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Abstract

We obtain a local regularity result for distributional solutions to el-

liptic equations of divergence type with advection and lower-order terms

that satisfy appropriate growth conditions.
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1 Introduction and Main Result.

Let Ω be a bounded open subset of Rn. Let us consider elliptic equations of
the form

−divA(x, u,Du(x))− divg(x, u) = h(x, u)− divF (x) + f(x), (1.1)

where the vector field A : Ω × R × Rn → Rn is a Carathéodory function
satisfying the following structure conditions: for a.e. x ∈ Ω, all s ∈ R and all
ξ ∈ Rn,

A(x, s, ξ) · ξ ≥ CA,1|ξ|
p, (1.2)
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|A(x, s, ξ)| ≤ CA,2|ξ|
p−1 + CA,3|s|

p−1 + k1(x), (1.3)

where 0 ≤ k1(x) ∈ Lr1
loc(Ω).

The advection field g : Ω × R → Rn is a Carathéodory function, and for
a.e. x ∈ Ω and for all s ∈ R,

|g(x, s)| ≤ k2(x) + Cg|s|
p−1, (1.4)

where 0 ≤ k2(x) ∈ Lr2
loc(Ω).

The Carathéodory function h : Ω× R → R satisfies

|h(x, s)| ≤ k3(x) + Ch|s|
p−1, (1.5)

for a.e. x ∈ Ω and all s ∈ R, where 0 ≤ k3(x) ∈ Lr3
loc(Ω). Finally, we assume

F (x) ∈ Lr4
loc(Ω,R

n) and f(x) ∈ Lr5
loc(Ω).

We look for distributional solutions to (1.1) in the following sense:

Definition 1.1 A distributional solution of (1.1) is a function u ∈ W
1,p
loc (Ω)

satisfying

∫

Ω
(A(x, u,Du)+g(x, u))Dϕdx =

∫

Ω
F (x)Dϕdx+

∫

Ω
(h(x, u)+f(x))ϕdx, (1.6)

for all ϕ ∈ W 1,p(Ω) with compact support.

In [1], Giachetti and Porzio considered distributional solutions u ∈ W
1,p
loc (Ω)

to elliptic equation of the form

−divA(x, u,Du) = −divF, (1.1)′

with Carachéodory function A : Ω × R × Rn → Rn satisfying the coercivity
and growth conditions (1.2) and (1.3), and obtained a local regularity result,
see [1, Theorem 5.1]. Some generalizations of the above result can be found
in [2-7]. Integrability property is important among the regularity theories of
nonlinear elliptic PDEs and systems, see [8-13]. In the present paper, we
consider distributional solutions to elliptic equations of type (1.1). The main
result of this paper is the following theorem.

Theorem 1.2 Let 1 < p < n. Under the previous assumptions, if the

exponents r1, r2, r3, r4 and r5 satisfy

p

p− 1
< min{r1, r2, r3, r4, r5} <

n

p− 1
,

then u belongs to Ls
loc(Ω), where s = [(p− 1)min{r1, r2, r3, r4, r5}]

∗.
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Notice we have restricted ourselves to the case p < n because when g ≥ n,
every function in W

1,p
loc (Ω) is trivially in Ls

loc(Ω) by the Sobolev Theorem.
For x0 ∈ Ω and t ∈ R+, we denote by Bt = Bt(x0) the ball of radius t

centered at x0. For k > 0 and a measurable function u(x), we let

Ak = {x ∈ Ω : |u(x)| > k} and Ak,t = Ak ∩ Bt.

In order to prove Theorem 1.2, we need two lemmas. The first lemma can
be found in [1].

Lemma 1.3 Let u ∈ W
1,p
loc (Ω), ϕ0 ∈ Lr

loc(Ω), where 1 < p < n and r

satisfies 1 < r < n
p
. Assume that the following integral estimate holds:

∫

Ak,σ

|Du|pdx ≤ c0

[

∫

Ak,γ

ϕ0dx+ (t− τ)−α
∫

Ak,γ

|u|pdx

]

,

for every k ∈ N and R0 ≤ σ < γ ≤ R1, where c0 is a positive constant that

depends only on N, p, r, R0, R1 and |Ω|, and α is a real positive constant. Then

u ∈ Ls
loc(Ω), where

s = (pr)∗.

The following lemma comes from [9].

Lemma 1.4 Let f(τ) be a nonnegative bounded function defined for 0 ≤
R0 ≤ t ≤ R1. Suppose that for R0 ≤ τ < t ≤ R1 we have

f(τ) ≤ A(t− τ)−α +B + θf(t),

where A,B, α, θ are non-negative constants, and θ < 1. Then there exists a

constant c, depending only on α and θ such that for every σ, γ, R0 ≤ σ < γ ≤
R1 we have

f(σ) ≤ c[A(γ − σ)−α +B].

2 Proof of Theorem 1.2.

Let BR1
⊂⊂ Ω and 0 ≤ R0 ≤ τ < t ≤ R1, be arbitrarily fixed. It is no loss

of generality to assume R1 < 1. For u ∈ W
1,p
loc (Ω) a distributional solution of

(1.1), we choose ϕ = η(u− Tk(u)), where η is a cut-off function such that

suppη ⊂ Bt, 0 ≤ η ≤ 1, η = 1 in Bτ , and |Dη| ≤ 2(t− τ)−1,

and Tk(u) is the usual truncation of u at level k > 0, that is,

Tk(u) = max{−k,min{k, u}}.
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Since

Dϕ = D(η(u− Tk(u))) = (u− Tk(u))Dη + ηD(u− Tk(u)),

and u− Tk(u) = 0 for x ∈ {|u(x)| ≤ k}, then (1.6) yields

∫

Ak,t

A(x,Du)ηDudx

= −
∫

Ak,t

A(x,Du)(u− Tk(u))Dηdx−
∫

Ak,t

g(x, u) ((u− Tk(u))Dη + ηDu)dx

+
∫

Ak,t

F (x) ((u− Tk(u))Dη + ηDu) dx+
∫

Ak,t

h(x, u)η(u− Tk(u))dx

+
∫

Ak,t

f(x)η(u− Tk(u))dx

= I1 + I2 + I3 + I4 + I5.

(2.1)
Using (1.2), the left-hand side of the above equality can be estimated as

∫

Ak,t

A(x,Du)ηDudx ≥ CA,1

∫

Ak,t

η|Du|pdx ≥ CA,1

∫

Ak,τ

|Du|pdx (2.2)

Since |u− Tk(u)| ≤ |u|, then using (1.3), |I1| can be estimated as

|I1| =

∣

∣

∣

∣

∣

−
∫

Ak,t

A(x,Du)(u− Tk(u))Dηdx

∣

∣

∣

∣

∣

≤ 2
∫

Ak,t

(

CA,2|Du|p−1 + CA,3|u|
p−1 + k1(x)

) |u|

t− τ
dx

≤ 2CA,2

(

∫

Ak,t

|Du|pdx

)

p−1

p
(

∫

Ak,t

|u|p

(t− τ)p
dx

)
1

p

+2CA,3

∫

Ak,t

|u|p

t− τ
dx+ 2

(

∫

Ak,t

k1(x)
p

p−1dx

)

p−1

p
(

∫

Ak,t

|u|p

(t− τ)p
dx

)
1

p

≤ CA,2ε

∫

Ak,t

|Du|pdx+ C(ε)CA,2

∫

Ak,t

|u|p

(t− τ)p
dx

+2CA,3

∫

Ak,t

|u|p

(t− τ)p
dx+ C(ε)

∫

Ak,t

k1(x)
p

p−1dx+ ε

∫

Ak,t

|u|p

(t− τ)p
dx

= CA,2ε

∫

Ak,t

|Du|pdx+ (C(ε)CA,2 + 2CA,3 + ε)
∫

Ak,t

|u|p

(t− τ)p
dx

+C(ε)
∫

Ak,t

k1(x)
p

p−1dx,

(2.3)
where we have used Hölder inequality, Young inequality and the fact t < R1 <

1, which implies 1 < 1
t−τ

< 1
(t−τ)p

.

Using (1.4), Hölder inequality and Young inequality, |I2| can be estimated
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as

|I2| =

∣

∣

∣

∣

∣

−
∫

Ak,t

g(x, u) ((u− Tk(u))Dη + ηDu)dx

∣

∣

∣

∣

∣

≤
∫

Ak,t

(

k2(x) + Cg|u|
p−1
)

(

2|u|

t− τ
+ |Du|

)

dx

≤

(

∫

Ak,t

k2(x)
p

p−1dx

)
p−1

p
(

∫

Ak,t

(

2|u|

t− τ
+ |Du|

)p

dx

)
1

p

+2Cg

∫

Ak,t

|u|p

t− τ
dx+ Cg

(

∫

Ak,t

|u|pdx

)
p−1

p
(

∫

Ak,t

|Du|pdx

)
1

p

≤ (2p + Cg)ε
∫

Ak,t

|Du|pdx+ (2pε+ Cg(C(ε) + 2))
∫

Ak,t

|u|p

(t− τ)p
dx

+C(ε)
∫

Ak,t

k2(x)
p

p−1dx.

(2.4)

|I3| can be estimated as

|I3| =

∣

∣

∣

∣

∣

−
∫

Ak,t

F (x) ((u− Tk(u))Dη + ηDu) dx

∣

∣

∣

∣

∣

≤ C(ε)
∫

Ak,t

|F (x)|
p

p−1dx+ ε

∫

Ak,t

(

2|u|

t− τ
+ |Du|

)p

dx

≤ C(ε)
∫

Ak,t

|F (x)|
p

p−1dx+ 2pε
∫

Ak,t

|u|p

(t− τ)p
dx+ 2pε

∫

Ak,t

|Du|pdx.

(2.5)

Using (1.5), Hölder inequality and Young inequality, |I4| can be estimated
as

|I4| =

∣

∣

∣

∣

∣

∫

Ak,t

h(x, u)η(u− Tk(u))dx

∣

∣

∣

∣

∣

≤
∫

Ak,t

(k3(x) + Ch|u|
p−1)|u|dx

≤ C(ε)
∫

Ak,t

k3(x)
p

p−1dx+ (ε+ Ch)
∫

Ak,t

|u|p

(t− τ)p
dx.

(2.6)

|I5| can be estimated as

|I5| =

∣

∣

∣

∣

∣

∫

Ak,t

|f(x)|η(u− Tk(u))dx

∣

∣

∣

∣

∣

≤
∫

Ak,t

|f(x)||u|dx

≤ C(ε)
∫

Ak,t

|f(x)|
p

p−1dx+ ε

∫

Ak,t

|u|p

(t− τ)p
dx.

(2.7)
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Combining (2.1)-(2.7) we arrive at

CA,1

∫

Ak,τ

|Du|pdx

≤ (CA,2 + 2p+1 + Cg)ε
∫

Ak,t

|Du|pdx

+ (C(ε)CA,2 + 2CA,3 + ε+ 2pε+ 2pε+ Cg(C(ε) + 2) + 2ε+ Ch)
∫

Ak,t

|u|p

(t− τ)p
dx

+C(ε)
∫

Ak,t

(k1(x) + k2(x) + k3(x) + |F (x)|+ |f(x)|)
p

p−1dx

(2.8)

Take ε small enough such that
(CA,2+2p+1+Cg)ε

CA,1
< 1, then Lemma 1.4 yields that

for every σ, γ, R0 ≤ σ < γ ≤ R1, we have

∫

Ak,σ

|Du|pdx ≤ C

[

∫

Ak,γ

|u|p

(γ − σ)p
dx+

∫

Ak,γ

(k1(x) + k2(x) + k3(x) + |F (x)|+ |f(x)|)
p

p−1dx

]

,

where C is a constant depends only on p, CA,1, CA,2, CA,3, cg and ch. Theorem
1.2 follows from Lemma 1.3.
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