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Abstract

We obtain a local regularity result for distributional solutions to el-
liptic equations of divergence type with advection and lower-order terms
that satisfy appropriate growth conditions.
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1 Introduction and Main Result.

Let 2 be a bounded open subset of R". Let us consider elliptic equations of
the form

—divA(z, u, Du(z)) — divg(z,u) = h(z,u) — divF(z) + f(x), (1.1)

where the vector field A : Q x R x R" — R" is a Carathéodory function
satisfying the following structure conditions: for a.e. x € ), all s € R and all
£ e RY,

A('Tv S, 5) ’ 5 > CA,l‘g‘pv (12>
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|A(z, 5,8)] < Caplé[P™ + CaslsP™" + ki (), (1.3)
where 0 < ky(x) € Lj2.(£2).

loc

The advection field g : 2 x R — R" is a Carathéodory function, and for
a.e. x €  and for all s € R,

l9(x, 5)| < ka(@) + Cyls", (1.4)

where 0 < ko(x) € Lj2.(2).

loc

The Carathéodory function A : 2 x R — R satisfies
\h(z,5)| < ks(z) 4+ Cp|s[P7?, (1.5)

for a.e. o € Q and all s € R, where 0 < k3(z) € L;2.(Q2). Finally, we assume
F(x) € Lig(,R") and f(x) € Ly, ().
We look for distributional solutions to (1.1) in the following sense:

Definition 1.1 A distributional solution of (1.1) is a function u € W,2"(Q)
satisfying

/Q(A(:)s,u,Du)%—g(x,u))Dgpd:)s:/QF(x)Dgpdx—l—/Q(h(x,u)—l—f(:)s))gpdx, (1.6)

for all o € WYP(Q) with compact support.

In [1], Giachetti and Porzio considered distributional solutions u € W,2"(€)
to elliptic equation of the form

—divA(z, u, Du) = —divF, (L.1)

with Carachéodory function A : 2 x R x R" — R" satisfying the coercivity
and growth conditions (1.2) and (1.3), and obtained a local regularity result,
see [1, Theorem 5.1]. Some generalizations of the above result can be found
in [2-7]. Integrability property is important among the regularity theories of
nonlinear elliptic PDEs and systems, see [8-13]. In the present paper, we
consider distributional solutions to elliptic equations of type (1.1). The main
result of this paper is the following theorem.

Theorem 1.2 Let 1 < p < n. Under the previous assumptions, if the
exponents 11,719,173, 74 and r5 satisfy

p .
P < min{ry, ro, r3, 74,15} < ——

p— p—1

then u belongs to Lj,.(2), where s = [(p — 1) min{ry, 7o, 73, 74, 75 }*.
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Notice we have restricted ourselves to the case p < n because when g > n,
every function in WL(Q) is trivially in L _(Q) by the Sobolev Theorem.

For zp € Q and t € R™, we denote by B; = By(xg) the ball of radius ¢
centered at xy. For k£ > 0 and a measurable function u(x), we let

Ay ={x € Q:|u(z)] > k} and Ay, = AN B;.

In order to prove Theorem 1.2, we need two lemmas. The first lemma can
be found in [1].

Lemma 1.3 Let u € W'P(Q), ¢y € L, .(Q), where 1 < p < n and
satisfies 1 < r < %. Assume that the following integral estimate holds:

/ wodzx + (t — T)_a/
Ak’—y Ag

for every k € N and Ry < 0 < v < Ry, where ¢y is a positive constant that
depends only on N,p,r, Ry, Ry and ||, and « is a real positive constant. Then
u € L; (), where

/ | Du|Pdz < cqo
Ak,o

\u\pdx] |

Y

s = (pr)*.
The following lemma comes from [9)].

Lemma 1.4 Let f(7) be a nonnegative bounded function defined for 0 <
Ry <t < Ry. Suppose that for Ry < 7 <t < Ry we have

fr) <At =7)"* + B+ 0f(1),

where A, B, a, 0 are non-negative constants, and 0 < 1. Then there exists a
constant ¢, depending only on o and 0 such that for every o,v, Ry <o <y <
Ry we have

flo) < Ay —o)™" + B].

2 Proof of Theorem 1.2.

Let Bp, CC Qand 0 < Ry < 7 <t < Ry, be arbitrarily fixed. It is no loss
of generality to assume Ry < 1. For u € W'?(Q) a distributional solution of
(1.1), we choose ¢ = n(u — Ti(u)), where 7 is a cut-off function such that

suppn C By, 0<n <1,p=1in B,, and |Dn| < 2(t — )7},
and Ty(u) is the usual truncation of u at level k£ > 0, that is,

Ty (u) = max{—k, min{k, u}}.
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Since
Dy = D(n(u —Ti(u))) = (u = Ti(u))Dn +nD(u — Ti(u)),
and v — Ty (u) = 0 for = € {|u(z)| < k}, then (1.6) yields

/ A(x, Du)nDudx
Agt

= —] A(z, Du)(u — Ty (u))Dndx — /A g(z,u) (v — Tx(uw))Dn + nDu) dz

Ak't k,t
+f PG ((u = Tiw) Dy + nDu) da + /. o= Tiw)d

[ famtu=Tw)de

ket
= h+L+1I+ 1+ I
(2.1)
Using (1.2), the left-hand side of the above equality can be estimated as

/A A(z, Du)yDudz > Ca /A n|DulPdz > Ca, /A \DufPdz  (2.2)
k,t k, T

Kt

Since |u — Ti(u)| < |ul, then using (1.3), |[;| can be estimated as

L = ‘—/A A(x, Du)(u — Ty (u)) Drydz
< 2/ C’A2|Du|p 1+C’A3|u|p 1+k( ))t‘ ‘ dx
T e
< 204, / | DulPdz
Apt Akt t—T
|ul? / / |ul? v
2 2 p— 1
4204 /A Cpopter2( [ k@) B
|ul?
<

p
Caoe /A _IDuPdr + O(€)Ca /A Gt

juf? o juf?
+2CA,3/ ot Ot )/A () d:c+&t/Ak’t T
= C 5/ |Du|pd:)3+ (C(e)Cya+2C +5)/ ful® dx
A2 At A2 A3 Aps (t _ T)p
+C(e) / oy () 7T d,
’ (2.3)

where we have used Holder inequality, Young inequality and the fact t < Ry <

1, which implies 1 < ﬁ < ﬁ

Using (1.4), Holder inequality and Young inequality, |I5| can be estimated
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as
Bl = | [, oo (= TGPy + aDuds
’ 1y ( 2lul
< [ (o) (2L 4 jpul) o
o \F 24l PoN\#
< p—1 D
< </Am ko(x) dx) </ <t — +| u|> )
+2C / ful” x / |u|Pdx B / | Du|Pdx '
g A, t—T g Ap.t Apt
|ul?
< (2740, /Ak \DulPdz + (2% + C,(C(e) + 2)) /Ak T
+O(e) /A o (2) 757 di.
(2.4)
|I3] can be estimated as
I3 = ‘—/A F(z) (u — Tx(u))Dn + nDu) dx
k,t
< C) [ IF@|FTde+e [ 2l puy)
< £ » x r+e R = u x
p p
< Ce) /A \F(@)*de + 2% /A e |_|T>pdx+2p5 /A _|Dupda.
(2.5)
Using (1.5), Holder inequality and Young inequality, |I4| can be estimated
as

L] =

/Ak t h(z,u)n(u — Ti(u))dzx
< / (ks(2) + ChlulP™)|u|dz (2.6)

Kt

< C) Aktkg(x)ﬁdx+(e+ch)A

Juf”

= dzx.

|I5] can be estimated as

B = | = T < [ i@l
up

) (2.7)
< c<a>/AM| @Fdere [
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Combining (2.1)-(2.7) we arrive at

O / | DulPd
Ak,‘r
< (Cap+2"1+Ce [ |Dupds
k,t

|ul”

+(C(e)Can +2C3 + ¢ + 2% + 276 + Cy(Ce) +2) + 26 + ) /A ™
H0(E) [ (ha(w) + kala) + k@) + [F(@)] + | () )7
| (2.8)

Take € small enough such that W

for every og,7v, Ry <o <~v < Ry, we have

< 1, then Lemma 1.4 yields that

/ |DulPdx < C
Ak,o’

|ul? v
7d:)3+/ ki(x) + ko(x) + ks(x) + |F(x)| + | f(x)|)pTdz|
[, et [ (@) k) + @) + Fa)] @)
where C' is a constant depends only on p,C41,C42,C43,c, and cp. Theorem
1.2 follows from Lemma 1.3.

ACKNOWLEDGEMENTS. Research supported by NSFC (11371050).

References

[1] Giachetti D, Porzio M M. Local regularity results for minima of func-
tionals of the calculus of variation, Nonlinear Analysis, T.M.A, 2000, 39:
463-482.

[2] Gao HY, Chu Y M, Quasiregular mappings and .A-harmonic equations,
Science Press, Beijing, 2013.

3] Gao HY, Guo J, Zuo Y L, Chu Y M. Local regularity result in obstacle
problems, Acta Math. Sci., 2010, 30B(1): 208-214

[4] Gao HY, Huang Q H. Local regularity for solutions of anisotropic obstacle
problems, Nonlinear Analysis, T.M.A., 2012, 75: 4761-4765

[5] Gao H'Y, Qiao J J, Chu Y M. Local regularity and local boundedness
results for very weak solutions to obstacle problems, J. Ineq. Appl., 2010,
Article ID: 878769, 12 pages, doi:10.1155/2010/878769.

6] Gao HY, Qiao J J, Wang Y, Chu Y M. Local reguarity results for minima
of anisotropic functionals and solutions of anisotropic equations, J. Ineq.
Appl., 2008 (2008) Article ID 835736: 1-12

[7] Gao HY, Tian H Y. Local regularity result for solutions of obstacle prob-
lems, Acta Math. Sci., 2004, 24B(1): 71-74



Local regularity for solutions to elliptic equations 141

[8] Bensoussan A, Frehse J. Regularity results for nonlinear elliptic systems
and applications, Springer, 2002.

[9] Giaquinta M, Multiple integrals in the calculus of variations and nonlinear
elliptic systems, Princeton University Press, Princeton, NJ, 1983.

[10] Giaquinta M, Giusti E. On the regularity of the minima of variational
integrals, Acta Math., 1982, 148: 31-46

[11] Gilbarg D, Trudinger N S. Elliptic partial differential equations of second
order, Springer, 1977.

[12] Ladyzenskaya O A, Ural’ceva N N. Linear and quasilinear elliptic equa-
tions, Academic Press, 1968.

[13] Morrey C B. Multiple integrals in the calculus of variations, Springer,
1968.

Received: January, 2014



