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Abstract

A class of elliptic variational inequalities are considered in this paper.

Local extremum principle for weak solutions is obtained using Moser

iterative method.
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1 Introduction

Let Ω be a bounded domain of Rn. And let W 1,p(Ω), 1 < p < ∞, be the
first-order Sobolev space of functions u ∈ Lp(Ω) whose distributional gradient
∇u belongs to Lp(Ω). Suppose that ψ is any functions in Ω with values in
R ∪ {±∞}, and that θ ∈ W 1,p(Ω). Let

Kp
ψ,θ(Ω) =

{

v ∈ W 1,p(Ω) : v ≥ ψ, a.e. and v − θ ∈ W
1,p
0 (Ω)

}

. (1.1)

The function ψ is the obstacle function and θ determines the boundary value.
In this paper, we consider a class of elliptic variational inequalities







u ∈ Kp
ψ,θ(Ω),

∫

Ω

〈A(x,∇u),∇(v − u)〉dx ≥

∫

Ω

B(x,∇u)(v − u)dx, ∀v ∈ Kp
ψ,θ(Ω),

(1.2)
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where A(x, ξ) : Ω × R
n → R

n, B(x, ξ) : Ω × R
n → R are Carathéodory

functions, for almost all x ∈ Ω, all ξ ∈ R
n, satisfying the coercivity and

growth conditions:

〈A(x, ξ), ξ〉 ≥ α|ξ|p; |A(x, ξ)| ≤ β|ξ|p−1; |B(x, ξ)| ≤ γ|ξ|p−1. (1.3)

where α, β, γ are some nonnegative constants, 1 < p < n.
In [1], the extremum principle for very weak solutions of A-harmonic equa-

tion is derived by using the stability result of Iwaniec-Hodge decomposition.
in this paper we continue to consider the elliptic problems. Local extremum
principle for weak solutions of elliptic variational inequalities (1.1) is obtained
using Moser iterative method. The main results is in the following.

Theorem 1.1 Let u ∈ W
1,p
loc (Ω) be the nonnegative weak solution of elliptic

variational inequalities (1.1), then

ess sup
BR

2

u ≤ C

[

1 +

(

−

∫

BR

updx

)
1

p

]

, (1.4)

where C is only associated with α, β, γ, n, p, diamΩ.

2 Proof of Theorem 1.1

Proof Let u ∈ W
1,p
loc (Ω)be the nonnegative weak solution of elliptic varia-

tional inequalities (1.1). The truncated functions ξ ∈ C∞

0 (BR), 0 ≤ ξ ≤ 1,

|∇ξ| ≤
C

R
, and ξ ≡ 1 in BR

2

. Let

v = u+ ξpκt, (2.1)

where κ = u+ 1, t ≥ 1 is a constant to be determined. Since

v − θ = (u− θ) + ξpκt ∈ W
1,p
0 (Ω), v − ψ = (u− ψ) + ξpκt ≥ 0, (2.2)

then v ∈ Kp
ψ,θ. We can use (2.1) to (1.1), it yields

t

∫

BR

〈A(x,∇u), κt−1ξp∇κ〉dx ≥ −p

∫

BR

〈A(x,∇u), ξp−1κt∇ξ〉dx

+

∫

BR

B(x,∇u)ξpκtdx. (2.3)

By the condition (1.2),

t

∫

BR

〈A(x,∇u), κt−1ξp∇κ〉dx ≥ t

∫

BR

α|∇κ|pκt−1ξpdx, (2.4)
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∣

∣

∣

∣

−p

∫

BR

〈A(x,∇u), ξp−1κt∇ξ〉dx

∣

∣

∣

∣

≤ pβ

∫

BR

|∇κ|p−1ξp−1κt|∇ξ|dx, (2.5)

∣

∣

∣

∣

∫

BR

B(x,∇u)ξpκtdx

∣

∣

∣

∣

≤ γ

∫

BR

|∇κ|p−1ξpκtdx. (2.6)

Combined (2.5)-(2.7) with (2.4), and noticing that t ≥ 1, we have

∫

BR

ακt−1ξp|∇κ|pdx

≤ pβ

∫

BR

ξp−1κt|∇κ|p−1|∇ξ|dx+ γ

∫

BR

ξpκt|∇κ|p−1dx

= pβI1 + γI2. (2.7)

By Young’s inequality,

I1 ≤ ε

∫

BR

ξpκt−1|∇κ|pdx+ c(ε)

∫

BR

|∇ξ|pκt+p−1dx, (2.8)

I2 ≤ ε

∫

BR

ξpκt−1|∇κ|pdx+ c(ε)

∫

BR

ξpκt+p−1dx. (2.9)

Combined (2.9)-(2.10) with (2.8), and let ε small enough to satisfy α− pβε−
γε > 0, it yields

∫

BR

ξpκt−1|∇κ|pdx ≤ C

[
∫

BR

|∇ξ|pκt+p−1dx+

∫

BR

ξpκt+p−1dx

]

, (2.10)

where C is associated with α, β, γ, p, ε, and is independent of t. Let

W = κ
t+p−1

p , (2.11)

then

|∇W | =
t+ p− 1

p
κ

t−1

p |∇κ|, κt−1|∇κ|p = |∇W |p
(

p

t+ p− 1

)p

. (2.12)

Submit (2.13) into (2.12) , yields

(

p

t + p− 1

)p ∫

BR

ξp|∇W |pdx ≤ C

[
∫

BR

|∇ξ|pW pdx+

∫

Ω

ξpW pdx

]

. (2.13)

Setting s = t + p− 1, then by (2.12),

∫

BR

ξp|∇W |pdx ≤ Csp
[
∫

BR

|∇ξ|pW pdx+

∫

BR

ξpW pdx

]

. (2.14)



138 Jiantao Gu and Xiaoli Liu

Since
∫

BR

|∇(ξW )|pdx =

∫

BR

|W∇ξ + ξ∇W |p dx

≤ 2p−1

∫

BR

|∇ξ|pW pdx+ 2p−1

∫

BR

ξp|∇W |pdx. (2.15)

Combined (2.16) with (2.17) yields

∫

BR

|∇(ξW )|pdx ≤ Csp
[
∫

BR

|∇ξ|pW pdx+

∫

Ω

ξpW pdx

]

. (2.16)

Then setting p∗ =
np

n− p
, by the Sobolev imbedding theorem,

[
∫

BR

(ξW )p
∗

dx

]
p

p∗

≤

∫

BR

|∇(ξW )|pdx. (2.17)

Since W = κ
t+p−1

p = κ
s
p , the above inequality becomes

[
∫

BR

ξp
∗

κ
ns

n−pdx

]
n−p

n

≤ Csp
[
∫

BR

|∇ξ|pκsdx+

∫

BR

ξpκsdx

]

. (2.18)

Noticing that 0 ≤ ξ ≤ 1, ξ ∈ C∞

0 (BR), |∇ξ| ≤
C

R
, ξ ≡ 1 in BR

2

, we have





∫

BR
2

κ
ns

n−pdx





n−p

n

≤ Csp
[

C

Rp

∫

BR

κsdx+

∫

BR

κsdx

]

. (2.19)

By the above inequality, we can choosing C large enough or R small enough
to get





∫

BR
2

κ
ns

n−pdx





n−p

n

≤
Csp

Rp

∫

BR

κsdx. (2.20)

Let Sm = p

(

n

n− p

)m

, m = 0, 1, 2, .... Using Sm instead of s in (2.22), and

setting Sm times square on both sides, we have

‖κ‖LSm+1(BR
2

) ≤

(

C

Rp

)
1

Sm

· S
p

Sm
m · ‖κ‖LSm(BR). (2.21)
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After iteration the above inequality yields

‖κ‖LSm+1(BR
2

) ≤

(

C

Rp

)

∑
∞

m=0
1

Sm

·

∞
∏

m=0

S
p

Sm
m · ‖κ‖Lp(BR). (2.22)

Since

∞
∑

m=0

1

Sm
=

n

p2
, and it is easy to verify the convergence of the series

∞
∏

m=0

S
p

Sm
m , then by (2.24) we have

‖κ‖LSm+1 (BR
2

) ≤
C

R
n
p

‖κ‖Lp(BR) ≤ C

(

−

∫

BR

κpdx

)
1

p

. (2.23)

Noticing that Sm → ∞ when m→ ∞. Let m→ ∞, (2.24) yields

‖κ‖L∞(BR
2

) ≤ C

(

−

∫

BR

κpdx

)
1

p

. (2.24)

Noticing that κ = u+ 1 and u is nonnegative, then

ess sup
BR

2

u = ‖u‖L∞(BR
2

) ≤ ‖κ‖L∞(BR
2

). (2.25)

(

−

∫

BR

κpdx

)
1

p

=

(

−

∫

BR

(u+ 1)pdx

)
1

p

≤ C

[

(

−

∫

BR

updx

)
1

p

+ 1

]

. (2.26)

Combined the above two inequalities into (2.26), we have the desired result
(1.4). The proof is completed.
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