop curvatures. where $\theta(s) = \arctan \frac{k_2}{k_1}$, $\tau(s) = \theta'(s)$ and $\kappa(s) = \sqrt{k_2^2 + k_1^2}$.

4 M_1 Surface of Biharmonic \mathfrak{B} -General Helices with Bishop Frame In The Heisenberg Group Heis³

The purpose of this section is to study M_1 surfaces of biharmonic \mathfrak{B} -general helices with Bishop frame in the Heisenberg group Heis^3 .

The \mathbf{M}_1 surface of $\gamma_{\mathfrak{B}}$ is a ruled surface

$$\mathcal{P}(s,u) = \gamma_{\mathfrak{B}}(s) + u\mathbf{M}_{1}(s). \tag{4.1}$$

Theorem 4.1. Let $\gamma_{\mathfrak{B}}: I \longrightarrow Heis^3$ be a unit speed biharmonic \mathfrak{B} -general

helix with non-zero natural curvatures. Then the \mathbf{M}_1 surface of $\gamma_{\mathfrak{B}}$ is

$$\mathcal{P}(s,u) = \left[\frac{\sin \theta}{(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} \sin[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0] \right]$$

$$+ u \sin[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0] + \zeta_2] \mathbf{e}_1$$

$$+ \left[-\frac{\sin \theta}{(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} \cos[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0] \right]$$

$$- u \cos[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0] + \zeta_3] \mathbf{e}_2$$

$$+ \left[-[\frac{\sin \theta}{(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} \sin[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0] + \zeta_2] \right]$$

$$- \frac{\sin \theta}{(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} \cos[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0] + \zeta_3]$$

$$+ (\cos \theta) s + \frac{\sin^2 \theta}{(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} (\frac{s}{2} - \frac{\sin 2[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0]}{4(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}}$$

$$- \frac{\zeta_1 \sin \theta}{(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}}} \cos[(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_0] + \zeta_4] \mathbf{e}_3,$$

where ζ_0 , ζ_1 , ζ_2 , ζ_3 , ζ_4 are constants of integration.

Proof. Using orthonormal basis (2.2) and (3.8), we obtain

$$\mathbf{T} = (\sin\theta\cos[(\frac{k_1^2 + k_2^2}{\sin^2\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_0], \sin\theta\sin[(\frac{k_1^2 + k_2^2}{\sin^2\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_0],$$

$$\cos\theta + \frac{\sin^2\theta}{(\frac{k_1^2 + k_2^2}{\sin^2\theta} - \cos\theta)^{\frac{1}{2}}}\sin^2[(\frac{k_1^2 + k_2^2}{\sin^2\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_0]$$

$$+\zeta_1\sin\theta\sin[(\frac{k_1^2 + k_2^2}{\sin^2\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_0]),$$

$$(4.3)$$

where ζ_1 is constant of integration.

$$\mathbf{T} = \sin \theta \cos \left[\left(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta \right)^{\frac{1}{2}} s + \zeta_0 \right] \mathbf{e}_1 + \sin \theta \sin \left[\left(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta \right)^{\frac{1}{2}} s + \zeta_0 \right] \mathbf{e}_2 + \cos \theta \mathbf{e}_3.$$
(4.4)

On the other hand, using Bishop formulas (3.3) and (2.1), we have

$$\mathbf{M}_{1} = \sin\left[\left(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta\right)^{\frac{1}{2}}s + \zeta_{0}\right]\mathbf{e}_{1} - \cos\left[\left(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta\right)^{\frac{1}{2}}s + \zeta_{0}\right]\mathbf{e}_{2}. \tag{4.5}$$

Using above equation, we have (4.2), the theorem is proved.

Thus, we have following theorem.

Theorem 4.2. Let $\gamma_{\mathfrak{B}}: I \longrightarrow Heis^3$ be a unit speed biharmonic \mathfrak{B} -general helix with non-zero natural curvatures. Then the normal surface of $\gamma_{\mathfrak{B}}$ are

$$\begin{split} x_{\mathcal{P}}(s,u) &= \left[\frac{\sin\theta}{\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}}\sin\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] \right. \\ &+ u\sin\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] + \zeta_2\right], \\ y_{\mathcal{P}}(s,u) &= \left[-\frac{\sin\theta}{\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}}\cos\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] \right. \\ &- u\cos\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}\cos\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] \right. \\ z_{\mathcal{P}}(s,u) &= \left[\frac{\sin\theta}{\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}}\sin\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] \right. \\ &+ u\sin\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}\cos\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] \right. \\ &\left. \left. \left[-\frac{\sin\theta}{\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}}\cos\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] + \zeta_1\right] \right. \\ &\left. \left. \left[-\frac{\sin\theta}{\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}}\sin\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] + \zeta_2\right] \right. \\ &\left. \left. \left[-\frac{\sin\theta}{\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}}\cos\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] + \zeta_3\right] \right. \\ &\left. \left. \left. \left(\cos\theta\right) s + \frac{\sin^2\theta}{\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}}\cos\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] + \zeta_1\sin\theta}{\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}}\cos\left[\left(\frac{k_1^2+k_2^2}{\sin^2\theta}-\cos\theta\right)^{\frac{1}{2}}s+\zeta_0\right] + \zeta_4\right], \end{split}$$

where ζ_0 , ζ_1 , ζ_2 , ζ_3 , ζ_4 are constants of integration.

Fig.1

References

- [1] B. Bükcü, M.K. Karacan, Special Bishop motion and Bishop Darboux rotation axis of the space curve, J. Dyn. Syst. Geom. Theor. 6 (1) (2008) 27–34.
- [2] N. Chouaieb, A. Goriely and JH. Maddocks, Helices, PNAS 103 (2006), 398-403.

- [3] TA. Cook, *The curves of life*, Constable, London 1914, Reprinted (Dover, London 1979).
- [4] J. Eells, J.H. Sampson, *Harmonic mappings of Riemannian manifolds*, Amer. J. Math. 86 (1964), 109–160.
- [5] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Prentice-Hall, New Jersey, (1965).
- [6] J. Inoguchi, Submanifolds with harmonic mean curvature in contact 3-manifolds, Colloq. Math. 100 (2004), 163–179.
- [7] G.Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), 130–144.
- [8] G.Y. Jiang, 2-harmonic maps and their first and second variation formulas, Chinese Ann. Math. Ser. A 7 (1986), 389–402.
- [9] W. E. Langlois, *Slow Viscous Flow*, Macmillan, New York; Collier-Macmillan, London, (1964).
- [10] T. Körpmar, E. Turhan, V. Asil, Biharmonic \mathfrak{B} -General Helices with Bishop Frame In The Heisenberg Group Heis³, World Applied Sciences Journal 14 (10) (2010), 1565-1568.
- [11] E. Loubeau, C. Oniciuc, On the biharmonic and harmonic indices of the Hopf map, preprint, arXiv:math.DG/0402295 v1 (2004).
- [12] J. Milnor, Curvatures of Left-Invariant Metrics on Lie Groups, Advances in Mathematics 21 (1976), 293-329.
- [13] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York (1983).
- [14] C. Oniciuc, On the second variation formula for biharmonic maps to a sphere, Publ. Math. Debrecen 61 (2002), 613–622.
- [15] Y. L. Ou, p-Harmonic morphisms, biharmonic morphisms, and non-harmonic biharmonic maps, J. Geom. Phys. 56 (2006), 358-374.
- [16] S. Rahmani, Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302.
- [17] T. Sasahara, Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen 67 (2005), 285–303.
- [18] DJ. Struik, Lectures on Classical Differential Geometry, New York: Dover, 1988.
- [19] JD. Watson, FH. Crick, Molecular structures of nucleic acids, Nature, 1953, 171, 737-738.

Received: September, 2012