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1 Introduction

Héjek [2] introduced a complete residuated lattice which is an algebraic struc-
ture for many valued logic. Pawlak [7,8] introduced rough set theory as a for-
mal tool to deal with imprecision and uncertainty in data analysis. Radzikowska
9] developed fuzzy rough sets in complete residuated lattice. Bélohldvek [1]
investigated information systems and decision rules in complete residuated
lattices. Lai [5,6] introduced Alexandrov L-topologies induced by fuzzy rough
sets. Kim [3,4] investigated the properties of Alexandrov topologies in com-
plete residuated lattices. Algebraic structures of fuzzy rough sets are developed
in many directions [3,9,10]

In this paper, we introduce join meet approximation operators with Galois
connection in complete residuated lattices. We investigate relations between
their operations and Alexandrov L-topologies.

Definition 1.1 [1,2] An algebra (L,A,V,®,—, L, T) is called a complete
residuated lattice if it satisfies the following conditions:
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(C1) L =(L,<,V,A, L, T) is a complete lattice with the greatest element
T and the least element L;

(C2) (L,®, T) is a commutative monoid;

(C3rzoy<ziffz <y— zforzy,z€ L.

In this paper, we assume (L,A,V,®,—,* L, T) is a complete residuated
lattice with the law of double negation;i.e. z** = x. Fora € L, A, T, € L¥,
(@ = A)(zx) =a — A(z), (@A) (z)=a6 Az) and T,(x) =T, T,(z) =
1, otherwise.

Lemma 1.2 [1,2] For each z,y, z,z;,y; € L, we have the following proper-
ties.
DIfy<z (z0y)<(z@z),z—>y<z—zand z >z <y —zx.
2) £ = (Nier ¥i) = Nier (2 = 32).
3) (Vier 7:) =y = Nier(@i — y).
4) Nier i = (Vier )" and Vier i = (Aier i)™
5) (z0y) = z=2—(y—=2) =y — (x— 2).
6) 0y =(r—y)"
Nz (@ —y) <y
) (x—=y)o(y—2) <z— =2
Nx—=y =2 (x—2)>y—zand (v —2) > (y—2) >y — .
10)z0y—>20z>y— 2.

Definition 1.3 [3,4] (1) A map H : LX — L% is called an L-upper approz-

imation operator iff it satisfies the following conditions

(H1) A < H(A),

(H2) H(a® A) = a © H(A) where a(z) = o for all z € X,

(H3) H(Vier Ai) = Vier H(A:).

(2) Amap J : L* — LY is called an L-lower approzimation operator iff it
satisfies the following conditions

(71) T(A) < 4,

(J2) J(a = A) = a = J(A),

(J3) T (Nier Ai) = Nier T (A3).

(3) A map K : L* — L¥ is called an L-join meet approzimation operator
iff it satisfies the following conditions

(K1) K(4) < A",

(K2) K(a® A) =a— K(A),

(K3) K(Vier Ai) = Nier K(A)).

(4) A map M : LX — L is called an L-meet join approximation operator
iff it satisfies the following conditions

(M1) A* < M(A),

(M2) M(aw — A) = a © M(A),

(M3) M(Nier Ai) = Vier M(4;).
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Definition 1.4 [4,5] A subset 7 C L¥ is called an Alezandrov L-topology
if it satisfies:
(T1) Lx, Tx € 7 where Tx(z) =T and Lx(z) =L for x € X.
(T2) If Ay et foriel’, Vier Ai, Nier Ai €T .
(T3) a®@Aerforalla e Land A € 7.
(T4d) a > Aerforalla € L and A € 7.

Theorem 1.5 [4] (1) 7 is an Alexandrov topology on X iff 1. = {A* € LX |
A € 1} is an Alexandrov topology on X.

(2) If H is an L-upper approzimation operator, then 7 = {A € LX |
H(A) = A} is an Alexandrov topology on X .

(3) If J is an L-lower approximation operator, then 77 = {A € LX |
J(A) = A} is an Alexandrov topology on X.

(4) If K is an L-join meet approzimation operator, then 7« = {A € L |
K(A) = A*} is an Alexandrov topology on X.

(5) If M is an L-meet join operator, then Toq = {A € LY | M(A) = A*}
1s an Alexandrov topology on X.

2 L-join meet approximation operators with
Galois connections

Theorem 2.1 Let K : LX — LX be an L-join meet approzimation opera-
tors. Then the following properties hold.

(1) For A€ L*, K(A)(y) = Aeex(A(z) = K(T2)(y))-

(2) Define K1(B) = V{A | B<K(A)}. Then Ky : L — L with

Ki(B)(x) = N\ (Bly) = K(T2)(y))

yeX

is an L-join meet approrimation operator such that (IC,IC1) is a Galois con-
nection;i.e.,

A<K\(B) iff B<K(A).

Moreover, T, = (7).
(3) IFK(K*(A)) = K(A) for A e L, then Ki(Ki(A)) = Ki(A) for Ae L
such that Tc, = (Txc)« with

e = {K°(4) = V (A(x) © K*(T,)) | A€ L},

zeX
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e = {K1(A)(y) = V (Alz) © K (T,)(2)) | A€ L7}

zeX

(4) If K(K(A)) = K*(A) for A e LY, then K(K*(A)) = K(A) such that

e = {K(A) = N\ (A(x) = K(T.)) | A€ L} = (ic)..

zeX
(5) Define Mg (A) = K(A*)*. Then My : L — L* with

Mr(A)(y) = V (A7) © K*(T2)(y)

zeX

is an L-meet join approximation operator. Moreover, the pair (Mg, Mx,) is
a dual Galois connection,i.e.,

Mx(A) < B, iff Mg, (B) < A

such that Tic, = Ty, = (Tic)s = (TMxl)*'
(6) If K(K*(A)) = K(A) for A € LX, then Mg (M (A)) = Mg(A) for
A€ L* such that Tic, = Tamy = (Tic)x = (Taag, ) with

i = {Mi(A) = A\ (K'(T.) = A2)) | A € L},

Ty = {ME)1(A)(y) = /\X(/C*(Ty)(ﬂf) — A(z)) | Ae L7}

(7) If K(K(A)) = K*(A) for A € LX, then Mg(Mg(A)) = M3 (A) such
that

;e = {Mr(A) = V (A(2) O K(T2)) [ A€ L7} = (Tate )

zeX

(8) Define Jr(A) = K(A*). Then Jx : LX — L with

Tx(A)(y) = N\ (A"(2) = K(T) () = N (K (T2)(y) = A(2))).

zeX rzeX

s an L-lower approximation operator.
(9) If K(K*(A)) = K(A) for A € L*, then Jx(Tk(A)) = Tk(A) for
A€ LY such that 77, = (T7; )« with

Tre = {Tx(A) = N\ (K (To) = A(x))) | A€ L7},

zeX

Tre, = Tk (A) (@) = N\ (K*(Ta)(y) = Ay)) | A€ L}

zeX
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(10) If K(K(A)) = K*(A) for A € LY, then Jx(Ti(A)) = Ti(A) such
that

Tre = {Tk(A) = V (K*(To) © A%(2))) | A € L} = (77,)+.

zeX

(11) Define Hx(A) = (K(A))*. Then Hy : L* — L* with

Hi(A) ) =V (Alx) © K (T2)(y)

zeX

is an L-upper approzimation operator. Moreover, Ty, = Tk.
(12) If K(K*(A)) = K(A) for A € L*, then Hig(Hk(A)) = Hi(A) for
A € LY such that 7y, = (T, )« with

e = {Hi(4) = V (Al2) 0K (T,)) | A€ L7},

zeX

Touor = {(Hr)1(A)(y) = \/X(A(CU) ©K*(Ty)(z) | Ae L},
(13) If K(K(A)) = K*(A) for A € L, then Hxg(Hi(A)) = Hi(A) such
that
T = {Hi(A) = A\ (Al2) = K(T2)) [ A € L7} = (m0 ).

zeX

(14) (Hg,, Jx) and (Hk, Jk,) are a residuated connetion;i.e,
Hi, (A) < B iff A< Jk(B),

Hi(A) < B iff A< Tk, (B).

Moreover, T, = Ty, and Tz, = Tp -

Proof (1) For A = V,ex(A(z) © T,) € LX, K(A)(y) = Npex(A(z) —
K(T2)(y))-

(2) (K1) Since B < K(K1(B)) < Kj(B), we have K;(B) < B*.

(K2) Since Ky(B) < Ky(B), then B < K(K1(B)). Thus,

B <K(Ky(B)) <K(a® (a = Ki(B))) =a— K(a = Ky(B))
iff a®B < K(a— Ky(B))
iff a — Ky1(B) < Ki(a® B).

a® B < K(Ki(a® B))

if B<a—K(Ki(a®B))=K(a®Ki(a® B))
iff a®Ki(a® B) < Kq(B)

iff K1(a® B) <a— Ki(B).
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(K3) K1(Vier Ai) = Nier K1(4;). By the definition of Ky, since Ki(A) <
K1(B) for B < A, we have

Ki(\ A < A\ Ka(Ay).

el el

Since K(Ajer K1(Ai)) > K(K1(4:)) > A, then K(Ajer K1(Ai)) > Vier Ai

Thus
Ki(\V A) > N\ Ki(A
i€l iel
Thus K; : LX — LX is an L-join meet approximation operator. By the
definition of IC;, we have

A< Ki(B) it B <K(A).

Since A* < K1(A) iff A < K(A*), we have 7c, = (i)«
(3) Let K(KC*(A )) = K(A) for A€ LX. Then
Ki(A) < K(B) iff K1(A) = K*(B) iff K(K*(B)) = K(B) > A

Ki(Ki(A)) =V{B|Ki(A) <K(B)}
=V{B | A<K(B)}
= K1 (A).

(4) Let IC(A) € 7xc. Since KL(K(A)) = K*(A), K(K*(A)) = K(K(K(A))) =
(K(K(A)))* = K(A). Hence K*(A) € 7¢; i.e. K(A) €

Let A € (i)« Then A = IC(A*). Since K(A) =
then A €€ 1. Thus, (1)« C Tk.

(5) (M1) Since A < K(A*), Mg(A) = L(A*)* < A*.

(M2)

Mg(a—A) = (K((a— A))* = (Klae A*))*
=(a—= KA))" =a0 LAY
=a® Mg(A).

(M3)

Mg (Nier Ai) - = (K(Aier Ai)")" = (K(Vier A7))"
= (Nier K(A)))" = Vier (K(47))"
_\/ZEFMK( )

Moreover, the pair (Mg, Mg, ) is a dual Galois connection from:
My(A) < B iff B* < K(A*) iff A* < K\(BY)

Ki(B*) < A iff Mg, (B) < A.

We have 7ic, = Ty = (Tic)s = (Tmy, )« from:

A" < Ki(A) iff A< K(AY)
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Mpg(A) < A" iff Mg, (AY) < A.
)) = K(A) for A € LX. Then

k(A
My (M (A)) =K (Mg(A)) = (KK (A7)
= K*(A7) = Mg(A).

By (3), since K, (K7 (A)) = K1(A) for A € LY, (Mg)1(Mk)i(A) = (Mk)i(A)
for A € LX. Thus,

Mie = {IMi(A) [ A€ LY}, T, = {(Mi)i(A) | A€ L}
(7) Let K(K(A)) = K*(A) for A € L*. Then
Mr(Mg(A)) =K (Mi(A)) = (K(KL(A7)))"
= (K7(A7))" = Mk(A).
By the similarly method in (4), Mg (M (A4)) = Mg(A) for A € L*. Thus,
Ty = {Mi(A) | A € L} = (Taye )

(8) It is similarly proved as (5).
(9) If K(K*(A)) = K(A) for A € LX, then Jx(Tx(A)) = Tk (A)

Ik(Tk(A)) = Tk (K(A7)) = K(K* (A7)
= K(A") = Tk (A).

Similarly, Jk, (Jk,(A)) = Tk, (A). Thus, the results hold.
(10) If K(K(A)) = K*(A) for A € L*, then Jx (T (A)) = Ti(A)

K
Tk(Ti(A)) = Tk (K (A7) = K(K(A7))
= K*(A") = T (A).

(6) Let K

Since Jx(Tx(A)) = Ti(A)

Hence 77, = {TJx(A) | A€ L*} = (17, ).

(11) and (12) are similarly proved as (5) and (6), respectively.
(13) If K(K(A)) = K*(A) for A € LY, then Hy(Hj(A)) = Hi(A) from:
Hi(Hi(A)) = Hi(K(A)) = (K(K(A)))*

— (KH(A))" = Hic(4).
(14) (Hxk,, Jk) is a residuated connection;i.e,

Hi, (A) < B iff £,(A) > B,

A<K(BY) it A< J(B),

Similarly,(Hx, Jk,) is a residuated connection.
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Example 2.2 Let R be a reflexive L-fuzzy relation. Define Kg. : LX — L
as follows:

Kr-(A)(y) = /\X(A(x) — R*(7,y)).
1) (K1) Kr-(A)(y) < Aly) = R*(y,y)) = A*(x).
: )/\mex((a © A)(z) = R*(z,y)) = a = Npex(Alz) —

R (z,y (A)(y

(K3) Kr+(Vier Ai)(y) = Asex (Vier Ai(z) = R*(2,9)) = Naex Nier(Ai(z) —
R*(x,y)) = Nier Kr+(Ai)(y). Hence Kg+ is an L-join meet approximation op-
erator.

(2) Define (Kg+)1(B) = V{A | B < Kg«(A)}. Since B(y) < Kg«(B)(y) iff
B(y) < A(z) = R*(x,y) iff A(z) < B(y) — R*(x,y)), then

(Kr(B)(z) = Kp-1:(B)(x) = N (Bly) = R~ (y, ).

yeX

Then (Kg+); = Kg-1+ with

Kr-(A) ) = N\ (Al) = R (x,y))

zeX

is an L-join meet approximation operator such that (Kg, Cr-1+) is a Galois
connection;i.e.,

A< Kp1(B) iff B<Kp(A).

Moreover, i ;. = (Tip )«
(3) If R is an L-fuzzy preorder, then R™! is an L-fuzzy preorder. Since
R(z,y) © R(y, ) < R(w,z) iff

A(z) © R(z,y) ©® (A(z) = R*(z,2) < R(z,y) © R*(x,2) < R*(y, 2)
iff A(z) - R*(z,2) < A(x) ® R(z,y) — R*(y, 2)

Kre (K (A)(2) = Nyex (Kg-(A)(y) = B*(y, 2))
= Nyex (Voex (A(2) © R(z,y) = R*(y, 2))
Noex(A(x) = R*(, 2)) = Kg+ (A)(2).

Thus Kp«(Kp(A)) = Kg<(A) for A € L*. Similarly, Kr-1 (K1 (4)) =
Kr-1+(A) for A € L* such that 7c_,, = (7ic,. )« with

Tk = 1Kk (4) =V (A(2) © R(z,-)) | A€ L™},

zeX

Tigor = {Kh1e(4) = V (A(2) © R(—,2)) | A€ L™},

zeX
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(4) Let R be a reflexive and Euclidean L-fuzzy relation. Since R(x.z) ®
R(y,z) < R(xz,y) iff R(y,z) < R(z,z) = R(z,y) iff R(z,2) © R*(z,y) <
R*(y, z), then

A(z) © R(z, 2) © (A(z) = R*(2,y)) < R(z,2) © B*(z,y) < R*(y, 2)
iff A(z) ® R(z,2) < (A(z) = R*(x,y)) = R*(y, 2).

K (Kp(A))(2) = Nyex (Kr-(A)(y) = R*(y,2))
= Nyex (Nsex(Alx) = B*(2,y)) = R*(y, 2))
> Vaex(A(z) ©® R(x, 2)) = Kr«(A)(2).
Thus, Kp-(Kpg+(A)) = K. (A) for A € L¥ such that 7. = (7icp,. )« with

Tk = {Kr-(A) = A\ (A(2) = R(z,-)) | A€ L7},

zeX

(5) Define My,..(A) = Kg-(A*)*. By Theorem 2.1 (5), My,. = Mg and
Mgy = Mx, ., = Mp-1 are L-meet join approximation operators such
that

My, (A)(y) = (N (A"(2) = R(z,y)))" =V (A"(2) © R(z,y)),

Mic, . (A)y) = (N (A"(x) = R7(2,9)))" = V (A%(2) © R (2,y)).

Moreover, the pair (Mg, Mg-1) is a dual Galois connection such that
Tt = TMp = (T 1 ) = (TM, 1 )

(6) If R is an L-fuzzy preorder, by (3), Kg«(K5.(A)) = Kg<(A) and
Kr-1«(Kj-1.(A)) = Kg-1:(A) for A € L*. By Theorem 2.1(6), Mr(M%(A)) =
Mp(A) and Mp-1(M51(A)) = Mp-1(A) for A € L* such that 7, _,, =
TMp = (T’CRfl*)* = (TMRfl)* with

i = {IMR(A) = A (R(z,—) = A(x)) | A€ L™},

reX
TMpr = {IMia(4) = A\ (R(=,2) » A(x)) | A€ L7},
reX
(7) If Ris areflexive and Euclidean L-fuzzy relation, by (4), Kg«(Kpg+(A)) =
K& (A) for A € L*. By Theorem 2.1(7), then Mr(Mg(A)) = M3y(A) for
A € LY such that Ty, = (Tamy)« with
T:mp = {Mr(A) = \/ (A*(2) © R(z,—)) | A € L }.
zeX
(8) Define Jk,.(A) = Kg-(A*). By Theorem 2.1(8), Jx,. = Jr and
Jk,, 1. = Jr-1 are L-lower approximation operators such that

Tk (A)y) = N\ (A(z) = R (z,9)) = N\ (R(z,y) = A(2)),

zeX zeX
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Ticgr (D)) = N\ (A'(2) = R (z,y) = A (Ry, ) > A2)).

zeX reX
Moreover, 7.7, = (Tic )« = Tic oy, a0 77 = (Tic, L1, )e = Thoppe

(9) If R is an L-fuzzy preorder, by (3), Kr«(Ky(4)) = Kg-(A) and
Kr-1«(Kj-1.(A)) = Kg-1:(A) for A € L*. By Theorem 2.1(9), then Jr(Jr(A)) =
Jr(A) and Jg-1(Tg-1(A)) = Tr-1(A) for A € LX such that 77, = (77,).
with

T7n = {Tr(A) = N\ (R(z,~) = A(z)) | A € L™},
zeX
T = {Tr1(A) = N\ (R(—,2) = A(2)) | A€ L7},
zeX

(10) If R is a reflexive and Euclidean L-fuzzy relation, by (4), g« (Kg«(A)) =
K (A) for A € LX. By Theorem 2.1(10), Jr(J5(A)) = Ti(A) for A € L
such that 77, = (77, ). with

T7e = {Ti(A) =V (A(2) © R(z, -)) | A€ L7},
reX

(11) Define Hy,.(A) = (Kg-(A))*. Then Hx,. = Hpg is an L-upper ap-
proximation operator such that

Hicp (A)y) = V (Rlz,y) © A(z)).
zeX
Moreover, T, = Tk,.-

(12) If R is an L-fuzzy preorder, by (3), Kr: (K (A)) = Kg«(A) and
Kr-1-(Kho1.(A)) = Kg-1-(A) for A € LX. By Theorem 2.1(12), Hyc,.. (Hi,. (4)) =
Hicpe (A) and Hie,_,, (Hi,_,. (A)) = Hi,_,. (A) for A € LX such that 7y, =
(T3, )« With

Tun = {Hr(A) = \/ (R(z,-) © A(z)) | A€ L¥},

zeX

s = {Hr-1(A) =\ (R(—,2) © A(z)) | A€ L}
rzeX

(13) If R is a reflexive and Euclidean L-fuzzy relation, by (4), g (Kg«(A)) =
K. (A) for A € LX. By Theorem 2.1(13), Hr(H5(A)) = Hi(A) for A € L
such that 75, = (73,). with

Trp = {Hr(A) = A (A(z) = R*(z,-)) | Ae L}
zeX
(14) (Hgr-1,Jr) is a residuated connection;i.e,

Hp-1(A) < B iff Ki-1.(A) > B,
A< Kge(BY) iff A< Jr(B).
Similarly, (Hg, Jr-1) is a residuated connection. Moreover, 77, = T, , and

TJR*1 = THg-



L-join meet approximation operators with Galois connections 317

References

1]

2]

[3]

[4]

[10]

[11]

R. Bélohlavek, Fuzzy Relational Systems, Kluwer Academic Publishers,
New York , 2002.

P. Héjek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers,
Dordrecht (1998).

Y.C. Kim, L-approximatins and join preserving maps,J. Math. Comput.
Sci., 3 (5) (2013), 1193-1210.

Y.C. Kim, Alexandrov L-topologies and L-join meet approximation opera-
tors International Journal of Pure and Applied Mathematics, 91(1)(2014),
113-129.

H. Lai, D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Sys-
tems, 157 (2006), 1865-1885.

H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept
analysis vs. rough set theory,Int. J. Approx. Reasoning, 50 (2009), 695-
707.

Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341-356.

Z. Pawlak, Rough probability, Bull. Pol. Acad. Sci. Math., 32(1984), 607-
615.

A. M. Radzikowska, E.E. Kerre, A comparative study of fuzy rough sets,
Fuzzy Sets and Systems, 126(2002), 137-155.

Y.H. She, G.J. Wang, An axiomatic approach of fuzzy rough sets based
on residuated lattices,Computers and Mathematics with Applications,
58(2009), 189-201.

Zhen Ming Ma, Bao Qing Hu, Topological and lattice structures of L-
fuzzy rough set determined by lower and upper sets, Information Sciences,
218(2013), 194-204.

Received: March, 2014



