# Local Regularity for Minimizers of Obstacle Problems of Some Integral Functionals <br> GAO Hongya <br> College of Mathematics and Information Science, Hebei University, Baoding, 071002, China. email: 578232915@qq.com 

## GUO Kaili

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China. email: gkl2010011323@qq.com

## GAO Yanmin

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China. email: 1245712005@qq.com

## JIA miaomiao

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China. email: 303286142@qq.com


#### Abstract

A local regularity result is obtained for minimizers $u \in \mathcal{K}_{\psi}=\left\{u \in W_{l o c}^{1, p}(\Omega)\right.$ : $u \geq \psi\}, 1<p<\infty$, of integral functionals of the type $$
\mathcal{F}(u ; \Omega)=\int_{\Omega} f(x, u, D u) d x
$$ where the Carathéodory function $f(x, u, D u)=f_{0}(x, u, D u)+f_{1}(x, u, D u)$, $f_{0}(x, s, z)$ grows like $|z|^{p}$ with $1<p<\infty$, and $f_{1}(x, s, z)$ satisfies some controllable growth condition.

Mathematics Subject Classification: 49N60, 35J60. Keywords: Local regularity, Minimizer, integral functional.


## 1 Introduction and Statement of Result.

Let $\Omega \subset \mathrm{R}^{n}, n \geq 2$, be a bounded domain. We consider integral functionals of the type

$$
\begin{equation*}
\mathcal{F}(u ; \Omega)=\int_{\Omega} f(x, u, D u) d x \tag{1.1}
\end{equation*}
$$

where the Carathéodory function $f(x, s, z)$ satisfies the following assumptions:
(i) $f(x, s, z): \Omega \times \mathrm{R} \times \mathrm{R}^{n} \rightarrow \mathrm{R}$ can be written as

$$
f(x, s, z)=f_{0}(x, s, z)+f_{1}(x, s, z)
$$

(ii) $f_{0}(x, s, z)$ satisfies the growth condition

$$
L^{-1}|z|^{p} \leq f_{0}(x, s, z) \leq L|z|^{p}+\varphi_{1}
$$

where $L>1,1<p<n$ and $\varphi_{0} \in L_{l o c}^{r}(\Omega)$ with $1<r<\frac{n}{p}$;
(iii) there exist $0 \leq m<p$ and $0 \leq h(x) \in L_{l o c}^{\frac{p r}{p-m}}(\Omega)$ such that

$$
\left|f_{1}(x, s, z)\right| \leq h(x)|z|^{m}
$$

In the present paper we shall consider minimizers $u \in \mathcal{K}_{\psi}=\left\{u \in W_{l o c}^{1, p}(\Omega)\right.$ : $u \geq \psi\}$ for (1.1), that is,

$$
\begin{equation*}
\mathcal{F}(u, \operatorname{supp}(u-v)) \leq \mathcal{F}(v, \operatorname{supp}(u-v)) \tag{1.2}
\end{equation*}
$$

for every $v \in K_{\psi}$. The main result is the following theorem.
Theorem 1.1 Assume that the integral function (1.1) satisfies conditions (i), (ii) and (iii). Let $\psi \in W_{\text {loc }}^{1, p r}(\Omega)$. If $u \in \mathcal{K}_{\psi}$ satisfies (1.2), then it belongs to $L_{l o c}^{(p r)^{*}}(\Omega)$.

We refer the reader to [1-6] for some results related to local regularity property.

## 2 Preliminary Lemmas.

For $x_{0} \in \Omega$ and $t \in \mathrm{R}$, we denote by $B_{t}=B_{t}\left(x_{0}\right)$ the ball of radius $t$ centred $x_{0}$. For $k>0$, let

$$
\begin{equation*}
A_{k}=\{x \in \Omega:|u(x)|>k\} \text { and } A_{k, t}=A_{k} \cap B_{t} . \tag{2.1}
\end{equation*}
$$

Moreover, if $m<n, m^{*}$ is the real number satisfying $m^{*}=\frac{n m}{n-m}$.
In order to prove Theorem 1.1, we need the following two preliminary lemmas.

Lemma 2.1 Let $u \in W_{l o c}^{1, p}(\Omega), \varphi_{0} \in L_{\text {loc }}^{r}(\Omega)$, where $1<p<n$ and $r$ satisfies

$$
\begin{equation*}
1<r<\frac{n}{p} \tag{2.2}
\end{equation*}
$$

Assuming that the following integral estimate holds

$$
\begin{equation*}
\int_{A_{k, \tau}}|D u|^{p} d x \leq c_{0}\left[\int_{A_{k, t}} \varphi_{0} d x+(t-\tau)^{-\alpha} \int_{A_{k, t}}|u|^{p} d x\right] \tag{2.3}
\end{equation*}
$$

for every $k \in N$ and $R_{0} \leq \tau<t \leq R_{1}$, where $c_{0}$ is a positive constant that depends only on $n, p, r, R_{0}, R_{1}$ and $|\Omega|$, and $\alpha$ is a real positive constant. Then $u \in L_{l o c}^{(p r)^{*}}(\Omega)$.

The proof can be found in [1, Theorem 2.1].
Lemma 2.2 Let $f(\tau)$ be a non-negative bounded function defined for $0 \leq R_{0} \leq$ $t \leq R_{1}$. Suppose that for $R_{0} \leq \tau<t \leq R_{1}$ we have

$$
\begin{equation*}
f(\tau) \leq A(t-\tau)^{-\alpha}+B+\theta f(t) \tag{2.4}
\end{equation*}
$$

where $A, B, \alpha, \theta$ are non-negative constants, and $\theta<1$. Then there exist $a$ constant $c$, depending only on $\alpha$ and $\theta$ such that for every $\rho, R, R_{0} \leq \rho<R \leq$ $R_{1}$ we have

$$
\begin{equation*}
f(\rho) \leq c\left[A(R-\rho)^{-\alpha}+B\right] \tag{2.5}
\end{equation*}
$$

The proof can be found in [7, p.161, Lemma 3.1].

## 3 Proof of Theorem 1.1.

In the sequel the letter $c$ will stands for a genetic constant which may vary from line to line. Let $B_{R_{1}} \subset \subset \Omega$ and $0 \leq R_{0} \leq \tau<t \leq R_{1}$ be arbitrarily fixed. Let

$$
T_{\psi}=\max \left\{T_{k}(u), \psi\right\}
$$

where $T_{k}(u)$ is the usual truncation of $u$ at level $k>0$, that is

$$
T_{k}(u)=\max \{-k, \min \{k, u\}\}
$$

Choose $v=u-\eta\left(u-T_{\psi}\right)$ in (1.2), where $\eta$ is a cut-off function such that

$$
\eta \in C_{0}^{\infty}\left(B_{t}\right), 0 \leq \eta \leq 1, \eta=1 \text { in } B_{\tau} \text { and }|D \eta| \leq 2(t-\tau)^{-1}
$$

For $u \in \mathcal{K}_{\psi}$, from $\psi \in W_{l o c}^{1, p r}(\Omega)$ and

$$
v=u-\eta\left(u-T_{\psi}\right)=(1-\eta) u+\eta T_{\psi} \geq(1-\eta) \psi+\eta \psi=\psi
$$

we know that $v \in \mathcal{K}_{\psi}$. (1.2) implies

$$
\begin{align*}
\int_{B_{t}} f(x, u, D u) d x \leq & \int_{B_{t}} f(x, v, D v) d x \\
= & \int_{A_{k, t}} f\left(x, u-\eta\left(u-T_{\psi}\right), D u-D\left(\eta\left(u-T_{\psi}\right)\right)\right) d x \\
& +\int_{B_{t} \cap\{|u| \leq k\}} f(x, u, D u) d x \tag{3.1}
\end{align*}
$$

from which we derive

$$
\begin{equation*}
\int_{A_{k, t}} f(x, u, D u) d x \leq \int_{A_{k, t}} f\left(x, u-\eta\left(u-T_{\psi}\right), D u-D\left(\eta\left(u-T_{\psi}\right)\right)\right) d x \tag{3.2}
\end{equation*}
$$

Using (i), (ii) in (3.2) we have

$$
\begin{align*}
& L^{-1} \int_{A_{k, t}}|D u|^{p} d x \\
\leq & \int_{A_{k, t}} f\left(x, u-\eta\left(u-T_{\psi}\right), D u-D\left(\eta\left(u-T_{\psi}\right)\right)\right) d x-\int_{A_{k, t}} f_{1}(x, u, D u) d x \\
\leq & \int_{A_{k, t} \backslash A_{k, \tau}} f\left(x,(1-\eta) u+\eta T_{\psi},(1-\eta) D u-\left(u-T_{\psi}\right) D \eta+\eta D T_{\psi}\right) d x \\
& +\int_{A_{k, \tau}} f\left(x, T_{\psi}, D T_{\psi}\right) d x-\int_{A_{k, t}} f_{1}(x, u, D u) d x \\
\leq & \int_{A_{k, t} \backslash A_{k, \tau}} f_{0}\left(x,(1-\eta) u+\eta T_{\psi},(1-\eta) D u-\left(u-T_{\psi}\right) D \eta+\eta D T_{\psi}\right) d x \\
& +\int_{A_{k, t} \backslash A_{k, \tau}} f_{1}\left(x,(1-\eta) u+\eta T_{\psi},(1-\eta) D u-\left(u-T_{\psi}\right) D \eta+\eta D T_{\psi}\right) d x \\
& +\int_{A_{k, \tau}} f_{0}\left(x, T_{\psi}, D T_{\psi}\right) d x+\int_{A_{k, \tau}} f_{1}\left(x, T_{\psi}, D T_{\psi}\right) d x-\int_{A_{k, t}} f_{1}(x, u, D u) d x \\
= & I_{1}+I_{2}+I_{3}+I_{4}+I_{5} . \tag{3.3}
\end{align*}
$$

Using (ii), (iii) and Young's inequality, $\left|I_{i}\right|, i=1,2, \cdots, 5$, can be estimated as follows:

$$
\begin{aligned}
\left|I_{1}\right| \leq & \leq \int_{A_{k, t} \backslash A_{k, \tau}}\left|(1-\eta) D u-\left(u-T_{\psi}\right) D \eta+\eta D T_{\psi}\right|^{p} d x+\int_{A_{k, t} \backslash A_{k, \tau}} \varphi_{1} d x \\
\leq & c \int_{A_{k, t} \backslash A_{k, \tau}}\left(|D u|^{p}+(t-\tau)^{-p}|u|^{p}+|D \psi|^{p}\right) d x+\int_{A_{k, t} \backslash A_{k, \tau}} \varphi_{1} d x, \\
\left|I_{2}\right| \leq & \int_{A_{k, t} \backslash A_{k, \tau}} h\left|(1-\eta) D u-\left(u-T_{\psi}\right) D \eta+\eta D T_{\psi}\right|^{m} d x \\
\leq & \varepsilon \int_{A_{k, t} \backslash A_{k, \tau}}\left|(1-\eta) D u-\left(u-T_{\psi}\right) D \eta+\eta D T_{\psi}\right|^{p} d x+c(\varepsilon) \int_{A_{k, t} \backslash A_{k, \tau}} h^{\frac{p}{p-m}} d x \\
\leq & c \varepsilon \int_{A_{k, t} \backslash A_{k, \tau}}\left(|D u|^{p}+(t-\tau)^{-p}|u|^{p}+|D \psi|^{p}\right) d x+c(\varepsilon) \int_{A_{k, t} \backslash A_{k, \tau}} h^{p-m} d x, \\
& \left|I_{3}\right| \leq L \int_{A_{k, \tau}}|D \psi|^{p} d x+\int_{A_{k, \tau}} \varphi_{1} d x, \\
& \left|I_{4}\right| \leq \int_{A_{k, \tau}} h|D \psi|^{m} d x \leq \varepsilon \int_{A_{k, \tau}}|D \psi|^{p} d x+c(\varepsilon) \int_{A_{k, \tau}} h^{\frac{p}{p-m}} d x, \\
& \left|I_{5}\right| \leq \int_{A_{k, t}} h|D u|^{m} d x \leq \varepsilon \int_{A_{k, t}}|D u|^{p} d x+c(\varepsilon) \int_{A_{k, t}} h^{\frac{p}{p-m}} d x .
\end{aligned}
$$

In the above estimates we have used the facts

$$
\left|u-T_{\psi}\right| \leq|u|,\left|D T_{\psi}\right| \leq|D \psi| \quad \text { in } A_{k, t} .
$$

Substituting the above estimates into (3.3), we have

$$
\begin{align*}
\int_{A_{k, \tau}}|D u|^{p} d x \leq & c \int_{A_{k, t} \backslash A_{k, \tau}}\left(|D u|^{p}+(t-\tau)^{-p}|u|^{p}\right) d x \\
& +c \int_{A_{k, t}}\left(\varphi_{1}+h^{\frac{p}{p-m}}+|D \psi|^{p}\right) d x \tag{3.4}
\end{align*}
$$

Adding to both sides $c$ times the left-side and dividing by $1+c$ we get

$$
\begin{align*}
\int_{A_{k, \tau}}|D u|^{p} d x \leq & \theta \int_{A_{k, t}}|D u|^{p} d x+\frac{\theta}{(t-\tau)^{p}} \int_{A_{k, t}}|u|^{p} d x \\
& +c \int_{A_{k, t}}\left(\varphi_{1}+h^{\frac{p}{p-m}}+|D \psi|^{p}\right) d x \tag{3.5}
\end{align*}
$$

where $\theta=\frac{c}{1+c}<1$. Lemma 2.2 yields that for any $\rho$ and $R$ with $R_{0} \leq \rho \leq$ $\tau<t \leq R \leq R_{1}$, we have

$$
\begin{equation*}
\int_{A_{k, \rho}}|D u|^{p} \leq \frac{c}{(R-\rho)^{p}} \int_{A_{k, R}}|u|^{p} d x+c \int_{A_{k, R}}\left(\varphi_{1}+h^{\frac{p}{p-m}}+|D \psi|^{p}\right) d x \tag{3.6}
\end{equation*}
$$

Theorem 1.1 follows from Lemma 2.1.

## References

[1] D.Giachetti, M.M.Porzio, Local regularity results for minima of functionals of the calculus of variation, Nonlinear Anal., 2000, 39, 463-482.
[2] A.Bensoussan, J.Freshe, Regularity results for nonlinear elliptic systems and applications, Springer, 2002.
[3] H.Y.Gao, Y.M.Chu, Quasiregular mappings and $\mathcal{A}$-harmonic equations, Science Press, 2013.
[4] H.Y.Gao, Regularity for solutions of anisotropic obstacle problems, Sci. China Math., 2014, 57, 111-122.
[5] H.Y.Gao, J.J.Qiao, Y.M.Chu, Local regularity and local boundedness results for very weak solutions of obstacle problems, J. Ineq. Appl., 2010, Article ID 878769, 12 pages.
[6] H.Y.Gao, Q.H.Huang, Local regularity for solutions of anisotropic obstacle problems, Nonlinear Analysis, TMA, 2012, 75, 4761-4765.
[7] M.Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Preston, NJ, 1983.
Received: May, 2015

