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Local Regularity for Minimizers of Integral Functionals
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Abstract

We prove local regularity for minimizers of integral functionals of
the form

∫

Ω
f(x, u,Du)dx

where the integrand f(x, s, z) = f0(x, s, z)+f1(x, s, z) : Ω×R×Rn → R
is a Carathéodory function, f0(x, s, z) grows like |z|p with p > 1, and

|f1(x, s, z)| ≤ ϕ1(x)|z|, ϕ1(x) ∈ L
p′r
loc(Ω), 1 < r <

n

p
.
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1 Introduction and Statement of Result.

Let Ω be a bounded open subset of Rn, n ≥ 2. We consider integral functionals
of the type

F(u; Ω) =
∫

Ω
f(x, u,Du)dx, (1.1)

where the integrand f(x, s, z) satisfies the following assumptions:
(i) f(x, s, z) : Ω × R × Rn → R is a Carathéodory function which can be

written as
f(x, s, z) = f0(x, s, z) + f1(x, s, z),

(ii) there exists ϕ0(x) ∈ Lr
loc(Ω), 1 < r < n

p
, such that

L−1|z|p ≤ f0(x, s, z) ≤ L(|z|p + ϕ0(x)),
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(iii) there exists ϕ1(x) ∈ L
p′r
loc(Ω), ϕ1(x) ≥ 0, such that

|f1(x, s, z)| ≤ ϕ1(x)|z|.

We point out that no differentiability assumption is made on F(u; Ω).

Definition 1.1 By a minimizer of the functional F we mean functions u ∈
W

1,p
loc (Ω), such that for every function ψ ∈ W 1,p(Ω) with suppψ ⊂⊂ Ω it results

in
F(u; suppψ) ≤ F(u+ ψ; suppψ). (1.2)

Continuity properties of minimizers of integral functionals (1.1) with the
integrand f(x, s, z) satisfies the assumptions (i), (ii) and (iii) have been studied
in [1] by Ferone and Fusco. In this paper we obtain a local regularity result
for minimizers of integral functionals (1.1). Local regularity properties are im-
portant among the regularity theories of nonlinear elliptic PDEs and systems,
see the monograph [2] by Bensoussan and Frehse. For some local regularity
results related to (1.1), we refer the readers to [3-6].

The main result of the present paper is the following theorem.

Theorem 1.1 Under the previous assumptions (i)-(iii), if u ∈ W
1,p
loc (Ω), 1 <

p < n, is a minimizer of the integral functional (1.1), then it belongs to

L
(pr)∗

loc (Ω).

2 Preliminaries.

For x0 ∈ Ω and t > 0, we denote by Bt(x0), or simply Bt, the ball of radius t
centered at x0. For k > 0, let

Ak = {x ∈ Ω : |u(x)| > k}, Ak,t = Ak ∩Bt.

Moreover, for m < n, m∗ is always the real number satisfying 1
m∗

= 1
m
− 1

n
.

The following lemma can be found in [7].

Lemma 2.1 Let u ∈ W
1,p
loc (Ω), g ∈ Lr

loc(Ω), where 1 < p < n and r satisfies

1 < r <
n

p
.

Assume that the following integral estimate holds:

∫

Ak,τ

|Du|pdx ≤ c0

[

∫

Ak,t

gdx+ (t− τ)−α

∫

Ak,t

|u|pdx

]

, (2.1)

for every k ∈ N and R0 ≤ τ < t ≤ R1, where c0 is a positive constant that
depends only on N, p, r, R0, R1 and |Ω|, and α is a real positive constant. Then

u ∈ L
(pr)∗

loc (Ω).



Local Regularity for Minimizers of Integral Functionals 359

The following lemma comes from [8], and will be used in the proof of
Theorem 1.1.

Lemma 2.2 Let f(τ) be a non-negative bounded function defined for 0 ≤ R0 ≤
t ≤ R1. Suppose that for R0 ≤ τ < t ≤ R1 we have

f(τ) ≤ A(t− τ)−α +B + θf(t),

where A,B, α, θ are non-negative constants, and θ < 1. Then there exists a
constant c, depending only on α and θ such that for every ρ, R, R0 ≤ ρ < R ≤
R1 we have

f(ρ) ≤ c[A(R− ρ)−α +B].

3 Proof of Theorem 2.1.

Owing to Lemma 2.1, it is sufficient to prove that u satisfies the integral
estimate (2.1) with α = p and g = ϕ0+ϕ

p′

1 . Let BR1 ⊂⊂ Ω and 0 ≤ R0 ≤ τ <

t ≤ R1 be arbitrarily fixed. Choose ψ = −η(u − Tk(u)) in (1.2), where η is a
cut-off function such that

suppη ⊂ Bt, 0 ≤ η ≤ 1, η = 1 in Bτ , |Dη| ≤ 2(t− τ)−1,

and

Tk(u) = max{−k,min{u, k}}

is the usual truncation of u at level k > 0. We obtain by Definition 1.1 that

∫

Bt

f(x, u,Du)dx ≤
∫

Bt

f(x, u+ ψ,Du+Dψ)dx. (3.1)

Since ψ = 0 on {x ∈ Bt : |u| ≤ k}, then (3.1) yields

∫

Ak,t

f(x, u,Du)dx ≤
∫

Ak,t

f(x, u+ ψ,Du+Dψ)dx. (3.2)

Thus, by using (ii) and (3.2) we obtain

L−1
∫

Ak,t

|Du|pdx ≤
∫

Ak,t

f0(x, u,Du)dx

≤ −
∫

Ak,t

f1(x, u,Du)dx+
∫

Ak,t

f0(x, u+ ψ,Du+Dψ)dx

+
∫

Ak,t

f1(x, u+ ψ,Du+Dψ)dx

= I1 + I2 + I3.

(3.3)
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Our nearest goal is to estimate |Ii|, i = 1, 2, 3. Condition (iii) together with
Young inequality yields

|I1| ≤
∫

Ak,t

|f1(x, u,Du)|dx ≤
∫

Ak,t

ϕ1|Du|dx

≤ C(ε)‖ϕ1‖
p′

Lp′(Ak,t)
+ ε‖Du‖pLp(Ak,t)

.
(3.4)

(ii) implies

|I2| ≤
∫

Ak,t

|f0(x, u+ ψ,Du+Dψ| dx

≤ L

∫

Ak,t

|Du+Dψ|pdx+ L

∫

Ak,t

ϕ0dx = L(J1 + J2).
(3.5)

Substituting

Dψ = −(u− Tk(u))Dη − ηDu,

into J1, and use the fact |u− Tk(u)| ≤ |u|, we can derive

|J1| ≤
∫

Ak,t

|(1− η)Du− (u− Tk(u))Dη|
pdx

≤ 2p−1
∫

Ak,t\Ak,τ

|Du|pdx+ 22p−1
∫

Ak,t

|u− Tk(u)|
p

(t− τ)p
dx

≤ 2p−1
∫

Ak,t\Ak,τ

|Du|pdx+ 22p−1
∫

Ak,t

|u|p

(t− τ)p
dx.

(3.6)

(iii), Young inequality and (3.6) yield

|I3| ≤
∫

Ak,t

|f1(x, u+ ψ,Du+Dψ)|dx ≤
∫

Ak,t

ϕ1|Du+Dψ|dx

≤ C(ε)‖ϕ1‖
p′

L
p′(Ak,t)

+ ε‖Du+Dψ‖pLp(Ak,t)

≤ C(ε)‖ϕ1‖
p′

L
p′(Ak,t)

+ ε

[

2p−1
∫

Ak,t\Ak,τ

|Du|pdx+ 22p−1
∫

Ak,t

|u|p

(t− τ)p
dx

]

.

(3.7)
It is no loss of generality to assume ε < 1. Substituting (3.4)-(3.7) into (3.3),
we have

∫

Ak,τ

|Du|pdx ≤
∫

Ak,t

|Du|pdx

≤ 2p−1(L+ 1)
∫

Ak,t\Ak,τ

|Du|pdx+ Lε

∫

Ak,t

|Du|pdx

+22p−1(L+ 1)
∫

Ak,t

|u|p

(t− τ)p
dx+ L2

∫

Ak,t

ϕ0dx

+2C(ε)L
∫

Ak,t

ϕ
p′

1 dx

(3.8)



Local Regularity for Minimizers of Integral Functionals 361

Adding both sides 2p−1(L+1) times the left hand side and divided both sides
by 2p−1(L+ 1) + 1, one has

∫

Ak,τ

|Du|pdx

≤

(

θ +
Lε

2p−1(L+ 1)

)

∫

Ak,t

|Du|pdx

+
22p−1(L+ 1)

2p−1(L+ 1) + 1

∫

Ak,t

|u|p

(t− τ)p
dx+

L2

2p−1(L+ 1) + 1

∫

Ak,t

ϕ0dx

+
2C(ε)L

2p−1(L+ 1) + 1

∫

Ak,t

ϕ
p′

1 dx,

(3.9)

where θ = 2p−1(L+1)
2p−1(L+1)+1

< 1, c0 is a constant depends only on p and L. Taking

ε small enough such that θ + Lε
2pL+1

< 1. Lemma 2.2 implies that for any
0 ≤ R0 ≤ ρ < R ≤ R1,

∫

Ak,ρ

|Du|pdx ≤ c0

[

(R− ρ)−p

∫

Ak,R

|u|pdx+
∫

Ak,R

(ϕ0 + ϕ
p′

1 )dx

]

,

where c0 is a constant depending only on p and L. Theorem 1.1 follows from
Lemma 2.1.
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