Local Regularity for Solutions to Divergence Type Elliptic Equations with Advection and Lower-order Terms

Gao Hongya
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China. Email: ghy@hbu.cn

Wang Tian
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China. Email: 260907818@qq.com

Teng Hongxu

College of Mathematics and Computer Science, Hebei University, Baoding, 071002, China. Email: 1724769102@qq.com

Abstract

We obtain a local regularity result for distributional solutions to elliptic equations of divergence type with advection and lower-order terms that satisfy appropriate growth conditions.

Mathematics Subject Classification: 35J60.
Keywords: Local regularity, elliptic equation, advection term, lower-order term.

1 Introduction and Main Result.

Let Ω be a bounded open subset of R^{n}. Let us consider elliptic equations of the form

$$
\begin{equation*}
-\operatorname{div} \mathcal{A}(x, u, D u(x))-\operatorname{div} g(x, u)=h(x, u)-\operatorname{div} F(x)+f(x), \tag{1.1}
\end{equation*}
$$

where the vector field $\mathcal{A}: \Omega \times \mathrm{R} \times \mathrm{R}^{n} \rightarrow \mathrm{R}^{n}$ is a Carathéodory function satisfying the following structure conditions: for a.e. $x \in \Omega$, all $s \in \mathrm{R}$ and all $\xi \in \mathrm{R}^{n}$,

$$
\begin{equation*}
A(x, s, \xi) \cdot \xi \geq C_{A, 1}|\xi|^{p} \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
|\mathcal{A}(x, s, \xi)| \leq C_{A, 2}|\xi|^{p-1}+C_{A, 3}|s|^{p-1}+k_{1}(x), \tag{1.3}
\end{equation*}
$$

where $0 \leq k_{1}(x) \in L_{l o c}^{r_{1}}(\Omega)$.
The advection field $g: \Omega \times \mathrm{R} \rightarrow \mathrm{R}^{n}$ is a Carathéodory function, and for a.e. $x \in \Omega$ and for all $s \in \mathrm{R}$,

$$
\begin{equation*}
|g(x, s)| \leq k_{2}(x)+C_{g} \mid s^{p-1} \tag{1.4}
\end{equation*}
$$

where $0 \leq k_{2}(x) \in L_{l o c}^{r_{2}}(\Omega)$.
The Carathéodory function $h: \Omega \times \mathrm{R} \rightarrow \mathrm{R}$ satisfies

$$
\begin{equation*}
|h(x, s)| \leq k_{3}(x)+C_{h}|s|^{p-1} \tag{1.5}
\end{equation*}
$$

for a.e. $x \in \Omega$ and all $s \in \mathrm{R}$, where $0 \leq k_{3}(x) \in L_{\text {loc }}^{r_{3}}(\Omega)$. Finally, we assume $F(x) \in L_{l o c}^{r_{4}}\left(\Omega, \mathrm{R}^{n}\right)$ and $f(x) \in L_{l o c}^{r_{5}}(\Omega)$.

We look for distributional solutions to (1.1) in the following sense:
Definition 1.1 A distributional solution of (1.1) is a function $u \in W_{l o c}^{1, p}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega}(\mathcal{A}(x, u, D u)+g(x, u)) D \varphi d x=\int_{\Omega} F(x) D \varphi d x+\int_{\Omega}(h(x, u)+f(x)) \varphi d x \tag{1.6}
\end{equation*}
$$

for all $\varphi \in W^{1, p}(\Omega)$ with compact support.
In [1], Giachetti and Porzio considered distributional solutions $u \in W_{l o c}^{1, p}(\Omega)$ to elliptic equation of the form

$$
\begin{equation*}
-\operatorname{div} \mathcal{A}(x, u, D u)=-\operatorname{div} F \tag{1.1}
\end{equation*}
$$

with Carachéodory function $\mathcal{A}: \Omega \times \mathrm{R} \times \mathrm{R}^{n} \rightarrow \mathrm{R}^{n}$ satisfying the coercivity and growth conditions (1.2) and (1.3), and obtained a local regularity result, see [1, Theorem 5.1]. Some generalizations of the above result can be found in [2-7]. Integrability property is important among the regularity theories of nonlinear elliptic PDEs and systems, see [8-13]. In the present paper, we consider distributional solutions to elliptic equations of type (1.1). The main result of this paper is the following theorem.

Theorem 1.2 Let $1<p<n$. Under the previous assumptions, if the exponents $r_{1}, r_{2}, r_{3}, r_{4}$ and r_{5} satisfy

$$
\frac{p}{p-1}<\min \left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}<\frac{n}{p-1},
$$

then u belongs to $L_{\text {loc }}^{s}(\Omega)$, where $s=\left[(p-1) \min \left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}\right]^{*}$.

Notice we have restricted ourselves to the case $p<n$ because when $g \geq n$, every function in $W_{l o c}^{1, p}(\Omega)$ is trivially in $L_{l o c}^{s}(\Omega)$ by the Sobolev Theorem.

For $x_{0} \in \Omega$ and $t \in \mathrm{R}^{+}$, we denote by $B_{t}=B_{t}\left(x_{0}\right)$ the ball of radius t centered at x_{0}. For $k>0$ and a measurable function $u(x)$, we let

$$
A_{k}=\{x \in \Omega:|u(x)|>k\} \text { and } A_{k, t}=A_{k} \cap B_{t} .
$$

In order to prove Theorem 1.2, we need two lemmas. The first lemma can be found in [1].

Lemma 1.3 Let $u \in W_{\text {loc }}^{1, p}(\Omega)$, $\varphi_{0} \in L_{\text {loc }}^{r}(\Omega)$, where $1<p<n$ and r satisfies $1<r<\frac{n}{p}$. Assume that the following integral estimate holds:

$$
\int_{A_{k, \sigma}}|D u|^{p} d x \leq c_{0}\left[\int_{A_{k, \gamma}} \varphi_{0} d x+(t-\tau)^{-\alpha} \int_{A_{k, \gamma}}|u|^{p} d x\right],
$$

for every $k \in N$ and $R_{0} \leq \sigma<\gamma \leq R_{1}$, where c_{0} is a positive constant that depends only on N, p, r, R_{0}, R_{1} and $|\Omega|$, and α is a real positive constant. Then $u \in L_{\text {loc }}^{s}(\Omega)$, where

$$
s=(p r)^{*} .
$$

The following lemma comes from [9].
Lemma 1.4 Let $f(\tau)$ be a nonnegative bounded function defined for $0 \leq$ $R_{0} \leq t \leq R_{1}$. Suppose that for $R_{0} \leq \tau<t \leq R_{1}$ we have

$$
f(\tau) \leq A(t-\tau)^{-\alpha}+B+\theta f(t)
$$

where A, B, α, θ are non-negative constants, and $\theta<1$. Then there exists a constant c, depending only on α and θ such that for every $\sigma, \gamma, R_{0} \leq \sigma<\gamma \leq$ R_{1} we have

$$
f(\sigma) \leq c\left[A(\gamma-\sigma)^{-\alpha}+B\right] .
$$

2 Proof of Theorem 1.2.

Let $B_{R_{1}} \subset \subset \Omega$ and $0 \leq R_{0} \leq \tau<t \leq R_{1}$, be arbitrarily fixed. It is no loss of generality to assume $R_{1}<1$. For $u \in W_{l o c}^{1, p}(\Omega)$ a distributional solution of (1.1), we choose $\varphi=\eta\left(u-T_{k}(u)\right)$, where η is a cut-off function such that

$$
\operatorname{supp} \eta \subset B_{t}, 0 \leq \eta \leq 1, \eta=1 \text { in } B_{\tau}, \text { and }|D \eta| \leq 2(t-\tau)^{-1}
$$

and $T_{k}(u)$ is the usual truncation of u at level $k>0$, that is,

$$
T_{k}(u)=\max \{-k, \min \{k, u\}\} .
$$

Since

$$
D \varphi=D\left(\eta\left(u-T_{k}(u)\right)\right)=\left(u-T_{k}(u)\right) D \eta+\eta D\left(u-T_{k}(u)\right),
$$

and $u-T_{k}(u)=0$ for $x \in\{|u(x)| \leq k\}$, then (1.6) yields

$$
\begin{align*}
& \int_{A_{k, t}} \mathcal{A}(x, D u) \eta D u d x \\
= & -\int_{A_{k, t}} \mathcal{A}(x, D u)\left(u-T_{k}(u)\right) D \eta d x-\int_{A_{k, t}} g(x, u)\left(\left(u-T_{k}(u)\right) D \eta+\eta D u\right) d x \\
& +\int_{A_{k, t}} F(x)\left(\left(u-T_{k}(u)\right) D \eta+\eta D u\right) d x+\int_{A_{k, t}} h(x, u) \eta\left(u-T_{k}(u)\right) d x \\
& +\int_{A_{k, t}} f(x) \eta\left(u-T_{k}(u)\right) d x \\
= & I_{1}+I_{2}+I_{3}+I_{4}+I_{5} . \tag{2.1}
\end{align*}
$$

Using (1.2), the left-hand side of the above equality can be estimated as

$$
\begin{equation*}
\int_{A_{k, t}} \mathcal{A}(x, D u) \eta D u d x \geq C_{A, 1} \int_{A_{k, t}} \eta|D u|^{p} d x \geq C_{A, 1} \int_{A_{k, \tau}}|D u|^{p} d x \tag{2.2}
\end{equation*}
$$

Since $\left|u-T_{k}(u)\right| \leq|u|$, then using (1.3), $\left|I_{1}\right|$ can be estimated as

$$
\begin{align*}
\left|I_{1}\right|= & \left|-\int_{A_{k, t}} \mathcal{A}(x, D u)\left(u-T_{k}(u)\right) D \eta d x\right| \\
\leq & 2 \int_{A_{k, t}}\left(C_{A, 2}|D u|^{p-1}+C_{A, 3}|u|^{p-1}+k_{1}(x)\right) \frac{|u|}{t-\tau} d x \\
\leq & 2 C_{A, 2}\left(\int_{A_{k, t}}|D u|^{p} d x\right)^{\frac{p-1}{p}}\left(\int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x\right)^{\frac{1}{p}} \\
& +2 C_{A, 3} \int_{A_{k, t}} \frac{|u|^{p}}{t-\tau} d x+2\left(\int_{A_{k, t}} k_{1}(x)^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}}\left(\int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x\right)^{\frac{1}{p}} \\
\leq & C_{A, 2} \varepsilon \int_{A_{k, t}}|D u|^{p} d x+C(\varepsilon) C_{A, 2} \int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x \\
& +2 C_{A, 3} \int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x+C(\varepsilon) \int_{A_{k, t}}^{k_{1}(x)^{\frac{p}{p-1}}} d x+\varepsilon \int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x \\
= & C_{A, 2} \varepsilon \int_{A_{k, t}}|D u|^{p} d x+\left(C(\varepsilon) C_{A, 2}+2 C_{A, 3}+\varepsilon\right) \int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x \\
& +C(\varepsilon) \int_{A_{k, t}} k_{1}(x)^{\frac{p}{p-1}} d x, \tag{2.3}
\end{align*}
$$

where we have used Hölder inequality, Young inequality and the fact $t<R_{1}<$ 1 , which implies $1<\frac{1}{t-\tau}<\frac{1}{(t-\tau)^{p}}$.

Using (1.4), Hölder inequality and Young inequality, $\left|I_{2}\right|$ can be estimated
as

$$
\begin{align*}
\left|I_{2}\right|= & \left|-\int_{A_{k, t}} g(x, u)\left(\left(u-T_{k}(u)\right) D \eta+\eta D u\right) d x\right| \\
\leq & \int_{A_{k, t}}\left(k_{2}(x)+C_{g}|u|^{p-1}\right)\left(\frac{2|u|}{t-\tau}+|D u|\right) d x \\
\leq & \left(\int_{A_{k, t}} k_{2}(x)^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}}\left(\int_{A_{k, t}}\left(\frac{2|u|}{t-\tau}+|D u|\right)^{p} d x\right)^{\frac{1}{p}} \\
& +2 C_{g} \int_{A_{k, t}} \frac{|u|^{p}}{t-\tau} d x+C_{g}\left(\int_{A_{k, t}}|u|^{p} d x\right)^{\frac{p-1}{p}}\left(\int_{A_{k, t}}|D u|^{p} d x\right)^{\frac{1}{p}} \\
\leq & \left(2^{p}+C_{g}\right) \varepsilon \int_{A_{k, t}}|D u|^{p} d x+\left(2^{p} \varepsilon+C_{g}(C(\varepsilon)+2)\right) \int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x \\
& +C(\varepsilon) \int_{A_{k, t}} k_{2}(x)^{\frac{p}{p-1}} d x . \tag{2.4}
\end{align*}
$$

$\left|I_{3}\right|$ can be estimated as

$$
\begin{align*}
\left|I_{3}\right| & =\left|-\int_{A_{k, t}} F(x)\left(\left(u-T_{k}(u)\right) D \eta+\eta D u\right) d x\right| \\
& \leq C(\varepsilon) \int_{A_{k, t}}|F(x)|^{\frac{p}{p-1}} d x+\varepsilon \int_{A_{k, t}}\left(\frac{2|u|}{t-\tau}+|D u|\right)^{p} d x \\
& \leq C(\varepsilon) \int_{A_{k, t}}|F(x)|^{\frac{p}{p-1}} d x+2^{p} \varepsilon \int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x+2^{p} \varepsilon \int_{A_{k, t}}|D u|^{p} d x \tag{2.5}
\end{align*}
$$

Using (1.5), Hölder inequality and Young inequality, $\left|I_{4}\right|$ can be estimated as

$$
\begin{align*}
\left|I_{4}\right| & =\left|\int_{A_{k, t}} h(x, u) \eta\left(u-T_{k}(u)\right) d x\right| \\
& \leq \int_{A_{k, t}}\left(k_{3}(x)+C_{h}|u|^{p-1}\right)|u| d x \tag{2.6}\\
& \leq C(\varepsilon) \int_{A_{k, t}} k_{3}(x)^{\frac{p}{p-1}} d x+\left(\varepsilon+C_{h}\right) \int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x
\end{align*}
$$

$\left|I_{5}\right|$ can be estimated as

$$
\begin{align*}
\left|I_{5}\right| & =\left|\int_{A_{k, t}}\right| f(x)\left|\eta\left(u-T_{k}(u)\right) d x\right| \leq \int_{A_{k, t}}|f(x)||u| d x \tag{2.7}\\
& \leq C(\varepsilon) \int_{A_{k, t}}|f(x)|^{\frac{p}{p-1}} d x+\varepsilon \int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x
\end{align*}
$$

Combining (2.1)-(2.7) we arrive at

$$
\begin{align*}
& C_{A, 1} \int_{A_{k, \tau}}|D u|^{p} d x \\
\leq & \left(C_{A, 2}+2^{p+1}+C_{g}\right) \varepsilon \int_{A_{k, t}}|D u|^{p} d x \\
& +\left(C(\varepsilon) C_{A, 2}+2 C_{A, 3}+\varepsilon+2^{p} \varepsilon+2^{p} \varepsilon+C_{g}(C(\varepsilon)+2)+2 \varepsilon+C_{h}\right) \int_{A_{k, t}} \frac{|u|^{p}}{(t-\tau)^{p}} d x \\
& +C(\varepsilon) \int_{A_{k, t}}\left(k_{1}(x)+k_{2}(x)+k_{3}(x)+|F(x)|+|f(x)|\right)^{\frac{p}{p-1}} d x \tag{2.8}
\end{align*}
$$

Take ε small enough such that $\frac{\left(C_{A, 2}+2^{p+1}+C_{g}\right) \varepsilon}{C_{A, 1}}<1$, then Lemma 1.4 yields that for every $\sigma, \gamma, R_{0} \leq \sigma<\gamma \leq R_{1}$, we have
$\int_{A_{k, \sigma}}|D u|^{p} d x \leq C\left[\int_{A_{k, \gamma}} \frac{|u|^{p}}{(\gamma-\sigma)^{p}} d x+\int_{A_{k, \gamma}}\left(k_{1}(x)+k_{2}(x)+k_{3}(x)+|F(x)|+|f(x)|\right)^{\frac{p}{p-1}} d x\right]$,
where C is a constant depends only on $p, C_{A, 1}, C_{A, 2}, C_{A, 3}, c_{g}$ and c_{h}. Theorem 1.2 follows from Lemma 1.3.

ACKNOWLEDGEMENTS. Research supported by NSFC (11371050).

References

[1] Giachetti D, Porzio M M. Local regularity results for minima of functionals of the calculus of variation, Nonlinear Analysis, T.M.A, 2000, 39: 463-482.
[2] Gao H Y, Chu Y M, Quasiregular mappings and \mathcal{A}-harmonic equations, Science Press, Beijing, 2013.
[3] Gao H Y, Guo J, Zuo Y L, Chu Y M. Local regularity result in obstacle problems, Acta Math. Sci., 2010, 30B(1): 208-214
[4] Gao H Y, Huang Q H. Local regularity for solutions of anisotropic obstacle problems, Nonlinear Analysis, T.M.A., 2012, 75: 4761-4765
[5] Gao H Y, Qiao J J, Chu Y M. Local regularity and local boundedness results for very weak solutions to obstacle problems, J. Ineq. Appl., 2010, Article ID: 878769, 12 pages, doi:10.1155/2010/878769.
[6] Gao H Y, Qiao J J, Wang Y, Chu Y M. Local reguarity results for minima of anisotropic functionals and solutions of anisotropic equations, J. Ineq. Appl., 2008 (2008) Article ID 835736: 1-12
[7] Gao H Y, Tian H Y. Local regularity result for solutions of obstacle problems, Acta Math. Sci., 2004, 24B(1): 71-74
[8] Bensoussan A, Frehse J. Regularity results for nonlinear elliptic systems and applications, Springer, 2002.
[9] Giaquinta M, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton University Press, Princeton, NJ, 1983.
[10] Giaquinta M, Giusti E. On the regularity of the minima of variational integrals, Acta Math., 1982, 148: 31-46
[11] Gilbarg D, Trudinger N S. Elliptic partial differential equations of second order, Springer, 1977.
[12] Ladyženskaya O A, Ural'ceva N N. Linear and quasilinear elliptic equations, Academic Press, 1968.
[13] Morrey C B. Multiple integrals in the calculus of variations, Springer, 1968.

Received: January, 2014

