Mathematica Aeterna, Vol. 4, 2014, no. 4, 307-317

L-join meet approximation operators with Galois connections

Yong Chan Kim
Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr

Abstract

In this paper, we introduce join meet approximation operators with Galois connection in complete residuated lattices. We investigate relations between their operations and Alexandrov L-topologies.

Mathematics Subject Classification: 03E72, 03G10, 06A15, 06F07

Keywords:

Complete residuated lattices, Join meet approximation operators, Alexandrov L-topologies

1 Introduction

Hájek [2] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Pawlak $[7,8]$ introduced rough set theory as a formal tool to deal with imprecision and uncertainty in data analysis. Radzikowska [9] developed fuzzy rough sets in complete residuated lattice. Bělohlávek [1] investigated information systems and decision rules in complete residuated lattices. Lai $[5,6]$ introduced Alexandrov L-topologies induced by fuzzy rough sets. Kim [3,4] investigated the properties of Alexandrov topologies in complete residuated lattices. Algebraic structures of fuzzy rough sets are developed in many directions $[3,9,10]$

In this paper, we introduce join meet approximation operators with Galois connection in complete residuated lattices. We investigate relations between their operations and Alexandrov L-topologies.

Definition $1.1[1,2]$ An algebra $(L, \wedge, \vee, \odot, \rightarrow, \perp, \top)$ is called a complete residuated lattice if it satisfies the following conditions:
(C1) $L=(L, \leq, \vee, \wedge, \perp, \top)$ is a complete lattice with the greatest element \top and the least element \perp;
(C2) (L, \odot, \top) is a commutative monoid;
(C3) $x \odot y \leq z$ iff $x \leq y \rightarrow z$ for $x, y, z \in L$.
In this paper, we assume $\left(L, \wedge, \vee, \odot, \rightarrow,{ }^{*} \perp, \top\right)$ is a complete residuated lattice with the law of double negation;i.e. $x^{* *}=x$. For $\alpha \in L, A, \top_{x} \in L^{X}$, $(\alpha \rightarrow A)(x)=\alpha \rightarrow A(x), \quad(\alpha \odot A)(x)=\alpha \odot A(x)$ and $\top_{x}(x)=\mathrm{\top}, \top_{x}(x)=$ \perp, otherwise.

Lemma $1.2[1,2]$ For each $x, y, z, x_{i}, y_{i} \in L$, we have the following properties.
(1) If $y \leq z,(x \odot y) \leq(x \odot z), x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$.
(2) $x \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigwedge_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$.
(3) $\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$.
(4) $\bigwedge_{i \in \Gamma} y_{i}^{*}=\left(\bigvee_{i \in \Gamma} y_{i}\right)^{*}$ and $\bigvee_{i \in \Gamma} y_{i}^{*}=\left(\bigwedge_{i \in \Gamma} y_{i}\right)^{*}$.
(5) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$.
(6) $x \odot y=\left(x \rightarrow y^{*}\right)^{*}$.
(7) $x \odot(x \rightarrow y) \leq y$.
(8) $(x \rightarrow y) \odot(y \rightarrow z) \leq x \rightarrow z$.
(9) $(x \rightarrow y) \rightarrow(x \rightarrow z) \geq y \rightarrow z$ and $(x \rightarrow z) \rightarrow(y \rightarrow z) \geq y \rightarrow x$.
(10) $x \odot y \rightarrow x \odot z \geq y \rightarrow z$.

Definition $1.3[3,4]$ (1) A map $\mathcal{H}: L^{X} \rightarrow L^{X}$ is called an L-upper approximation operator iff it satisfies the following conditions
(H1) $A \leq \mathcal{H}(A)$,
(H2) $\mathcal{H}(\alpha \odot A)=\alpha \odot \mathcal{H}(A)$ where $\alpha(x)=\alpha$ for all $x \in X$,
(H3) $\mathcal{H}\left(\bigvee_{i \in I} A_{i}\right)=\bigvee_{i \in I} \mathcal{H}\left(A_{i}\right)$.
(2) A map $\mathcal{J}: L^{X} \rightarrow L^{X}$ is called an L-lower approximation operator iff it satisfies the following conditions
(J1) $\mathcal{J}(A) \leq A$,
(J2) $\mathcal{J}(\alpha \rightarrow A)=\alpha \rightarrow \mathcal{J}(A)$,
(J3) $\mathcal{J}\left(\bigwedge_{i \in I} A_{i}\right)=\bigwedge_{i \in I} \mathcal{J}\left(A_{i}\right)$.
(3) A map $\mathcal{K}: L^{X} \rightarrow L^{X}$ is called an L-join meet approximation operator iff it satisfies the following conditions
(K1) $\mathcal{K}(A) \leq A^{*}$,
(K2) $\mathcal{K}(\alpha \odot A)=\alpha \rightarrow \mathcal{K}(A)$,
(K3) $\mathcal{K}\left(\bigvee_{i \in I} A_{i}\right)=\bigwedge_{i \in I} \mathcal{K}\left(A_{i}\right)$.
(4) A map $\mathcal{M}: L^{X} \rightarrow L^{X}$ is called an L-meet join approximation operator iff it satisfies the following conditions
(M1) $A^{*} \leq \mathcal{M}(A)$,
(M2) $\mathcal{M}(\alpha \rightarrow A)=\alpha \odot \mathcal{M}(A)$,
(M3) $\mathcal{M}\left(\bigwedge_{i \in I} A_{i}\right)=\bigvee_{i \in I} \mathcal{M}\left(A_{i}\right)$.

Definition $1.4[4,5]$ A subset $\tau \subset L^{X}$ is called an Alexandrov L-topology if it satisfies:
(T1) $\perp_{X}, \top_{X} \in \tau$ where $\top_{X}(x)=\top$ and $\perp_{X}(x)=\perp$ for $x \in X$.
(T2) If $A_{i} \in \tau$ for $i \in \Gamma, \bigvee_{i \in \Gamma} A_{i}, \bigwedge_{i \in \Gamma} A_{i} \in \tau$.
(T3) $\alpha \odot A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.
(T4) $\alpha \rightarrow A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.
Theorem 1.5 [4] (1) τ is an Alexandrov topology on X iff $\tau_{*}=\left\{A^{*} \in L^{X} \mid\right.$ $A \in \tau\}$ is an Alexandrov topology on X.
(2) If \mathcal{H} is an L-upper approximation operator, then $\tau_{\mathcal{H}}=\left\{A \in L^{X} \mid\right.$ $\mathcal{H}(A)=A\}$ is an Alexandrov topology on X.
(3) If \mathcal{J} is an L-lower approximation operator, then $\tau_{\mathcal{J}}=\left\{A \in L^{X} \mid\right.$ $\mathcal{J}(A)=A\}$ is an Alexandrov topology on X.
(4) If \mathcal{K} is an L-join meet approximation operator, then $\tau_{\mathcal{K}}=\left\{A \in L^{X} \mid\right.$ $\left.\mathcal{K}(A)=A^{*}\right\}$ is an Alexandrov topology on X.
(5) If \mathcal{M} is an L-meet join operator, then $\tau_{\mathcal{M}}=\left\{A \in L^{X} \mid \mathcal{M}(A)=A^{*}\right\}$ is an Alexandrov topology on X.

$2 L$-join meet approximation operators with Galois connections

Theorem 2.1 Let $\mathcal{K}: L^{X} \rightarrow L^{X}$ be an L-join meet approximation operators. Then the following properties hold.
(1) For $A \in L^{X}, \mathcal{K}(A)(y)=\wedge_{x \in X}\left(A(x) \rightarrow \mathcal{K}\left(\top_{x}\right)(y)\right)$.
(2) Define $\mathcal{K}_{1}(B)=\bigvee\{A \mid B \leq \mathcal{K}(A)\}$. Then $\mathcal{K}_{1}: L^{X} \rightarrow L^{X}$ with

$$
\mathcal{K}_{1}(B)(x)=\bigwedge_{y \in X}\left(B(y) \rightarrow \mathcal{K}\left(\top_{x}\right)(y)\right)
$$

is an L-join meet approximation operator such that $\left(\mathcal{K}, \mathcal{K}_{1}\right)$ is a Galois connection;i.e.,

$$
A \leq \mathcal{K}_{1}(B) \text { iff } B \leq \mathcal{K}(A)
$$

Moreover, $\tau_{\mathcal{K}_{1}}=\left(\tau_{\mathcal{K}}\right)_{*}$.
(3) If $\mathcal{K}\left(\mathcal{K}^{*}(A)\right)=\mathcal{K}(A)$ for $A \in L^{X}$, then $\mathcal{K}_{1}\left(\mathcal{K}_{1}^{*}(A)\right)=\mathcal{K}_{1}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{K}_{1}}=\left(\tau_{\mathcal{K}}\right)_{*}$ with

$$
\tau_{\mathcal{K}}=\left\{\mathcal{K}^{*}(A)=\bigvee_{x \in X}\left(A(x) \odot \mathcal{K}^{*}\left(\top_{x}\right)\right) \mid A \in L^{X}\right\},
$$

$$
\tau_{\mathcal{K}_{1}}=\left\{\mathcal{K}_{1}^{*}(A)(y)=\bigvee_{x \in X}\left(A(x) \odot \mathcal{K}^{*}\left(\top_{y}\right)(x)\right) \mid A \in L^{X}\right\}
$$

(4) If $\mathcal{K}(\mathcal{K}(A))=\mathcal{K}^{*}(A)$ for $A \in L^{X}$, then $\mathcal{K}\left(\mathcal{K}^{*}(A)\right)=\mathcal{K}(A)$ such that

$$
\tau_{\mathcal{K}}=\left\{\mathcal{K}(A)=\bigwedge_{x \in X}\left(A(x) \rightarrow \mathcal{K}\left(\top_{x}\right)\right) \mid A \in L^{X}\right\}=\left(\tau_{\mathcal{K}}\right)_{*} .
$$

(5) Define $\mathcal{M}_{K}(A)=\mathcal{K}\left(A^{*}\right)^{*}$. Then $\mathcal{M}_{K}: L^{X} \rightarrow L^{X}$ with

$$
\mathcal{M}_{K}(A)(y)=\bigvee_{x \in X}\left(A^{*}(x) \odot \mathcal{K}^{*}\left(\top_{x}\right)(y)\right)
$$

is an L-meet join approximation operator. Moreover, the pair $\left(\mathcal{M}_{K}, \mathcal{M}_{K_{1}}\right)$ is a dual Galois connection;i.e.,

$$
\mathcal{M}_{K}(A) \leq B, \text { iff } \mathcal{M}_{K_{1}}(B) \leq A
$$

such that $\tau_{\mathcal{K}_{1}}=\tau_{\mathcal{M}_{K}}=\left(\tau_{\mathcal{K}}\right)_{*}=\left(\tau_{\mathcal{M}_{K_{1}}}\right)_{*}$.
(6) If $\mathcal{K}\left(\mathcal{K}^{*}(A)\right)=\mathcal{K}(A)$ for $A \in L^{X}$, then $\mathcal{M}_{K}\left(\mathcal{M}_{K}^{*}(A)\right)=\mathcal{M}_{K}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{K}_{1}}=\tau_{\mathcal{M}_{K}}=\left(\tau_{\mathcal{K}}\right)_{*}=\left(\tau_{\mathcal{M}_{K_{1}}}\right)_{*}$. with

$$
\begin{gathered}
\tau_{\mathcal{M}_{K}}=\left\{\mathcal{M}_{K}^{*}(A)=\bigwedge_{x \in X}\left(\mathcal{K}^{*}\left(\top_{x}\right) \rightarrow A(x)\right) \mid A \in L^{X}\right\}, \\
\tau_{\left(\mathcal{M}_{K}\right)_{1}}=\left\{\left(\mathcal{M}_{K}\right)_{1}^{*}(A)(y)=\bigwedge_{x \in X}\left(\mathcal{K}^{*}\left(\top_{y}\right)(x) \rightarrow A(x)\right) \mid A \in L^{X}\right\} .
\end{gathered}
$$

(7) If $\mathcal{K}(\mathcal{K}(A))=\mathcal{K}^{*}(A)$ for $A \in L^{X}$, then $\mathcal{M}_{K}\left(\mathcal{M}_{K}(A)\right)=\mathcal{M}_{K}^{*}(A)$ such that

$$
\tau_{\mathcal{M}_{K}}=\left\{\mathcal{M}_{K}(A)=\bigvee_{x \in X}\left(A^{*}(x) \odot \mathcal{K}^{*}\left(\top_{x}\right)\right) \mid A \in L^{X}\right\}=\left(\tau_{\mathcal{M}_{K}}\right)_{*} .
$$

(8) Define $\mathcal{J}_{K}(A)=\mathcal{K}\left(A^{*}\right)$. Then $\mathcal{J}_{K}: L^{X} \rightarrow L^{X}$ with

$$
\left.\mathcal{J}_{K}(A)(y)=\bigwedge_{x \in X}\left(A^{*}(x) \rightarrow \mathcal{K}\left(\top_{x}\right)(y)\right)=\bigwedge_{x \in X}\left(\mathcal{K}^{*}\left(\top_{x}\right)(y) \rightarrow A(x)\right)\right) .
$$

is an L-lower approximation operator.
(9) If $\mathcal{K}\left(\mathcal{K}^{*}(A)\right)=\mathcal{K}(A)$ for $A \in L^{X}$, then $\mathcal{J}_{K}\left(\mathcal{J}_{K}(A)\right)=\mathcal{J}_{K}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{J}_{K_{1}}}=\left(\tau_{\mathcal{J}_{K}}\right)_{*}$ with

$$
\begin{gathered}
\left.\tau_{\mathcal{J}_{K}}=\left\{\mathcal{J}_{K}(A)=\bigwedge_{x \in X}\left(\mathcal{K}^{*}\left(\top_{x}\right) \rightarrow A(x)\right)\right) \mid A \in L^{X}\right\}, \\
\left.\tau_{\mathcal{J}_{K_{1}}}=\left\{\mathcal{J}_{K_{1}}(A)(x)=\bigwedge_{x \in X}\left(\mathcal{K}^{*}\left(\top_{x}\right)(y) \rightarrow A(y)\right)\right) \mid A \in L^{X}\right\} .
\end{gathered}
$$

(10) If $\mathcal{K}(\mathcal{K}(A))=\mathcal{K}^{*}(A)$ for $A \in L^{X}$, then $\mathcal{J}_{K}\left(\mathcal{J}_{K}^{*}(A)\right)=\mathcal{J}_{K}^{*}(A)$ such that

$$
\left.\tau_{\mathcal{J}_{K}}=\left\{\mathcal{J}_{K}^{*}(A)=\bigvee_{x \in X}\left(\mathcal{K}^{*}\left(\top_{x}\right) \odot A^{*}(x)\right)\right) \mid A \in L^{X}\right\}=\left(\tau_{\mathcal{J}_{K}}\right)_{*}
$$

(11) Define $\mathcal{H}_{K}(A)=(\mathcal{K}(A))^{*}$. Then $\mathcal{H}_{K}: L^{X} \rightarrow L^{X}$ with

$$
\mathcal{H}_{K}(A)(y)=\bigvee_{x \in X}\left(A(x) \odot \mathcal{K}^{*}\left(\top_{x}\right)(y)\right)
$$

is an L-upper approximation operator. Moreover, $\tau_{\mathcal{H}_{K}}=\tau_{\mathcal{K}}$.
(12) If $\mathcal{K}\left(\mathcal{K}^{*}(A)\right)=\mathcal{K}(A)$ for $A \in L^{X}$, then $\mathcal{H}_{K}\left(\mathcal{H}_{K}(A)\right)=\mathcal{H}_{K}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{H}_{K 1}}=\left(\tau_{\mathcal{H}_{K}}\right)_{*}$ with

$$
\begin{gathered}
\tau_{\mathcal{H}_{K}}=\left\{\mathcal{H}_{K}(A)=\bigvee_{x \in X}\left(A(x) \odot \mathcal{K}^{*}\left(\top_{x}\right)\right) \mid A \in L^{X}\right\} \\
\tau_{\left(\mathcal{H}_{K}\right)_{1}}=\left\{\left(\mathcal{H}_{K}\right)_{1}(A)(y)=\bigvee_{x \in X}\left(A(x) \odot \mathcal{K}^{*}\left(\top_{y}\right)(x)\right) \mid A \in L^{X}\right\} .
\end{gathered}
$$

(13) If $\mathcal{K}(\mathcal{K}(A))=\mathcal{K}^{*}(A)$ for $A \in L^{X}$, then $\mathcal{H}_{K}\left(\mathcal{H}_{K}(A)\right)=\mathcal{H}_{K}^{*}(A)$ such that

$$
\tau_{\mathcal{H}_{K}}=\left\{\mathcal{H}_{K}^{*}(A)=\bigwedge_{x \in X}\left(A(x) \rightarrow \mathcal{K}\left(\top_{x}\right)\right) \mid A \in L^{X}\right\}=\left(\tau_{\mathcal{H}_{K}}\right)_{*} .
$$

(14) $\left(\mathcal{H}_{K_{1}}, \mathcal{J}_{K}\right)$ and $\left(\mathcal{H}_{K}, \mathcal{J}_{K_{1}}\right)$ are a residuated connetion;i.e,

$$
\begin{aligned}
& \mathcal{H}_{K_{1}}(A) \leq B \text { iff } A \leq \mathcal{J}_{K}(B), \\
& \mathcal{H}_{K}(A) \leq B \text { iff } A \leq \mathcal{J}_{K_{1}}(B)
\end{aligned}
$$

Moreover, $\tau_{\mathcal{J}_{K}}=\tau_{\mathcal{H}_{K_{1}}}$ and $\tau_{\mathcal{J}_{K_{1}}}=\tau_{\mathcal{H}_{K}}$.
Proof (1) For $A=\bigvee_{x \in X}\left(A(x) \odot \top_{x}\right) \in L^{X}, \mathcal{K}(A)(y)=\wedge_{x \in X}(A(x) \rightarrow$ $\left.\mathcal{K}\left(T_{x}\right)(y)\right)$.
(2) (K1) Since $B \leq \mathcal{K}\left(\mathcal{K}_{1}(B)\right) \leq \mathcal{K}_{1}^{*}(B)$, we have $\mathcal{K}_{1}(B) \leq B^{*}$.
(K2) Since $\mathcal{K}_{1}(B) \leq \mathcal{K}_{1}(B)$, then $B \leq \mathcal{K}\left(\mathcal{K}_{1}(B)\right)$. Thus,

$$
\begin{aligned}
& B \leq \mathcal{K}\left(\mathcal{K}_{1}(B)\right) \leq \mathcal{K}\left(a \odot\left(a \rightarrow \mathcal{K}_{1}(B)\right)\right)=a \rightarrow \mathcal{K}\left(a \rightarrow \mathcal{K}_{1}(B)\right) \\
& \text { iff } a \odot B \leq \mathcal{K}\left(a \rightarrow \mathcal{K}_{1}(B)\right) \\
& \text { iff } a \rightarrow \mathcal{K}_{1}(B) \leq \mathcal{K}_{1}(a \odot B) . \\
& \\
& \\
& \quad a \odot B \leq \mathcal{K}\left(\mathcal{K}_{1}(a \odot B)\right) \\
& \quad \text { iff } B \leq a \rightarrow \mathcal{K}\left(\mathcal{K}_{1}(a \odot B)\right)=\mathcal{K}\left(a \odot \mathcal{K}_{1}(a \odot B)\right) \\
& \quad \text { iff } a \odot \mathcal{K}_{1}(a \odot B) \leq \mathcal{K}_{1}(B) \\
& \\
& \quad \text { iff } \mathcal{K}_{1}(a \odot B) \leq a \rightarrow \mathcal{K}_{1}(B) .
\end{aligned}
$$

(K3) $\mathcal{K}_{1}\left(\bigvee_{i \in \Gamma} A_{i}\right)=\bigwedge_{i \in \Gamma} \mathcal{K}_{1}\left(A_{i}\right)$. By the definition of \mathcal{K}_{1}, since $\mathcal{K}_{1}(A) \leq$ $\mathcal{K}_{1}(B)$ for $B \leq A$, we have

$$
\mathcal{K}_{1}\left(\bigvee_{i \in \Gamma} A_{i}\right) \leq \bigwedge_{i \in \Gamma} \mathcal{K}_{1}\left(A_{i}\right)
$$

Since $\mathcal{K}\left(\bigwedge_{i \in \Gamma} \mathcal{K}_{1}\left(A_{i}\right)\right) \geq \mathcal{K}\left(\mathcal{K}_{1}\left(A_{i}\right)\right) \geq A_{i}$, then $\mathcal{K}\left(\bigwedge_{i \in \Gamma} \mathcal{K}_{1}\left(A_{i}\right)\right) \geq \bigvee_{i \in \Gamma} A_{i}$. Thus

$$
\mathcal{K}_{1}\left(\bigvee_{i \in \Gamma} A_{i}\right) \geq \bigwedge_{i \in \Gamma} \mathcal{K}_{1}\left(A_{i}\right)
$$

Thus $\mathcal{K}_{1}: L^{X} \rightarrow L^{X}$ is an L-join meet approximation operator. By the definition of \mathcal{K}_{1}, we have

$$
A \leq \mathcal{K}_{1}(B) \text { iff } B \leq \mathcal{K}(A)
$$

Since $A^{*} \leq \mathcal{K}_{1}(A)$ iff $A \leq \mathcal{K}\left(A^{*}\right)$, we have $\tau_{\mathcal{K}_{1}}=\left(\tau_{\mathcal{K}}\right)_{*}$.
(3) Let $\mathcal{K}\left(\mathcal{K}^{*}(A)\right)=\mathcal{K}(A)$ for $A \in L^{X}$. Then
$\mathcal{K}_{1}^{*}(A) \leq \mathcal{K}(B)$ iff $\mathcal{K}_{1}(A) \geq \mathcal{K}^{*}(B)$ iff $\mathcal{K}\left(\mathcal{K}^{*}(B)\right)=\mathcal{K}(B) \geq A$

$$
\begin{aligned}
\mathcal{K}_{1}\left(\mathcal{K}_{1}^{*}(A)\right) & =\bigvee\left\{B \mid \mathcal{K}_{1}^{*}(A) \leq \mathcal{K}(B)\right\} \\
& =\bigvee\{B \mid A \leq \mathcal{K}(B)\} \\
& =\mathcal{K}_{1}(A) .
\end{aligned}
$$

(4) Let $\mathcal{K}(A) \in \tau_{\mathcal{K}}$. Since $\mathcal{K}(\mathcal{K}(A))=\mathcal{K}^{*}(A), \mathcal{K}\left(\mathcal{K}^{*}(A)\right)=\mathcal{K}(\mathcal{K}(\mathcal{K}(A)))=$ $(\mathcal{K}(\mathcal{K}(A)))^{*}=\mathcal{K}(A)$. Hence $\mathcal{K}^{*}(A) \in \tau_{\mathcal{K}}$; i.e. $\mathcal{K}(A) \in\left(\tau_{\mathcal{K}}\right)_{*}$.

Let $A \in\left(\tau_{\mathcal{K}}\right)_{*}$. Then $A=\mathcal{K}\left(A^{*}\right)$. Since $\mathcal{K}(A)=\mathcal{K}\left(\mathcal{K}\left(A^{*}\right)\right)=\mathcal{K}^{*}\left(A^{*}\right)=A^{*}$, then $A \in \in \tau_{\mathcal{K}}$. Thus, $\left(\tau_{\mathcal{K}}\right)_{*} \subset \tau_{\mathcal{K}}$.
(5) (M1) Since $A \leq \mathcal{K}\left(A^{*}\right), \mathcal{M}_{K}(A)=\mathcal{K}\left(A^{*}\right)^{*} \leq A^{*}$.
(M2)

$$
\begin{aligned}
\mathcal{M}_{K}(\alpha \rightarrow A) & =\left(\mathcal{K}\left((\alpha \rightarrow A)^{*}\right)^{*}=\left(\mathcal{K}\left(\alpha \odot A^{*}\right)\right)^{*}\right. \\
& =\left(\alpha \rightarrow \mathcal{K}\left(A^{*}\right)\right)^{*}=\alpha \odot \mathcal{K}\left(A^{*}\right)^{*} \\
& =\alpha \odot \mathcal{M}_{K}(A) .
\end{aligned}
$$

$$
\begin{align*}
\mathcal{M}_{K}\left(\bigwedge_{i \in \Gamma} A_{i}\right) & =\left(\mathcal{K}\left(\bigwedge_{i \in \Gamma} A_{i}\right)^{*}\right)^{*}=\left(\mathcal{K}\left(\bigvee_{i \in \Gamma} A_{i}^{*}\right)\right)^{*} \tag{M3}\\
& =\left(\bigwedge_{i \in \Gamma} \mathcal{K}\left(A_{i}^{*}\right)\right)^{*}=\bigvee_{i \in \Gamma}\left(\mathcal{K}\left(A_{i}^{*}\right)\right)^{*} \\
& =\bigvee_{i \in \Gamma} \mathcal{M}_{K}\left(A_{i}\right) .
\end{align*}
$$

Moreover, the pair $\left(\mathcal{M}_{K}, \mathcal{M}_{K_{1}}\right)$ is a dual Galois connection from:

$$
\begin{gathered}
\mathcal{M}_{K}(A) \leq B \text { iff } B^{*} \leq \mathcal{K}\left(A^{*}\right) \text { iff } A^{*} \leq \mathcal{K}_{1}\left(B^{*}\right) \\
\mathcal{K}_{1}^{*}\left(B^{*}\right) \leq A \text { iff } \mathcal{M}_{K_{1}}(B) \leq A
\end{gathered}
$$

We have $\tau_{\mathcal{K}_{1}}=\tau_{\mathcal{M}_{K}}=\left(\tau_{\mathcal{K}}\right)_{*}=\left(\tau_{\mathcal{M}_{K_{1}}}\right)_{*}$ from:

$$
A^{*} \leq \mathcal{K}_{1}(A) \text { iff } A \leq \mathcal{K}\left(A^{*}\right)
$$

$$
\mathcal{M}_{K}(A) \leq A^{*} \text { iff } \mathcal{M}_{K_{1}}\left(A^{*}\right) \leq A
$$

(6) Let $\mathcal{K}\left(\mathcal{K}^{*}(A)\right)=\mathcal{K}(A)$ for $A \in L^{X}$. Then

$$
\begin{aligned}
\mathcal{M}_{K}\left(\mathcal{M}_{K}^{*}(A)\right) & =\mathcal{K}^{*}\left(\mathcal{M}_{K}(A)\right)=\left(\mathcal{K}\left(\mathcal{K}^{*}\left(A^{*}\right)\right)\right)^{*} \\
& =\mathcal{K}^{*}\left(A^{*}\right)=\mathcal{M}_{K}(A) .
\end{aligned}
$$

$\operatorname{By}(3)$, since $\mathcal{K}_{1}\left(\mathcal{K}_{1}^{*}(A)\right)=\mathcal{K}_{1}(A)$ for $A \in L^{X},\left(\mathcal{M}_{K}\right)_{1}\left(\left(\mathcal{M}_{K}\right)_{1}^{*}(A)\right)=\left(\mathcal{M}_{K}\right)_{1}(A)$ for $A \in L^{X}$. Thus,

$$
\tau_{\mathcal{M}_{K}}=\left\{\mathcal{M}_{K}^{*}(A) \mid A \in L^{X}\right\}, \tau_{\left(\mathcal{M}_{K}\right)_{1}}=\left\{\left(\mathcal{M}_{K}\right)_{1}^{*}(A) \mid A \in L^{X}\right\} .
$$

(7) Let $\mathcal{K}(\mathcal{K}(A))=\mathcal{K}^{*}(A)$ for $A \in L^{X}$. Then

$$
\begin{aligned}
\mathcal{M}_{K}\left(\mathcal{M}_{K}(A)\right) & =\mathcal{K}^{*}\left(\mathcal{M}_{K}^{*}(A)\right)=\left(\mathcal{K}\left(\mathcal{K}\left(A^{*}\right)\right)\right)^{*} \\
& =\left(\mathcal{K}^{*}\left(A^{*}\right)\right)^{*}=\mathcal{M}_{K}^{*}(A) .
\end{aligned}
$$

By the similarly method in (4), $\mathcal{M}_{K}\left(\mathcal{M}_{K}^{*}(A)\right)=\mathcal{M}_{K}(A)$ for $A \in L^{X}$. Thus,

$$
\tau_{\mathcal{M}_{K}}=\left\{\mathcal{M}_{K}(A) \mid A \in L^{X}\right\}=\left(\tau_{\mathcal{M}_{K}}\right)_{*}
$$

(8) It is similarly proved as (5).
(9) If $\mathcal{K}\left(\mathcal{K}^{*}(A)\right)=\mathcal{K}(A)$ for $A \in L^{X}$, then $\mathcal{J}_{K}\left(\mathcal{J}_{K}(A)\right)=\mathcal{J}_{K}(A)$

$$
\begin{aligned}
\mathcal{J}_{K}\left(\mathcal{J}_{K}(A)\right) & =\mathcal{J}_{K}\left(\mathcal{K}\left(A^{*}\right)\right)=\mathcal{K}\left(\mathcal{K}^{*}\left(A^{*}\right)\right) \\
& =\mathcal{K}\left(A^{*}\right)=\mathcal{J}_{K}(A) .
\end{aligned}
$$

Similarly, $\mathcal{J}_{K_{1}}\left(\mathcal{J}_{K_{1}}(A)\right)=\mathcal{J}_{K_{1}}(A)$. Thus, the results hold.
(10) If $\mathcal{K}(\mathcal{K}(A))=\mathcal{K}^{*}(A)$ for $A \in L^{X}$, then $\mathcal{J}_{K}\left(\mathcal{J}_{K}^{*}(A)\right)=\mathcal{J}_{K}^{*}(A)$

$$
\begin{aligned}
\mathcal{J}_{K}\left(\mathcal{J}_{K}^{*}(A)\right) & =\mathcal{J}_{K}\left(\mathcal{K}^{*}\left(A^{*}\right)\right)=\mathcal{K}\left(\mathcal{K}\left(A^{*}\right)\right) \\
& =\mathcal{K}^{*}\left(A^{*}\right)=\mathcal{J}_{K}^{*}(A) .
\end{aligned}
$$

Since $\mathcal{J}_{K}\left(\mathcal{J}_{K}^{*}(A)\right)=\mathcal{J}_{K}^{*}(A)$

$$
\begin{aligned}
\mathcal{J}_{K}\left(\mathcal{J}_{K}(A)\right) & =\mathcal{J}_{K}\left(\mathcal{J}_{K}^{*}\left(\mathcal{J}_{K}^{*}(A)\right)\right) \\
& =\mathcal{J}_{K}^{*}\left(\mathcal{J}_{K}^{*}(A)\right)=\mathcal{J}_{K}(A) .
\end{aligned}
$$

Hence $\tau_{\mathcal{J}_{K}}=\left\{\mathcal{J}_{K}^{*}(A) \mid A \in L^{X}\right\}=\left(\tau_{\mathcal{J}_{K}}\right)_{*}$.
(11) and (12) are similarly proved as (5) and (6), respectively.
(13) If $\mathcal{K}(\mathcal{K}(A))=\mathcal{K}^{*}(A)$ for $A \in L^{X}$, then $\mathcal{H}_{K}\left(\mathcal{H}_{K}^{*}(A)\right)=\mathcal{H}_{K}^{*}(A)$ from:

$$
\begin{aligned}
\mathcal{H}_{K}\left(\mathcal{H}_{K}^{*}(A)\right) & =\mathcal{H}_{K}(\mathcal{K}(A))=(\mathcal{K}(\mathcal{K}(A)))^{*} \\
& =\left(\mathcal{K}^{*}(A)\right)^{*}=\mathcal{H}_{K}^{*}(A) .
\end{aligned}
$$

(14) $\left(\mathcal{H}_{K_{1}}, \mathcal{J}_{K}\right)$ is a residuated connection;i.e,

$$
\begin{gathered}
\mathcal{H}_{K_{1}}(A) \leq B \text { iff } \mathcal{K}_{1}(A) \geq B^{*}, \\
A \leq \mathcal{K}\left(B^{*}\right) \text { iff } A \leq \mathcal{J}_{K}(B),
\end{gathered}
$$

Similarly, $\left(\mathcal{H}_{K}, \mathcal{J}_{K_{1}}\right)$ is a residuated connection.

Example 2.2 Let R be a reflexive L-fuzzy relation. Define $\mathcal{K}_{R^{*}}: L^{X} \rightarrow L^{X}$ as follows:

$$
\mathcal{K}_{R^{*}}(A)(y)=\bigwedge_{x \in X}\left(A(x) \rightarrow R^{*}(x, y)\right) .
$$

(1) $\left.(\mathrm{K} 1) \mathcal{K}_{R^{*}}(A)(y) \leq A(y) \rightarrow R^{*}(y, y)\right)=A^{*}(x)$.
$(\mathrm{K} 2) \mathcal{K}_{R^{*}}(a \odot A)(y)=\bigwedge_{x \in X}\left((a \odot A)(x) \rightarrow R^{*}(x, y)\right)=a \rightarrow \bigwedge_{x \in X}(A(x) \rightarrow$ $\left.R^{*}(x, y)\right)=a \rightarrow \mathcal{K}_{R^{*}}(A)(y)$.
(K3) $\mathcal{K}_{R^{*}}\left(\bigvee_{i \in \Gamma} A_{i}\right)(y)=\bigwedge_{x \in X}\left(\bigvee_{i \in \Gamma} A_{i}(x) \rightarrow R^{*}(x, y)\right)=\bigwedge_{x \in X} \bigwedge_{i \in \Gamma}\left(A_{i}(x) \rightarrow\right.$ $\left.R^{*}(x, y)\right)=\bigwedge_{i \in \Gamma} \mathcal{K}_{R^{*}}\left(A_{i}\right)(y)$. Hence $\mathcal{K}_{R^{*}}$ is an L-join meet approximation operator.
(2) Define $\left(\mathcal{K}_{R^{*}}\right)_{1}(B)=\bigvee\left\{A \mid B \leq \mathcal{K}_{R^{*}}(A)\right\}$. Since $B(y) \leq \mathcal{K}_{R^{*}}(B)(y)$ iff $B(y) \leq A(x) \rightarrow R^{*}(x, y)$ iff $\left.A(x) \leq B(y) \rightarrow R^{*}(x, y)\right)$, then

$$
\left(\mathcal{K}_{R^{*}}\right)_{1}(B)(x)=\mathcal{K}_{R^{-1 *}}(B)(x)=\bigwedge_{y \in X}\left(B(y) \rightarrow R^{-1 *}(y, x)\right)
$$

Then $\left(\mathcal{K}_{R^{*}}\right)_{1}=\mathcal{K}_{R^{-1 *}}$ with

$$
\mathcal{K}_{R^{-1 *}}(A)(y)=\bigwedge_{x \in X}\left(A(x) \rightarrow R^{-1 *}(x, y)\right)
$$

is an L-join meet approximation operator such that $\left(\mathcal{K}_{R}, \mathcal{K}_{R^{-1 *}}\right)$ is a Galois connection;i.e.,

$$
A \leq \mathcal{K}_{R^{-1 *}}(B) \text { iff } B \leq \mathcal{K}_{R^{*}}(A)
$$

Moreover, $\tau_{\mathcal{K}_{R^{-1 *}}}=\left(\tau_{\mathcal{K}_{R^{*}}}\right)_{*}$.
(3) If R is an L-fuzzy preorder, then R^{-1} is an L-fuzzy preorder. Since $R(x, y) \odot R(y, z) \leq R(x, z)$ iff

$$
\begin{aligned}
& A(x) \odot R(x, y) \odot\left(A(x) \rightarrow R^{*}(x, z) \leq R(x, y) \odot R^{*}(x, z) \leq R^{*}(y, z)\right. \\
& \text { iff } A(x) \rightarrow R^{*}(x, z)
\end{aligned} \quad \begin{aligned}
& \leq A(x) \odot R(x, y) \rightarrow R^{*}(y, z) \\
\mathcal{K}_{R^{*}}\left(\mathcal{K}_{R^{*}}^{*}(A)\right)(z) & =\bigwedge_{y \in X}\left(\mathcal{K}_{R^{*}}^{*}(A)(y) \rightarrow R^{*}(y, z)\right) \\
& =\bigwedge_{y \in X}\left(\bigvee_{x \in X}\left(A(x) \odot R(x, y) \rightarrow R^{*}(y, z)\right)\right. \\
& =\bigwedge_{x \in X}\left(A(x) \rightarrow R^{*}(x, z)\right)=\mathcal{K}_{R^{*}}(A)(z) .
\end{aligned}
$$

Thus $\mathcal{K}_{R^{*}}\left(\mathcal{K}_{R^{*}}^{*}(A)\right)=\mathcal{K}_{R^{*}}(A)$ for $A \in L^{X}$. Similarly, $\mathcal{K}_{R^{-1 *}}\left(\mathcal{K}_{R^{-1 *}}^{*}(A)\right)=$ $\mathcal{K}_{R^{-1 *}}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{K}_{R^{-1 *}}}=\left(\tau_{\mathcal{K}_{R^{*}}}\right)_{*}$ with

$$
\begin{aligned}
\tau_{\mathcal{K}_{R^{*}}} & =\left\{\mathcal{K}_{R^{*}}^{*}(A)=\bigvee_{x \in X}(A(x) \odot R(x,-)) \mid A \in L^{X}\right\}, \\
\tau_{\mathcal{K}_{R^{-1 *}}} & =\left\{\mathcal{K}_{R^{-1 *}}^{*}(A)=\bigvee_{x \in X}(A(x) \odot R(-, x)) \mid A \in L^{X}\right\} .
\end{aligned}
$$

(4) Let R be a reflexive and Euclidean L-fuzzy relation. Since $R(x . z) \odot$ $R(y, z) \leq R(x, y)$ iff $R(y, z) \leq R(x, z) \rightarrow R(x, y)$ iff $R(x, z) \odot R^{*}(x, y) \leq$ $R^{*}(y, z)$, then

$$
A(x) \odot R(x, z) \odot\left(A(x) \rightarrow R^{*}(x, y)\right) \leq R(x, z) \odot R^{*}(x, y) \leq R^{*}(y, z)
$$

iff $A(x) \odot R(x, z) \leq\left(A(x) \rightarrow R^{*}(x, y)\right) \rightarrow R^{*}(y, z)$.

$$
\begin{aligned}
\mathcal{K}_{R^{*}}\left(\mathcal{K}_{R^{*}}(A)\right)(z) & =\bigwedge_{y \in X}\left(\mathcal{K}_{R^{*}}(A)(y) \rightarrow R^{*}(y, z)\right) \\
& =\bigwedge_{y \in X}\left(\bigwedge_{x \in X}\left(A(x) \rightarrow R^{*}(x, y)\right) \rightarrow R^{*}(y, z)\right) \\
& \geq \bigvee_{x \in X}(A(x) \odot R(x, z))=\mathcal{K}_{R^{*}}(A)(z) .
\end{aligned}
$$

Thus, $\mathcal{K}_{R^{*}}\left(\mathcal{K}_{R^{*}}(A)\right)=\mathcal{K}_{R^{*}}^{*}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{K}_{R^{*}}}=\left(\tau_{\mathcal{K}_{R^{*}}}\right)_{*}$ with

$$
\tau_{\mathcal{K}_{R^{*}}}=\left\{\mathcal{K}_{R^{*}}(A)=\bigwedge_{x \in X}(A(x) \rightarrow R(x,-)) \mid A \in L^{X}\right\} .
$$

(5) Define $\mathcal{M}_{\mathcal{K}_{R^{*}}}(A)=\mathcal{K}_{R^{*}}\left(A^{*}\right)^{*}$. By Theorem 2.1 (5), $\mathcal{M}_{\mathcal{K}_{R^{*}}}=\mathcal{M}_{R}$ and $\mathcal{M}_{\left(\mathcal{K}_{R^{*}}\right)_{1}}=\mathcal{M}_{\mathcal{K}_{R^{-1 *}}}=\mathcal{M}_{R^{-1}}$ are L-meet join approximation operators such that

$$
\begin{gathered}
\mathcal{M}_{\mathcal{K}_{R^{*}}}(A)(y)=\left(\bigwedge_{x \in X}\left(A^{*}(x) \rightarrow R(x, y)\right)\right)^{*}=\bigvee_{x \in X}\left(A^{*}(x) \odot R(x, y)\right), \\
\mathcal{M}_{\mathcal{K}_{R^{-1 *}}}(A)(y)=\left(\bigwedge_{x \in X}\left(A^{*}(x) \rightarrow R^{-1}(x, y)\right)\right)^{*}=\bigvee_{x \in X}\left(A^{*}(x) \odot R^{-1}(x, y)\right) .
\end{gathered}
$$

Moreover, the pair $\left(\mathcal{M}_{R}, \mathcal{M}_{R^{-1}}\right)$ is a dual Galois connection such that $\tau_{\mathcal{K}_{R^{-1}}}=\tau_{\mathcal{M}_{R}}=\left(\tau_{\mathcal{K}_{R^{-1}}}\right)_{*}=\left(\tau_{\mathcal{M}_{R^{-1}}}\right)_{*}$.
(6) If R is an L-fuzzy preorder, by (3), $\mathcal{K}_{R^{*}}\left(\mathcal{K}_{R^{*}}^{*}(A)\right)=\mathcal{K}_{R^{*}}(A)$ and $\mathcal{K}_{R^{-1 *}}\left(\mathcal{K}_{R^{-1 *}}^{*}(A)\right)=\mathcal{K}_{R^{-1 *}}(A)$ for $A \in L^{X}$. By Theorem 2.1 $(6), \mathcal{M}_{R}\left(\mathcal{M}_{R}^{*}(A)\right)=$ $\mathcal{M}_{R}(A)$ and $\mathcal{M}_{R^{-1}}\left(\mathcal{M}_{R^{-1}}^{*}(A)\right)=\mathcal{M}_{R^{-1}}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{K}_{R^{-1 *}}}=$ $\tau_{\mathcal{M}_{R}}=\left(\tau_{\mathcal{K}_{R^{-1}}}\right)_{*}=\left(\tau_{\mathcal{M}_{R^{-1}}}\right)_{*}$ with

$$
\begin{aligned}
\tau_{\mathcal{M}_{R}} & =\left\{\mathcal{M}_{R}^{*}(A)=\bigwedge_{x \in X}(R(x,-) \rightarrow A(x)) \mid A \in L^{X}\right\}, \\
\tau_{\mathcal{M}_{R^{-1}}} & =\left\{\mathcal{M}_{R^{-1}}^{*}(A)=\bigwedge_{x \in X}(R(-, x) \rightarrow A(x)) \mid A \in L^{X}\right\} .
\end{aligned}
$$

(7) If R is a reflexive and Euclidean L-fuzzy relation, by $(4), \mathcal{K}_{R^{*}}\left(\mathcal{K}_{R^{*}}(A)\right)=$ $\mathcal{K}_{R^{*}}^{*}(A)$ for $A \in L^{X}$. By Theorem 2.1(7), then $\mathcal{M}_{R}\left(\mathcal{M}_{R}(A)\right)=\mathcal{M}_{R}^{*}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{M}_{R}}=\left(\tau_{\mathcal{M}_{R}}\right)_{*}$ with

$$
\tau_{\mathcal{M}_{R}}=\left\{\mathcal{M}_{R}(A)=\bigvee_{x \in X}\left(A^{*}(x) \odot R(x,-)\right) \mid A \in L^{X}\right\}
$$

(8) Define $\mathcal{J}_{\mathcal{K}_{R^{*}}}(A)=\mathcal{K}_{R^{*}}\left(A^{*}\right)$. By Theorem 2.1(8), $\mathcal{J}_{\mathcal{K}_{R^{*}}}=\mathcal{J}_{R}$ and $\mathcal{J}_{\mathcal{K}_{R^{-1 *}}}=\mathcal{J}_{R^{-1}}$ are L-lower approximation operators such that

$$
\mathcal{J}_{\mathcal{K}_{R^{*}}}(A)(y)=\bigwedge_{x \in X}\left(A^{*}(x) \rightarrow R^{*}(x, y)\right)=\bigwedge_{x \in X}(R(x, y) \rightarrow A(x)),
$$

$$
\mathcal{J}_{\mathcal{K}_{R^{-1 *}}}(A)(y)=\bigwedge_{x \in X}\left(A^{*}(x) \rightarrow R^{-1 *}(x, y)\right)=\bigwedge_{x \in X}(R(y, x) \rightarrow A(x)) .
$$

Moreover, $\tau_{\mathcal{J}_{R}}=\left(\tau_{\mathcal{K}_{R^{*}}}\right)_{*}=\tau_{\mathcal{K}_{R^{-1 *}}}$ and $\tau_{\mathcal{J}_{R^{-1}}}=\left(\tau_{\mathcal{K}_{R^{-1 *}}}\right)_{*}=\tau_{\mathcal{K}_{R^{*}}}$.
 $\mathcal{K}_{R^{-1 *}}\left(\mathcal{K}_{R^{-1 *}}^{*}(A)\right)=\mathcal{K}_{R^{-1 *}}(A)$ for $A \in L^{X}$. By Theorem 2.1 (9), then $\mathcal{J}_{R}\left(\mathcal{J}_{R}(A)\right)=$ $\mathcal{J}_{R}(A)$ and $\mathcal{J}_{R^{-1}}\left(\mathcal{J}_{R^{-1}}(A)\right)=\mathcal{J}_{R^{-1}}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{J}_{R^{-1}}}=\left(\tau_{\mathcal{J}_{R}}\right)_{*}$ with

$$
\begin{aligned}
\tau_{\mathcal{J}_{R}} & =\left\{\mathcal{J}_{R}(A)=\bigwedge_{x \in X}(R(x,-) \rightarrow A(x)) \mid A \in L^{X}\right\}, \\
\tau_{\mathcal{J}_{R^{-1}}} & =\left\{\mathcal{J}_{R^{-1}}(A)=\bigwedge_{x \in X}(R(-, x) \rightarrow A(x)) \mid A \in L^{X}\right\} .
\end{aligned}
$$

(10) If R is a reflexive and Euclidean L-fuzzy relation, by $(4), \mathcal{K}_{R^{*}}\left(\mathcal{K}_{R^{*}}(A)\right)=$ $\mathcal{K}_{R^{*}}^{*}(A)$ for $A \in L^{X}$. By Theorem 2.1(10), $\mathcal{J}_{R}\left(\mathcal{J}_{R}^{*}(A)\right)=\mathcal{J}_{R}^{*}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{J}_{R}}=\left(\tau_{\mathcal{J}_{R}}\right)_{*}$ with

$$
\tau_{\mathcal{J}_{R}}=\left\{\mathcal{J}_{R}^{*}(A)=\bigvee_{x \in X}\left(A^{*}(x) \odot R(x,-)\right) \mid A \in L^{X}\right\}
$$

(11) Define $\mathcal{H}_{\mathcal{K}_{R^{*}}}(A)=\left(\mathcal{K}_{R^{*}}(A)\right)^{*}$. Then $\mathcal{H}_{\mathcal{K}_{R^{*}}}=\mathcal{H}_{R}$ is an L-upper approximation operator such that

$$
\mathcal{H}_{\mathcal{K}_{R^{*}}}(A)(y)=\bigvee_{x \in X}(R(x, y) \odot A(x))
$$

Moreover, $\tau_{\mathcal{H}_{R}}=\tau_{\mathcal{K}_{R^{*}}}$.
(12) If R is an L-fuzzy preorder, by (3), $\mathcal{K}_{R^{*}}\left(\mathcal{K}_{R^{*}}^{*}(A)\right)=\mathcal{K}_{R^{*}}(A)$ and $\mathcal{K}_{R^{-1 *}}\left(\mathcal{K}_{R^{-1 *}}^{*}(A)\right)=\mathcal{K}_{R^{-1 *}}(A)$ for $A \in L^{X}$. By Theorem 2.1(12), $\mathcal{H}_{\mathcal{K}_{R^{*}}}\left(\mathcal{H}_{\mathcal{K}_{R^{*}}}(A)\right)=$ $\mathcal{H}_{\mathcal{K}_{R^{*}}}(A)$ and $\mathcal{H}_{\mathcal{K}_{R^{-1 *}}}\left(\mathcal{H}_{\mathcal{K}_{R^{-1 *}}}(A)\right)=\mathcal{H}_{\mathcal{K}_{R^{-1 *}}}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{H}_{R^{-1}}}=$ $\left(\tau_{\mathcal{H}_{R}}\right)_{*}$ with

$$
\begin{aligned}
\tau_{\mathcal{H}_{R}} & =\left\{\mathcal{H}_{R}(A)=\bigvee_{x \in X}(R(x,-) \odot A(x)) \mid A \in L^{X}\right\}, \\
\tau_{\mathcal{H}_{R^{-1}}} & =\left\{\mathcal{H}_{R^{-1}}(A)=\bigvee_{x \in X}(R(-, x) \odot A(x)) \mid A \in L^{X}\right\} .
\end{aligned}
$$

(13) If R is a reflexive and Euclidean L-fuzzy relation, by $(4), \mathcal{K}_{R^{*}}\left(\mathcal{K}_{R^{*}}(A)\right)=$ $\mathcal{K}_{R^{*}}^{*}(A)$ for $A \in L^{X}$. By Theorem 2.1(13), $\mathcal{H}_{R}\left(\mathcal{H}_{R}^{*}(A)\right)=\mathcal{H}_{R}^{*}(A)$ for $A \in L^{X}$ such that $\tau_{\mathcal{H}_{R}}=\left(\tau_{\mathcal{H}_{R}}\right)_{*}$ with

$$
\tau_{\mathcal{H}_{R}}=\left\{\mathcal{H}_{R}^{*}(A)=\bigwedge_{x \in X}\left(A(x) \rightarrow R^{*}(x,-)\right) \mid A \in L^{X}\right\} .
$$

(14) $\left(\mathcal{H}_{R^{-1}}, \mathcal{J}_{R}\right)$ is a residuated connection;i.e,

$$
\begin{gathered}
\mathcal{H}_{R^{-1}}(A) \leq B \text { iff } \mathcal{K}_{R^{-1 *}}(A) \geq B^{*} \\
A \leq \mathcal{K}_{R^{*}}\left(B^{*}\right) \text { iff } A \leq \mathcal{J}_{R}(B)
\end{gathered}
$$

Similarly, $\left(\mathcal{H}_{R}, \mathcal{J}_{R^{-1}}\right)$ is a residuated connection. Moreover, $\tau_{\mathcal{J}_{R}}=\tau_{\mathcal{H}_{R^{-1}}}$ and $\tau_{\mathcal{J}_{R^{-1}}}=\tau_{\mathcal{H}_{R}}$.

References

[1] R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
[2] P. Hájek, Metamathematices of Fuzzy Logic,Kluwer Academic Publishers, Dordrecht (1998).
[3] Y.C. Kim, L-approximatins and join preserving maps,J. Math. Comput. Sci., 3 (5) (2013), 1193-1210.
[4] Y.C. Kim, Alexandrov L-topologies and L-join meet approximation operators International Journal of Pure and Applied Mathematics, 91(1)(2014), 113-129.
[5] H. Lai, D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems, 157 (2006), 1865-1885.
[6] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory,Int. J. Approx. Reasoning, 50 (2009), 695707.
[7] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341-356.
[8] Z. Pawlak, Rough probability, Bull. Pol. Acad. Sci. Math., 32(1984), 607615.
[9] A. M. Radzikowska, E.E. Kerre, A comparative study of fuzy rough sets, Fuzzy Sets and Systems, 126(2002), 137-155.
[10] Y.H. She, G.J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, Computers and Mathematics with Applications, 58(2009), 189-201.
[11] Zhen Ming Ma, Bao Qing Hu, Topological and lattice structures of Lfuzzy rough set determined by lower and upper sets, Information Sciences, 218(2013), 194-204.

