Local Regularity for Minimizers of Integral Functionals

GAO Hongya

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China

WANG Liang

School of Computer Science and Technology, Hebei University, Baoding, 071002, China

Abstract

We prove local regularity for minimizers of integral functionals of the form

$$\int_{\Omega} f(x, u, Du) dx$$

where the integrand $f(x, s, z) = f_0(x, s, z) + f_1(x, s, z) : \Omega \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is a Carathéodory function, $f_0(x, s, z)$ grows like $|z|^p$ with p > 1, and

$$|f_1(x, s, z)| \le \varphi_1(x)|z|, \ \ \varphi_1(x) \in L^{p'r}_{loc}(\Omega), \ 1 < r < \frac{n}{p}.$$

Mathematics Subject Classification: 49N60, 35J60.

Keywords: Local regularity, Minimizer, Integral functional.

1 Introduction and Statement of Result.

Let Ω be a bounded open subset of \mathbb{R}^n , $n \geq 2$. We consider integral functionals of the type

$$\mathcal{F}(u;\Omega) = \int_{\Omega} f(x,u,Du)dx, \qquad (1.1)$$

where the integrand f(x, s, z) satisfies the following assumptions:

(i) $f(x,s,z):\Omega\times \mathbf{R}\times \mathbf{R}^n\to \mathbf{R}$ is a Carathéodory function which can be written as

$$f(x, s, z) = f_0(x, s, z) + f_1(x, s, z),$$

(ii) there exists $\varphi_0(x) \in L^r_{loc}(\Omega)$, $1 < r < \frac{n}{p}$, such that

$$L^{-1}|z|^p \le f_0(x, s, z) \le L(|z|^p + \varphi_0(x)),$$

(iii) there exists $\varphi_1(x) \in L^{p'r}_{loc}(\Omega), \ \varphi_1(x) \ge 0$, such that

$$|f_1(x,s,z)| \le \varphi_1(x)|z|.$$

We point out that no differentiability assumption is made on $\mathcal{F}(u; \Omega)$.

Definition 1.1 By a minimizer of the functional \mathcal{F} we mean functions $u \in W^{1,p}_{loc}(\Omega)$, such that for every function $\psi \in W^{1,p}(\Omega)$ with $supp \psi \subset \Omega$ it results in

$$\mathcal{F}(u; supp\psi) \le \mathcal{F}(u+\psi; supp\psi). \tag{1.2}$$

Continuity properties of minimizers of integral functionals (1.1) with the integrand f(x, s, z) satisfies the assumptions (i), (ii) and (iii) have been studied in [1] by Ferone and Fusco. In this paper we obtain a local regularity result for minimizers of integral functionals (1.1). Local regularity properties are important among the regularity theories of nonlinear elliptic PDEs and systems, see the monograph [2] by Bensoussan and Frehse. For some local regularity results related to (1.1), we refer the readers to [3-6].

The main result of the present paper is the following theorem.

Theorem 1.1 Under the previous assumptions (i)-(iii), if $u \in W_{loc}^{1,p}(\Omega)$, $1 , is a minimizer of the integral functional (1.1), then it belongs to <math>L_{loc}^{(pr)^*}(\Omega)$.

2 Preliminaries.

For $x_0 \in \Omega$ and t > 0, we denote by $B_t(x_0)$, or simply B_t , the ball of radius t centered at x_0 . For k > 0, let

 $A_k = \{ x \in \Omega : |u(x)| > k \}, \ A_{k,t} = A_k \cap B_t.$

Moreover, for m < n, m^* is always the real number satisfying $\frac{1}{m^*} = \frac{1}{m} - \frac{1}{n}$. The following lemma can be found in [7].

Lemma 2.1 Let $u \in W^{1,p}_{loc}(\Omega)$, $g \in L^r_{loc}(\Omega)$, where 1 and <math>r satisfies

$$1 < r < \frac{n}{p}.$$

Assume that the following integral estimate holds:

$$\int_{A_{k,\tau}} |Du|^p dx \le c_0 \left[\int_{A_{k,t}} g dx + (t-\tau)^{-\alpha} \int_{A_{k,t}} |u|^p dx \right],$$
(2.1)

for every $k \in N$ and $R_0 \leq \tau < t \leq R_1$, where c_0 is a positive constant that depends only on N, p, r, R_0, R_1 and $|\Omega|$, and α is a real positive constant. Then $u \in L_{loc}^{(pr)^*}(\Omega)$.

358

The following lemma comes from [8], and will be used in the proof of Theorem 1.1.

Lemma 2.2 Let $f(\tau)$ be a non-negative bounded function defined for $0 \le R_0 \le t \le R_1$. Suppose that for $R_0 \le \tau < t \le R_1$ we have

$$f(\tau) \le A(t-\tau)^{-\alpha} + B + \theta f(t),$$

where A, B, α, θ are non-negative constants, and $\theta < 1$. Then there exists a constant c, depending only on α and θ such that for every $\rho, R, R_0 \leq \rho < R \leq R_1$ we have

$$f(\rho) \le c[A(R-\rho)^{-\alpha} + B].$$

3 Proof of Theorem 2.1.

Owing to Lemma 2.1, it is sufficient to prove that u satisfies the integral estimate (2.1) with $\alpha = p$ and $g = \varphi_0 + \varphi_1^{p'}$. Let $B_{R_1} \subset \Omega$ and $0 \leq R_0 \leq \tau < t \leq R_1$ be arbitrarily fixed. Choose $\psi = -\eta(u - T_k(u))$ in (1.2), where η is a cut-off function such that

$$\operatorname{supp}\eta \subset B_t, \ 0 \le \eta \le 1, \ \eta = 1 \text{ in } B_\tau, \ |D\eta| \le 2(t-\tau)^{-1},$$

and

$$T_k(u) = \max\{-k, \min\{u, k\}\}$$

is the usual truncation of u at level k > 0. We obtain by Definition 1.1 that

$$\int_{B_t} f(x, u, Du) dx \le \int_{B_t} f(x, u + \psi, Du + D\psi) dx.$$
(3.1)

Since $\psi = 0$ on $\{x \in B_t : |u| \le k\}$, then (3.1) yields

$$\int_{A_{k,t}} f(x, u, Du) dx \le \int_{A_{k,t}} f(x, u + \psi, Du + D\psi) dx.$$
(3.2)

Thus, by using (ii) and (3.2) we obtain

$$L^{-1} \int_{A_{k,t}} |Du|^p dx \leq \int_{A_{k,t}} f_0(x, u, Du) dx$$

$$\leq -\int_{A_{k,t}} f_1(x, u, Du) dx + \int_{A_{k,t}} f_0(x, u + \psi, Du + D\psi) dx$$

$$+ \int_{A_{k,t}} f_1(x, u + \psi, Du + D\psi) dx$$

$$= I_1 + I_2 + I_3.$$
(3.3)

Our nearest goal is to estimate $|I_i|$, i = 1, 2, 3. Condition (iii) together with Young inequality yields

$$|I_1| \leq \int_{A_{k,t}} |f_1(x, u, Du)| dx \leq \int_{A_{k,t}} \varphi_1 |Du| dx$$

$$\leq C(\varepsilon) \|\varphi_1\|_{L^{p'}(A_{k,t})}^{p'} + \varepsilon \|Du\|_{L^p(A_{k,t})}^p.$$
(3.4)

(ii) implies

$$|I_{2}| \leq \int_{A_{k,t}} |f_{0}(x, u + \psi, Du + D\psi| dx \leq L \int_{A_{k,t}} |Du + D\psi|^{p} dx + L \int_{A_{k,t}} \varphi_{0} dx = L(J_{1} + J_{2}).$$
(3.5)

Substituting

$$D\psi = -(u - T_k(u))D\eta - \eta Du,$$

into J_1 , and use the fact $|u - T_k(u)| \le |u|$, we can derive

$$|J_{1}| \leq \int_{A_{k,t}} |(1-\eta)Du - (u - T_{k}(u))D\eta|^{p} dx$$

$$\leq 2^{p-1} \int_{A_{k,t} \setminus A_{k,\tau}} |Du|^{p} dx + 2^{2p-1} \int_{A_{k,t}} \frac{|u - T_{k}(u)|^{p}}{(t-\tau)^{p}} dx \qquad (3.6)$$

$$\leq 2^{p-1} \int_{A_{k,t} \setminus A_{k,\tau}} |Du|^{p} dx + 2^{2p-1} \int_{A_{k,t}} \frac{|u|^{p}}{(t-\tau)^{p}} dx.$$

(iii), Young inequality and (3.6) yield

$$|I_{3}| \leq \int_{A_{k,t}} |f_{1}(x, u + \psi, Du + D\psi)| dx \leq \int_{A_{k,t}} \varphi_{1} |Du + D\psi| dx$$

$$\leq C(\varepsilon) \|\varphi_{1}\|_{L^{p'(A_{k,t})}}^{p'} + \varepsilon \|Du + D\psi\|_{L^{p}(A_{k,t})}^{p}$$

$$\leq C(\varepsilon) \|\varphi_{1}\|_{L^{p'(A_{k,t})}}^{p'} + \varepsilon \left[2^{p-1} \int_{A_{k,t} \setminus A_{k,\tau}} |Du|^{p} dx + 2^{2p-1} \int_{A_{k,t}} \frac{|u|^{p}}{(t-\tau)^{p}} dx\right].$$
(3.7)

It is no loss of generality to assume $\varepsilon < 1$. Substituting (3.4)-(3.7) into (3.3), we have

$$\int_{A_{k,\tau}} |Du|^p dx \leq \int_{A_{k,t}} |Du|^p dx$$

$$\leq 2^{p-1}(L+1) \int_{A_{k,t} \setminus A_{k,\tau}} |Du|^p dx + L\varepsilon \int_{A_{k,t}} |Du|^p dx$$

$$+ 2^{2p-1}(L+1) \int_{A_{k,t}} \frac{|u|^p}{(t-\tau)^p} dx + L^2 \int_{A_{k,t}} \varphi_0 dx$$

$$+ 2C(\varepsilon) L \int_{A_{k,t}} \varphi_1^{p'} dx$$
(3.8)

Adding both sides $2^{p-1}(L+1)$ times the left hand side and divided both sides by $2^{p-1}(L+1) + 1$, one has

$$\int_{A_{k,\tau}} |Du|^{p} dx \\
\leq \left(\theta + \frac{L\varepsilon}{2^{p-1}(L+1)} \right) \int_{A_{k,t}} |Du|^{p} dx \\
+ \frac{2^{2p-1}(L+1)}{2^{p-1}(L+1)+1} \int_{A_{k,t}} \frac{|u|^{p}}{(t-\tau)^{p}} dx + \frac{L^{2}}{2^{p-1}(L+1)+1} \int_{A_{k,t}} \varphi_{0} dx \\
+ \frac{2C(\varepsilon)L}{2^{p-1}(L+1)+1} \int_{A_{k,t}} \varphi_{1}^{p'} dx,$$
(3.9)

where $\theta = \frac{2^{p-1}(L+1)}{2^{p-1}(L+1)+1} < 1$, c_0 is a constant depends only on p and L. Taking ε small enough such that $\theta + \frac{L\varepsilon}{2^pL+1} < 1$. Lemma 2.2 implies that for any $0 \le R_0 \le \rho < R \le R_1$,

$$\int_{A_{k,\rho}} |Du|^p dx \le c_0 \left[(R-\rho)^{-p} \int_{A_{k,R}} |u|^p dx + \int_{A_{k,R}} (\varphi_0 + \varphi_1^{p'}) dx \right],$$

where c_0 is a constant depending only on p and L. Theorem 1.1 follows from Lemma 2.1.

References

- V.Ferone, N.Fusco, Continuity properties of minimizers of integral functionals in a limit case, J. Math. Anal. Appl., 1996, 202, 27-52.
- [2] A.Bensoussan, J.Freshe, Regularity results for nonlinear elliptic systems and applications, Springer, 2002.
- [3] H.Y.Gao, Y.M.Chu, Quasiregular mappings and *A*-harmonic equations, Science Press, 2013.
- [4] H.Y.Gao, Regularity for solutions of anisotropic obstacle problems, Sci. China Math., 2014, 57(1), 111-122.
- [5] H.Y.Gao, J.J.Qiao, Y.M.Chu, Local regularity and local boundedness results for very weak solutions of obstacle problems, J. Ineq. Appl., 2010, Article ID 878769, 12 pages.
- [6] H.Y.Gao, Q.H.Huang, Local regularity for solutions of anisotropic obstacle problems, Nonlinear Analysis, TMA, 2012, 75(13), 4761-4765.
- [7] D.Giachetti, M.M.Porzio, Local regularity results for minima of functionals of the calculus of variation, Nonlinear Analysis, 2000, 39, 463-482.
- [8] M.Giaquinta, Multiple integrals in the cauculus of variations and nonlinear elliptic systems, Princeton University Press, Princeton, NJ, 1983.

Received: April, 2015