L-join meet approximation operators with Galois connections

Yong Chan Kim

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr

Abstract

In this paper, we introduce join meet approximation operators with Galois connection in complete residuated lattices. We investigate relations between their operations and Alexandrov *L*-topologies.

Mathematics Subject Classification: 03E72, 03G10, 06A15, 06F07

Keywords:

Complete residuated lattices, Join meet approximation operators, Alexandrov L-topologies

1 Introduction

Hájek [2] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Pawlak [7,8] introduced rough set theory as a formal tool to deal with imprecision and uncertainty in data analysis. Radzikowska [9] developed fuzzy rough sets in complete residuated lattice. Bělohlávek [1] investigated information systems and decision rules in complete residuated lattices. Lai [5,6] introduced Alexandrov *L*-topologies induced by fuzzy rough sets. Kim [3,4] investigated the properties of Alexandrov topologies in complete residuated lattices. Algebraic structures of fuzzy rough sets are developed in many directions [3,9,10]

In this paper, we introduce join meet approximation operators with Galois connection in complete residuated lattices. We investigate relations between their operations and Alexandrov *L*-topologies.

Definition 1.1 [1,2] An algebra $(L, \land, \lor, \odot, \rightarrow, \bot, \top)$ is called a complete residuated lattice if it satisfies the following conditions:

(C1) $L = (L, \leq, \lor, \land, \bot, \top)$ is a complete lattice with the greatest element \top and the least element \bot ;

(C2) (L, \odot, \top) is a commutative monoid; (C3) $x \odot y \le z$ iff $x \le y \to z$ for $x, y, z \in L$.

In this paper, we assume $(L, \wedge, \vee, \odot, \rightarrow, {}^* \bot, \top)$ is a complete residuated lattice with the law of double negation; i.e. $x^{**} = x$. For $\alpha \in L, A, \top_x \in L^X$, $(\alpha \to A)(x) = \alpha \to A(x), \quad (\alpha \odot A)(x) = \alpha \odot A(x) \text{ and } \top_x(x) = \top, \top_x(x) = \bot$, otherwise.

Lemma 1.2 [1,2] For each $x, y, z, x_i, y_i \in L$, we have the following properties.

(1) If $y \leq z$, $(x \odot y) \leq (x \odot z)$, $x \to y \leq x \to z$ and $z \to x \leq y \to x$. (2) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i)$. (3) $(\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y)$. (4) $\bigwedge_{i \in \Gamma} y_i^* = (\bigvee_{i \in \Gamma} y_i)^*$ and $\bigvee_{i \in \Gamma} y_i^* = (\bigwedge_{i \in \Gamma} y_i)^*$. (5) $(x \odot y) \to z = x \to (y \to z) = y \to (x \to z)$. (6) $x \odot y = (x \to y^*)^*$. (7) $x \odot (x \to y) \leq y$. (8) $(x \to y) \odot (y \to z) \leq x \to z$. (9) $(x \to y) \to (x \to z) \geq y \to z$ and $(x \to z) \to (y \to z) \geq y \to x$. (10) $x \odot y \to x \odot z \geq y \to z$.

Definition 1.3 [3,4] (1) A map $\mathcal{H}: L^X \to L^X$ is called an *L*-upper approximation operator iff it satisfies the following conditions

(H1) $A \leq \mathcal{H}(A)$, (H2) $\mathcal{H}(\alpha \odot A) = \alpha \odot \mathcal{H}(A)$ where $\alpha(x) = \alpha$ for all $x \in X$,

(H3) $\mathcal{H}(\bigvee_{i\in I} A_i) = \bigvee_{i\in I} \mathcal{H}(A_i).$

(2) A map $\mathcal{J}: L^X \to L^X$ is called an *L*-lower approximation operator iff it satisfies the following conditions

 $(J1) \mathcal{J}(A) \le A,$

$$(J2) \ \mathcal{J}(\alpha \to A) = \alpha \to \mathcal{J}(A),$$

(J3)
$$\mathcal{J}(\bigwedge_{i \in I} A_i) = \bigwedge_{i \in I} \mathcal{J}(A_i)$$

(3) A map $\mathcal{K} : L^X \to L^X$ is called an *L*-join meet approximation operator iff it satisfies the following conditions

(K1) $\mathcal{K}(A) \leq A^*$,

(K2)
$$\mathcal{K}(\alpha \odot A) = \alpha \to \mathcal{K}(A),$$

(K3) $\mathcal{K}(\bigvee_{i \in I} A_i) = \bigwedge_{i \in I} \mathcal{K}(A_i).$

(4) A map $\mathcal{M}: L^X \to L^X$ is called an *L*-meet join approximation operator iff it satisfies the following conditions

- (M1) $A^* \leq \mathcal{M}(A),$
- (M2) $\mathcal{M}(\alpha \to A) = \alpha \odot \mathcal{M}(A),$
- (M3) $\mathcal{M}(\bigwedge_{i \in I} A_i) = \bigvee_{i \in I} \mathcal{M}(A_i).$

Definition 1.4 [4,5] A subset $\tau \subset L^X$ is called an *Alexandrov L-topology* if it satisfies:

(T1) $\perp_X, \top_X \in \tau$ where $\top_X(x) = \top$ and $\perp_X(x) = \bot$ for $x \in X$.

(T2) If $A_i \in \tau$ for $i \in \Gamma$, $\bigvee_{i \in \Gamma} A_i$, $\bigwedge_{i \in \Gamma} A_i \in \tau$.

(T3) $\alpha \odot A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.

(T4) $\alpha \to A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.

Theorem 1.5 [4] (1) τ is an Alexandrov topology on X iff $\tau_* = \{A^* \in L^X \mid A \in \tau\}$ is an Alexandrov topology on X.

(2) If \mathcal{H} is an L-upper approximation operator, then $\tau_{\mathcal{H}} = \{A \in L^X \mid \mathcal{H}(A) = A\}$ is an Alexandrov topology on X.

(3) If \mathcal{J} is an L-lower approximation operator, then $\tau_{\mathcal{J}} = \{A \in L^X \mid \mathcal{J}(A) = A\}$ is an Alexandrov topology on X.

(4) If \mathcal{K} is an L-join meet approximation operator, then $\tau_{\mathcal{K}} = \{A \in L^X \mid \mathcal{K}(A) = A^*\}$ is an Alexandrov topology on X.

(5) If \mathcal{M} is an L-meet join operator, then $\tau_{\mathcal{M}} = \{A \in L^X \mid \mathcal{M}(A) = A^*\}$ is an Alexandrov topology on X.

2 L-join meet approximation operators with Galois connections

Theorem 2.1 Let $\mathcal{K} : L^X \to L^X$ be an L-join meet approximation operators. Then the following properties hold.

(1) For $A \in L^X$, $\mathcal{K}(A)(y) = \bigwedge_{x \in X} (A(x) \to \mathcal{K}(\top_x)(y))$. (2) Define $\mathcal{K}_1(B) = \bigvee \{A \mid B < \mathcal{K}(A)\}$. Then $\mathcal{K}_1 : L^X \to L^X$ with

$$\mathcal{K}_1(B)(x) = \bigwedge_{y \in X} (B(y) \to \mathcal{K}(\top_x)(y))$$

is an L-join meet approximation operator such that $(\mathcal{K}, \mathcal{K}_1)$ is a Galois connection; *i.e.*,

$$A \leq \mathcal{K}_1(B)$$
 iff $B \leq \mathcal{K}(A)$.

Moreover, $\tau_{\mathcal{K}_1} = (\tau_{\mathcal{K}})_*$.

(3) If $\mathcal{K}(\mathcal{K}^*(A)) = \mathcal{K}(A)$ for $A \in L^X$, then $\mathcal{K}_1(\mathcal{K}_1^*(A)) = \mathcal{K}_1(A)$ for $A \in L^X$ such that $\tau_{\mathcal{K}_1} = (\tau_{\mathcal{K}})_*$ with

$$\tau_{\mathcal{K}} = \{ \mathcal{K}^*(A) = \bigvee_{x \in X} (A(x) \odot \mathcal{K}^*(\top_x)) \mid A \in L^X \},\$$

$$\tau_{\mathcal{K}_{1}} = \{\mathcal{K}_{1}^{*}(A)(y) = \bigvee_{x \in X} (A(x) \odot \mathcal{K}^{*}(\top_{y})(x)) \mid A \in L^{X}\}.$$
(4) If $\mathcal{K}(\mathcal{K}(A)) = \mathcal{K}^{*}(A)$ for $A \in L^{X}$, then $\mathcal{K}(\mathcal{K}^{*}(A)) = \mathcal{K}(A)$ such that
$$\tau_{\mathcal{K}} = \{\mathcal{K}(A) = \bigwedge_{x \in X} (A(x) \to \mathcal{K}(\top_{x})) \mid A \in L^{X}\} = (\tau_{\mathcal{K}})_{*}.$$
(5) Define $\mathcal{M}_{K}(A) = \mathcal{K}(A^{*})^{*}.$ Then $\mathcal{M}_{K} : L^{X} \to L^{X}$ with

$$\mathcal{M}_K(A)(y) = \bigvee_{x \in X} (A^*(x) \odot \mathcal{K}^*(\top_x)(y))$$

is an L-meet join approximation operator. Moreover, the pair $(\mathcal{M}_K, \mathcal{M}_{K_1})$ is a dual Galois connection; i.e.,

$$\mathcal{M}_K(A) \leq B, iff \mathcal{M}_{K_1}(B) \leq A$$

such that $\tau_{\mathcal{K}_1} = \tau_{\mathcal{M}_K} = (\tau_{\mathcal{K}})_* = (\tau_{\mathcal{M}_{K_1}})_*.$ (6) If $\mathcal{K}(\mathcal{K}^*(A)) = \mathcal{K}(A)$ for $A \in L^X$, then $\mathcal{M}_K(\mathcal{M}^*_K(A)) = \mathcal{M}_K(A)$ for $A \in L^X$ such that $\tau_{\mathcal{K}_1} = \tau_{\mathcal{M}_K} = (\tau_{\mathcal{K}})_* = (\tau_{\mathcal{M}_{K_1}})_*.$ with

$$\tau_{\mathcal{M}_K} = \{ \mathcal{M}_K^*(A) = \bigwedge_{x \in X} (\mathcal{K}^*(\top_x) \to A(x)) \mid A \in L^X \},\$$

$$\tau_{(\mathcal{M}_K)_1} = \{ (\mathcal{M}_K)_1^*(A)(y) = \bigwedge_{x \in X} (\mathcal{K}^*(\top_y)(x) \to A(x)) \mid A \in L^X \}.$$

(7) If $\mathcal{K}(\mathcal{K}(A)) = \mathcal{K}^*(A)$ for $A \in L^X$, then $\mathcal{M}_K(\mathcal{M}_K(A)) = \mathcal{M}^*_K(A)$ such that

$$\tau_{\mathcal{M}_K} = \{\mathcal{M}_K(A) = \bigvee_{x \in X} (A^*(x) \odot \mathcal{K}^*(\top_x)) \mid A \in L^X\} = (\tau_{\mathcal{M}_K})_*$$

(8) Define
$$\mathcal{J}_K(A) = \mathcal{K}(A^*)$$
. Then $\mathcal{J}_K : L^X \to L^X$ with

$$\mathcal{J}_{K}(A)(y) = \bigwedge_{x \in X} (A^{*}(x) \to \mathcal{K}(\top_{x})(y)) = \bigwedge_{x \in X} (\mathcal{K}^{*}(\top_{x})(y) \to A(x))).$$

is an L-lower approximation operator.

(9) If $\mathcal{K}(\mathcal{K}^*(A)) = \mathcal{K}(A)$ for $A \in L^X$, then $\mathcal{J}_K(\mathcal{J}_K(A)) = \mathcal{J}_K(A)$ for $A \in L^X$ such that $\tau_{\mathcal{J}_{K_1}} = (\tau_{\mathcal{J}_K})_*$ with

$$\tau_{\mathcal{J}_K} = \{ \mathcal{J}_K(A) = \bigwedge_{x \in X} (\mathcal{K}^*(\top_x) \to A(x))) \mid A \in L^X \},$$

$$\tau_{\mathcal{J}_{K_1}} = \{ \mathcal{J}_{K_1}(A)(x) = \bigwedge_{x \in X} (\mathcal{K}^*(\top_x)(y) \to A(y))) \mid A \in L^X \}.$$

(10) If $\mathcal{K}(\mathcal{K}(A)) = \mathcal{K}^*(A)$ for $A \in L^X$, then $\mathcal{J}_K(\mathcal{J}_K^*(A)) = \mathcal{J}_K^*(A)$ such that

$$\tau_{\mathcal{J}_K} = \{\mathcal{J}_K^*(A) = \bigvee_{x \in X} (\mathcal{K}^*(\top_x) \odot A^*(x))) \mid A \in L^X\} = (\tau_{\mathcal{J}_K})_*.$$

(11) Define $\mathcal{H}_K(A) = (\mathcal{K}(A))^*$. Then $\mathcal{H}_K : L^X \to L^X$ with

$$\mathcal{H}_K(A)(y) = \bigvee_{x \in X} (A(x) \odot \mathcal{K}^*(\top_x)(y))$$

is an L-upper approximation operator. Moreover, $\tau_{\mathcal{H}_K} = \tau_{\mathcal{K}}$.

(12) If $\mathcal{K}(\mathcal{K}^*(A)) = \mathcal{K}(A)$ for $A \in L^X$, then $\mathcal{H}_K(\mathcal{H}_K(A)) = \mathcal{H}_K(A)$ for $A \in L^X$ such that $\tau_{\mathcal{H}_{K_1}} = (\tau_{\mathcal{H}_K})_*$ with

$$\tau_{\mathcal{H}_K} = \{ \mathcal{H}_K(A) = \bigvee_{x \in X} (A(x) \odot \mathcal{K}^*(\top_x)) \mid A \in L^X \},\$$

$$\tau_{(\mathcal{H}_K)_1} = \{ (\mathcal{H}_K)_1(A)(y) = \bigvee_{x \in X} (A(x) \odot \mathcal{K}^*(\top_y)(x)) \mid A \in L^X \}.$$

(13) If $\mathcal{K}(\mathcal{K}(A)) = \mathcal{K}^*(A)$ for $A \in L^X$, then $\mathcal{H}_K(\mathcal{H}_K(A)) = \mathcal{H}^*_K(A)$ such that

$$\tau_{\mathcal{H}_K} = \{\mathcal{H}_K^*(A) = \bigwedge_{x \in X} (A(x) \to \mathcal{K}(\top_x)) \mid A \in L^X\} = (\tau_{\mathcal{H}_K})_*.$$

(14) $(\mathcal{H}_{K_1}, \mathcal{J}_K)$ and $(\mathcal{H}_K, \mathcal{J}_{K_1})$ are a residuated connetion; *i.e.*,

$$\mathcal{H}_{K_1}(A) \leq B \quad iff \ A \leq \mathcal{J}_K(B),$$
$$\mathcal{H}_K(A) \leq B \quad iff \ A \leq \mathcal{J}_{K_1}(B).$$

Moreover, $\tau_{\mathcal{J}_K} = \tau_{\mathcal{H}_{K_1}}$ and $\tau_{\mathcal{J}_{K_1}} = \tau_{\mathcal{H}_K}$.

Proof (1) For $A = \bigvee_{x \in X} (A(x) \odot \top_x) \in L^X$, $\mathcal{K}(A)(y) = \bigwedge_{x \in X} (A(x) \to \mathcal{K}(\top_x)(y))$.

(2) (K1) Since $B \leq \mathcal{K}(\mathcal{K}_1(B)) \leq \mathcal{K}_1^*(B)$, we have $\mathcal{K}_1(B) \leq B^*$. (K2) Since $\mathcal{K}_1(B) \leq \mathcal{K}_1(B)$, then $B \leq \mathcal{K}(\mathcal{K}_1(B))$. Thus,

$$B \leq \mathcal{K}(\mathcal{K}_1(B)) \leq \mathcal{K}(a \odot (a \to \mathcal{K}_1(B))) = a \to \mathcal{K}(a \to \mathcal{K}_1(B))$$

iff $a \odot B \leq \mathcal{K}(a \to \mathcal{K}_1(B))$
iff $a \to \mathcal{K}_1(B) \leq \mathcal{K}_1(a \odot B).$

$$a \odot B \leq \mathcal{K}(\mathcal{K}_1(a \odot B))$$

iff $B \leq a \to \mathcal{K}(\mathcal{K}_1(a \odot B)) = \mathcal{K}(a \odot \mathcal{K}_1(a \odot B))$
iff $a \odot \mathcal{K}_1(a \odot B) \leq \mathcal{K}_1(B)$
iff $\mathcal{K}_1(a \odot B) \leq a \to \mathcal{K}_1(B).$

(K3) $\mathcal{K}_1(\bigvee_{i\in\Gamma} A_i) = \bigwedge_{i\in\Gamma} \mathcal{K}_1(A_i)$. By the definition of \mathcal{K}_1 , since $\mathcal{K}_1(A) \leq \mathcal{K}_1(B)$ for $B \leq A$, we have

$$\mathcal{K}_1(\bigvee_{i\in\Gamma}A_i) \le \bigwedge_{i\in\Gamma}\mathcal{K}_1(A_i).$$

Since $\mathcal{K}(\bigwedge_{i\in\Gamma}\mathcal{K}_1(A_i)) \geq \mathcal{K}(\mathcal{K}_1(A_i)) \geq A_i$, then $\mathcal{K}(\bigwedge_{i\in\Gamma}\mathcal{K}_1(A_i)) \geq \bigvee_{i\in\Gamma}A_i$. Thus

$$\mathcal{K}_1(\bigvee_{i\in\Gamma}A_i) \ge \bigwedge_{i\in\Gamma}\mathcal{K}_1(A_i).$$

Thus $\mathcal{K}_1 : L^X \to L^X$ is an *L*-join meet approximation operator. By the definition of \mathcal{K}_1 , we have

$$A \leq \mathcal{K}_1(B)$$
 iff $B \leq \mathcal{K}(A)$.

Since $A^* \leq \mathcal{K}_1(A)$ iff $A \leq \mathcal{K}(A^*)$, we have $\tau_{\mathcal{K}_1} = (\tau_{\mathcal{K}})_*$. (3) Let $\mathcal{K}(\mathcal{K}^*(A)) = \mathcal{K}(A)$ for $A \in L^X$. Then $\mathcal{K}_1^*(A) \leq \mathcal{K}(B)$ iff $\mathcal{K}_1(A) \geq \mathcal{K}^*(B)$ iff $\mathcal{K}(\mathcal{K}^*(B)) = \mathcal{K}(B) \geq A$

$$\mathcal{K}_1(\mathcal{K}_1^*(A)) = \bigvee \{ B \mid \mathcal{K}_1^*(A) \le \mathcal{K}(B) \} = \bigvee \{ B \mid A \le \mathcal{K}(B) \} = \mathcal{K}_1(A).$$

(4) Let $\mathcal{K}(A) \in \tau_{\mathcal{K}}$. Since $\mathcal{K}(\mathcal{K}(A)) = \mathcal{K}^*(A)$, $\mathcal{K}(\mathcal{K}^*(A)) = \mathcal{K}(\mathcal{K}(\mathcal{K}(A))) = (\mathcal{K}(\mathcal{K}(A)))^* = \mathcal{K}(A)$. Hence $\mathcal{K}^*(A) \in \tau_{\mathcal{K}}$; i.e. $\mathcal{K}(A) \in (\tau_{\mathcal{K}})_*$.

Let $A \in (\tau_{\mathcal{K}})_*$. Then $A = \mathcal{K}(A^*)$. Since $\mathcal{K}(A) = \mathcal{K}(\mathcal{K}(A^*)) = \mathcal{K}^*(A^*) = A^*$, then $A \in \in \tau_{\mathcal{K}}$. Thus, $(\tau_{\mathcal{K}})_* \subset \tau_{\mathcal{K}}$.

(5) (M1) Since $A \leq \mathcal{K}(A^*)$, $\mathcal{M}_K(A) = \mathcal{K}(A^*)^* \leq A^*$. (M2) $\mathcal{M}_K(A) = \mathcal{K}(A^*)^* = (\mathcal{K}(A^*)^*)^* = (\mathcal{K}(A^*)^*)^*$

$$\mathcal{M}_{K}(\alpha \to A) = (\mathcal{K}((\alpha \to A)^{*})^{*} = (\mathcal{K}(\alpha \odot A^{*}))^{*}$$
$$= (\alpha \to \mathcal{K}(A^{*}))^{*} = \alpha \odot \mathcal{K}(A^{*})^{*}$$
$$= \alpha \odot \mathcal{M}_{K}(A).$$

(M3)

$$\mathcal{M}_{K}(\bigwedge_{i\in\Gamma} A_{i}) = (\mathcal{K}(\bigwedge_{i\in\Gamma} A_{i})^{*})^{*} = (\mathcal{K}(\bigvee_{i\in\Gamma} A_{i}^{*}))^{*}$$
$$= (\bigwedge_{i\in\Gamma} \mathcal{K}(A_{i}^{*}))^{*} = \bigvee_{i\in\Gamma} (\mathcal{K}(A_{i}^{*}))^{*}$$
$$= \bigvee_{i\in\Gamma} \mathcal{M}_{K}(A_{i}).$$

Moreover, the pair $(\mathcal{M}_K, \mathcal{M}_{K_1})$ is a dual Galois connection from:

 $\mathcal{M}_{K}(A) \leq B \text{ iff } B^{*} \leq \mathcal{K}(A^{*}) \text{ iff } A^{*} \leq \mathcal{K}_{1}(B^{*})$ $\mathcal{K}_{1}^{*}(B^{*}) \leq A \text{ iff } \mathcal{M}_{K_{1}}(B) \leq A.$

We have $\tau_{\mathcal{K}_1} = \tau_{\mathcal{M}_K} = (\tau_{\mathcal{K}})_* = (\tau_{\mathcal{M}_{K_1}})_*$ from:

$$A^* \leq \mathcal{K}_1(A)$$
 iff $A \leq \mathcal{K}(A^*)$

L-join meet approximation operators with Galois connections

$$\mathcal{M}_{K}(A) \leq A^{*} \text{ iff } \mathcal{M}_{K_{1}}(A^{*}) \leq A.$$
(6) Let $\mathcal{K}(\mathcal{K}^{*}(A)) = \mathcal{K}(A)$ for $A \in L^{X}$. Then
$$\mathcal{M}_{K}(\mathcal{M}_{K}^{*}(A)) = \mathcal{K}^{*}(\mathcal{M}_{K}(A)) = (\mathcal{K}(\mathcal{K}^{*}(A^{*})))^{*}$$

$$= \mathcal{K}^{*}(A^{*}) = \mathcal{M}_{K}(A).$$

By (3), since $\mathcal{K}_1(\mathcal{K}_1^*(A)) = \mathcal{K}_1(A)$ for $A \in L^X$, $(\mathcal{M}_K)_1((\mathcal{M}_K)_1^*(A)) = (\mathcal{M}_K)_1(A)$ for $A \in L^X$. Thus,

$$\tau_{\mathcal{M}_K} = \{ \mathcal{M}_K^*(A) \mid A \in L^X \}, \ \tau_{(\mathcal{M}_K)_1} = \{ (\mathcal{M}_K)_1^*(A) \mid A \in L^X \}.$$

(7) Let $\mathcal{K}(\mathcal{K}(A)) = \mathcal{K}^*(A)$ for $A \in L^X$. Then

$$\mathcal{M}_{K}(\mathcal{M}_{K}(A)) = \mathcal{K}^{*}(\mathcal{M}_{K}^{*}(A)) = (\mathcal{K}(\mathcal{K}(A^{*})))^{*}$$
$$= (\mathcal{K}^{*}(A^{*}))^{*} = \mathcal{M}_{K}^{*}(A).$$

By the similarly method in (4), $\mathcal{M}_K(\mathcal{M}_K^*(A)) = \mathcal{M}_K(A)$ for $A \in L^X$. Thus,

$$\tau_{\mathcal{M}_K} = \{\mathcal{M}_K(A) \mid A \in L^X\} = (\tau_{\mathcal{M}_K})_*$$

(8) It is similarly proved as (5).

(9) If
$$\mathcal{K}(\mathcal{K}^*(A)) = \mathcal{K}(A)$$
 for $A \in L^X$, then $\mathcal{J}_K(\mathcal{J}_K(A)) = \mathcal{J}_K(A)$
$$\mathcal{J}_K(\mathcal{J}_K(A)) = \mathcal{J}_K(\mathcal{K}(A^*)) = \mathcal{K}(\mathcal{K}^*(A^*))$$
$$= \mathcal{K}(A^*) = \mathcal{J}_K(A).$$

Similarly, $\mathcal{J}_{K_1}(\mathcal{J}_{K_1}(A)) = \mathcal{J}_{K_1}(A)$. Thus, the results hold. (10) If $\mathcal{K}(\mathcal{K}(A)) = \mathcal{K}^*(A)$ for $A \in L^X$, then $\mathcal{J}_K(\mathcal{J}_K^*(A)) = \mathcal{J}_K^*(A)$

$$\mathcal{J}_K(\mathcal{J}_K^*(A)) = \mathcal{J}_K(\mathcal{K}^*(A^*)) = \mathcal{K}(\mathcal{K}(A^*))$$

= $\mathcal{K}^*(A^*) = \mathcal{J}_K^*(A).$

Since $\mathcal{J}_K(\mathcal{J}_K^*(A)) = \mathcal{J}_K^*(A)$

$$\mathcal{J}_{K}(\mathcal{J}_{K}(A)) = \mathcal{J}_{K}(\mathcal{J}_{K}^{*}(\mathcal{J}_{K}^{*}(A)))$$
$$= \mathcal{J}_{K}^{*}(\mathcal{J}_{K}^{*}(A)) = \mathcal{J}_{K}(A).$$

Hence $\tau_{\mathcal{J}_K} = \{\mathcal{J}_K^*(A) \mid A \in L^X\} = (\tau_{\mathcal{J}_K})_*$. (11) and (12) are similarly proved as (5) and (6), respectively. (13) If $\mathcal{K}(\mathcal{K}(A)) = \mathcal{K}^*(A)$ for $A \in L^X$, then $\mathcal{H}_K(\mathcal{H}_K^*(A)) = \mathcal{H}_K^*(A)$ from:

$$\mathcal{H}_{K}(\mathcal{H}_{K}^{*}(A)) = \mathcal{H}_{K}(\mathcal{K}(A)) = (\mathcal{K}(\mathcal{K}(A)))^{*}$$
$$= (\mathcal{K}^{*}(A))^{*} = \mathcal{H}_{K}^{*}(A).$$

(14) $(\mathcal{H}_{K_1}, \mathcal{J}_K)$ is a residuated connection; i.e.,

$$\mathcal{H}_{K_1}(A) \leq B \quad \text{iff} \quad \mathcal{K}_1(A) \geq B^*,$$
$$A \leq \mathcal{K}(B^*) \quad \text{iff} \quad A \leq \mathcal{J}_K(B),$$

Similarly, $(\mathcal{H}_K, \mathcal{J}_{K_1})$ is a residuated connection.

Example 2.2 Let *R* be a reflexive *L*-fuzzy relation. Define $\mathcal{K}_{R^*} : L^X \to L^X$ as follows:

$$\mathcal{K}_{R^*}(A)(y) = \bigwedge_{x \in X} (A(x) \to R^*(x, y)).$$

(1) (K1) $\mathcal{K}_{R^*}(A)(y) \leq A(y) \rightarrow R^*(y,y) = A^*(x).$ (K2) $\mathcal{K}_{R^*}(a \odot A)(y) = \bigwedge_{x \in X} ((a \odot A)(x) \rightarrow R^*(x,y)) = a \rightarrow \bigwedge_{x \in X} (A(x) \rightarrow R^*(x,y)) = a \rightarrow \mathcal{K}_{R^*}(A)(y).$

(K3) $\mathcal{K}_{R^*}(\bigvee_{i\in\Gamma} A_i)(y) = \bigwedge_{x\in X}(\bigvee_{i\in\Gamma} A_i(x) \to R^*(x,y)) = \bigwedge_{x\in X} \bigwedge_{i\in\Gamma} (A_i(x) \to R^*(x,y)) = \bigwedge_{i\in\Gamma} \mathcal{K}_{R^*}(A_i)(y)$. Hence \mathcal{K}_{R^*} is an *L*-join meet approximation operator.

(2) Define $(\mathcal{K}_{R^*})_1(B) = \bigvee \{A \mid B \leq \mathcal{K}_{R^*}(A)\}$. Since $B(y) \leq \mathcal{K}_{R^*}(B)(y)$ iff $B(y) \leq A(x) \rightarrow R^*(x, y)$ iff $A(x) \leq B(y) \rightarrow R^*(x, y)$, then

$$(\mathcal{K}_{R^*})_1(B)(x) = \mathcal{K}_{R^{-1*}}(B)(x) = \bigwedge_{y \in X} (B(y) \to R^{-1*}(y, x)).$$

Then $(\mathcal{K}_{R^*})_1 = \mathcal{K}_{R^{-1*}}$ with

$$\mathcal{K}_{R^{-1*}}(A)(y) = \bigwedge_{x \in X} (A(x) \to R^{-1*}(x,y))$$

is an *L*-join meet approximation operator such that $(\mathcal{K}_R, \mathcal{K}_{R^{-1*}})$ is a Galois connection; i.e.,

$$A \leq \mathcal{K}_{R^{-1*}}(B)$$
 iff $B \leq \mathcal{K}_{R^*}(A)$.

Moreover, $\tau_{\mathcal{K}_{R^{-1*}}} = (\tau_{\mathcal{K}_{R^*}})_*$.

(3) If R is an L-fuzzy preorder, then R^{-1} is an L-fuzzy preorder. Since $R(x, y) \odot R(y, z) \le R(x, z)$ iff

$$A(x) \odot R(x, y) \odot (A(x) \to R^*(x, z) \le R(x, y) \odot R^*(x, z) \le R^*(y, z)$$

iff $A(x) \to R^*(x, z) \le A(x) \odot R(x, y) \to R^*(y, z)$

$$\begin{aligned} \mathcal{K}_{R^*}(\mathcal{K}^*_{R^*}(A))(z) &= \bigwedge_{y \in X} (\mathcal{K}^*_{R^*}(A)(y) \to R^*(y, z)) \\ &= \bigwedge_{y \in X} (\bigvee_{x \in X} (A(x) \odot R(x, y) \to R^*(y, z)) \\ &= \bigwedge_{x \in X} (A(x) \to R^*(x, z)) = \mathcal{K}_{R^*}(A)(z). \end{aligned}$$

Thus $\mathcal{K}_{R^*}(\mathcal{K}_{R^*}^*(A)) = \mathcal{K}_{R^*}(A)$ for $A \in L^X$. Similarly, $\mathcal{K}_{R^{-1*}}(\mathcal{K}_{R^{-1*}}^*(A)) = \mathcal{K}_{R^{-1*}}(A)$ for $A \in L^X$ such that $\tau_{\mathcal{K}_{R^{-1*}}} = (\tau_{\mathcal{K}_{R^*}})_*$ with

$$\tau_{\mathcal{K}_{R^*}} = \{ \mathcal{K}_{R^*}^*(A) = \bigvee_{x \in X} (A(x) \odot R(x, -)) \mid A \in L^X \},\$$
$$\tau_{\mathcal{K}_{R^{-1*}}} = \{ \mathcal{K}_{R^{-1*}}^*(A) = \bigvee_{x \in X} (A(x) \odot R(-, x)) \mid A \in L^X \}.$$

L-join meet approximation operators with Galois connections

(4) Let R be a reflexive and Euclidean L-fuzzy relation. Since R(x,z) \odot $R(y,z) \leq R(x,y)$ iff $R(y,z) \leq R(x,z) \rightarrow R(x,y)$ iff $R(x,z) \odot R^*(x,y) \leq$ $R^*(y,z)$, then

$$\begin{array}{l} A(x) \odot R(x,z) \odot (A(x) \rightarrow R^*(x,y)) \leq R(x,z) \odot R^*(x,y) \leq R^*(y,z) \\ \text{iff } A(x) \odot R(x,z) \leq (A(x) \rightarrow R^*(x,y)) \rightarrow R^*(y,z). \end{array}$$

$$\begin{aligned} \mathcal{K}_{R^*}(\mathcal{K}_{R^*}(A))(z) &= \bigwedge_{y \in X} (\mathcal{K}_{R^*}(A)(y) \to R^*(y,z)) \\ &= \bigwedge_{y \in X} (\bigwedge_{x \in X} (A(x) \to R^*(x,y)) \to R^*(y,z)) \\ &\ge \bigvee_{x \in X} (A(x) \odot R(x,z)) = \mathcal{K}_{R^*}(A)(z). \end{aligned}$$

Thus, $\mathcal{K}_{R^*}(\mathcal{K}_{R^*}(A)) = \mathcal{K}_{R^*}^*(A)$ for $A \in L^X$ such that $\tau_{\mathcal{K}_{R^*}} = (\tau_{\mathcal{K}_{R^*}})_*$ with

$$\tau_{\mathcal{K}_{R^*}} = \{ \mathcal{K}_{R^*}(A) = \bigwedge_{x \in X} (A(x) \to R(x, -)) \mid A \in L^X \}.$$

(5) Define $\mathcal{M}_{\mathcal{K}_{R^*}}(A) = \mathcal{K}_{R^*}(A^*)^*$. By Theorem 2.1 (5), $\mathcal{M}_{\mathcal{K}_{R^*}} = \mathcal{M}_R$ and $\mathcal{M}_{(\mathcal{K}_{R^*})_1} = \mathcal{M}_{\mathcal{K}_{R^{-1*}}} = \mathcal{M}_{R^{-1}}$ are *L*-meet join approximation operators such that

$$\mathcal{M}_{\mathcal{K}_{R^*}}(A)(y) = (\bigwedge_{x \in X} (A^*(x) \to R(x, y)))^* = \bigvee_{x \in X} (A^*(x) \odot R(x, y)),$$
$$\mathcal{M}_{\mathcal{K}_{R^{-1*}}}(A)(y) = (\bigwedge_{x \in X} (A^*(x) \to R^{-1}(x, y)))^* = \bigvee_{x \in X} (A^*(x) \odot R^{-1}(x, y)).$$

Moreover, the pair $(\mathcal{M}_R, \mathcal{M}_{R^{-1}})$ is a dual Galois connection such that

 $\tau_{\mathcal{K}_{R^{-1*}}} = \tau_{\mathcal{M}_{R}} = (\tau_{\mathcal{K}_{R^{-1*}}})_{*} = (\tau_{\mathcal{M}_{R^{-1}}})_{*}.$ (6) If *R* is an *L*-fuzzy preorder, by (3), $\mathcal{K}_{R^{*}}(\mathcal{K}_{R^{*}}^{*}(A)) = \mathcal{K}_{R^{*}}(A)$ and $\mathcal{K}_{R^{-1*}}(\mathcal{K}^*_{R^{-1*}}(A)) = \mathcal{K}_{R^{-1*}}(A)$ for $A \in L^X$. By Theorem 2.1(6), $\mathcal{M}_R(\mathcal{M}^*_R(A)) =$ $\mathcal{M}_R(A)$ and $\mathcal{M}_{R^{-1}}(\mathcal{M}^*_{R^{-1}}(A)) = \mathcal{M}_{R^{-1}}(A)$ for $A \in L^X$ such that $\tau_{\mathcal{K}_{R^{-1*}}} =$ $\tau_{\mathcal{M}_R} = (\tau_{\mathcal{K}_{R^{-1*}}})_* = (\tau_{\mathcal{M}_{R^{-1}}})_*$ with

$$\tau_{\mathcal{M}_R} = \{\mathcal{M}_R^*(A) = \bigwedge_{x \in X} (R(x, -) \to A(x)) \mid A \in L^X\},\$$
$$\tau_{\mathcal{M}_{R^{-1}}} = \{\mathcal{M}_{R^{-1}}^*(A) = \bigwedge_{x \in X} (R(-, x) \to A(x)) \mid A \in L^X\}.$$

(7) If R is a reflexive and Euclidean L-fuzzy relation, by (4), $\mathcal{K}_{R^*}(\mathcal{K}_{R^*}(A)) =$ $\mathcal{K}^*_{R^*}(A)$ for $A \in L^X$. By Theorem 2.1(7), then $\mathcal{M}_R(\mathcal{M}_R(A)) = \mathcal{M}^*_R(A)$ for $A \in L^X$ such that $\tau_{\mathcal{M}_R} = (\tau_{\mathcal{M}_R})_*$ with

$$\tau_{\mathcal{M}_R} = \{ \mathcal{M}_R(A) = \bigvee_{x \in X} (A^*(x) \odot R(x, -)) \mid A \in L^X \}.$$

(8) Define $\mathcal{J}_{\mathcal{K}_{R^*}}(A) = \mathcal{K}_{R^*}(A^*)$. By Theorem 2.1(8), $\mathcal{J}_{\mathcal{K}_{R^*}} = \mathcal{J}_R$ and $\mathcal{J}_{\mathcal{K}_{R^{-1}*}} = \mathcal{J}_{R^{-1}}$ are *L*-lower approximation operators such that

$$\mathcal{J}_{\mathcal{K}_{R^*}}(A)(y) = \bigwedge_{x \in X} (A^*(x) \to R^*(x, y)) = \bigwedge_{x \in X} (R(x, y) \to A(x)),$$

Yong Chan Kim

$$\mathcal{J}_{\mathcal{K}_{R^{-1*}}}(A)(y) = \bigwedge_{x \in X} (A^*(x) \to R^{-1*}(x,y)) = \bigwedge_{x \in X} (R(y,x) \to A(x)).$$

Moreover, $\tau_{\mathcal{J}_R} = (\tau_{\mathcal{K}_{R^*}})_* = \tau_{\mathcal{K}_{R^{-1*}}}$ and $\tau_{\mathcal{J}_{R^{-1}}} = (\tau_{\mathcal{K}_{R^{-1*}}})_* = \tau_{\mathcal{K}_{R^*}}$.

(9) If R is an L-fuzzy preorder, by (3), $\mathcal{K}_{R^*}(\mathcal{K}_{R^*}^*(A)) = \mathcal{K}_{R^*}(A)$ and $\mathcal{K}_{R^{-1*}}(\mathcal{K}_{R^{-1*}}^*(A)) = \mathcal{K}_{R^{-1*}}(A)$ for $A \in L^X$. By Theorem 2.1(9), then $\mathcal{J}_R(\mathcal{J}_R(A)) = \mathcal{J}_R(A)$ and $\mathcal{J}_{R^{-1}}(\mathcal{J}_{R^{-1}}(A)) = \mathcal{J}_{R^{-1}}(A)$ for $A \in L^X$ such that $\tau_{\mathcal{J}_{R^{-1}}} = (\tau_{\mathcal{J}_R})_*$ with

$$\tau_{\mathcal{J}_R} = \{\mathcal{J}_R(A) = \bigwedge_{x \in X} (R(x, -) \to A(x)) \mid A \in L^X\},\$$
$$\tau_{\mathcal{J}_{R^{-1}}} = \{\mathcal{J}_{R^{-1}}(A) = \bigwedge_{x \in X} (R(-, x) \to A(x)) \mid A \in L^X\}.$$

(10) If R is a reflexive and Euclidean L-fuzzy relation, by (4), $\mathcal{K}_{R^*}(\mathcal{K}_{R^*}(A)) = \mathcal{K}_{R^*}^*(A)$ for $A \in L^X$. By Theorem 2.1(10), $\mathcal{J}_R(\mathcal{J}_R^*(A)) = \mathcal{J}_R^*(A)$ for $A \in L^X$ such that $\tau_{\mathcal{J}_R} = (\tau_{\mathcal{J}_R})_*$ with

$$\tau_{\mathcal{J}_R} = \{\mathcal{J}_R^*(A) = \bigvee_{x \in X} (A^*(x) \odot R(x, -)) \mid A \in L^X\}.$$

(11) Define $\mathcal{H}_{\mathcal{K}_{R^*}}(A) = (\mathcal{K}_{R^*}(A))^*$. Then $\mathcal{H}_{\mathcal{K}_{R^*}} = \mathcal{H}_R$ is an *L*-upper approximation operator such that

$$\mathcal{H}_{\mathcal{K}_{R^*}}(A)(y) = \bigvee_{x \in X} (R(x, y) \odot A(x)).$$

Moreover, $\tau_{\mathcal{H}_R} = \tau_{\mathcal{K}_{R^*}}$.

(12) If R is an L-fuzzy preorder, by (3), $\mathcal{K}_{R^*}(\mathcal{K}_{R^*}^*(A)) = \mathcal{K}_{R^*}(A)$ and $\mathcal{K}_{R^{-1*}}(\mathcal{K}_{R^{-1*}}^*(A)) = \mathcal{K}_{R^{-1*}}(A)$ for $A \in L^X$. By Theorem 2.1(12), $\mathcal{H}_{\mathcal{K}_{R^*}}(\mathcal{H}_{\mathcal{K}_{R^*}}(A)) = \mathcal{H}_{\mathcal{K}_{R^*}}(A)$ and $\mathcal{H}_{\mathcal{K}_{R^{-1*}}}(\mathcal{H}_{\mathcal{K}_{R^{-1*}}}(A)) = \mathcal{H}_{\mathcal{K}_{R^{-1*}}}(A)$ for $A \in L^X$ such that $\tau_{\mathcal{H}_{R^{-1}}} = (\tau_{\mathcal{H}_R})_*$ with

$$\tau_{\mathcal{H}_R} = \{\mathcal{H}_R(A) = \bigvee_{x \in X} (R(x, -) \odot A(x)) \mid A \in L^X\},\$$
$$\tau_{\mathcal{H}_{R^{-1}}} = \{\mathcal{H}_{R^{-1}}(A) = \bigvee_{x \in X} (R(-, x) \odot A(x)) \mid A \in L^X\}.$$

(13) If R is a reflexive and Euclidean L-fuzzy relation, by (4), $\mathcal{K}_{R^*}(\mathcal{K}_{R^*}(A)) = \mathcal{K}_{R^*}^*(A)$ for $A \in L^X$. By Theorem 2.1(13), $\mathcal{H}_R(\mathcal{H}_R^*(A)) = \mathcal{H}_R^*(A)$ for $A \in L^X$ such that $\tau_{\mathcal{H}_R} = (\tau_{\mathcal{H}_R})_*$ with

$$\tau_{\mathcal{H}_R} = \{\mathcal{H}_R^*(A) = \bigwedge_{x \in X} (A(x) \to R^*(x, -)) \mid A \in L^X\}.$$

(14) $(\mathcal{H}_{R^{-1}}, \mathcal{J}_R)$ is a residuated connection; i.e,

$$\mathcal{H}_{R^{-1}}(A) \le B \text{ iff } \mathcal{K}_{R^{-1*}}(A) \ge B^*,$$
$$A \le \mathcal{K}_{R^*}(B^*) \text{ iff } A \le \mathcal{J}_R(B).$$

Similarly, $(\mathcal{H}_R, \mathcal{J}_{R^{-1}})$ is a residuated connection. Moreover, $\tau_{\mathcal{J}_R} = \tau_{\mathcal{H}_{R^{-1}}}$ and $\tau_{\mathcal{J}_{R^{-1}}} = \tau_{\mathcal{H}_R}$.

316

References

- R. Bělohlávek, Fuzzy Relational Systems, *Kluwer Academic Publishers*, New York, 2002.
- [2] P. Hájek, Metamathematices of Fuzzy Logic, *Kluwer Academic Publishers*, Dordrecht (1998).
- [3] Y.C. Kim, L-approximatins and join preserving maps, J. Math. Comput. Sci., 3 (5) (2013), 1193-1210.
- [4] Y.C. Kim, Alexandrov L-topologies and L-join meet approximation operators International Journal of Pure and Applied Mathematics, 91(1)(2014), 113-129.
- [5] H. Lai, D. Zhang, Fuzzy preorder and fuzzy topology, *Fuzzy Sets and Systems*, 157 (2006), 1865-1885.
- [6] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, Int. J. Approx. Reasoning, 50 (2009), 695-707.
- [7] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341-356.
- [8] Z. Pawlak, Rough probability, Bull. Pol. Acad. Sci. Math., 32(1984), 607-615.
- [9] A. M. Radzikowska, E.E. Kerre, A comparative study of fuzy rough sets, Fuzzy Sets and Systems, 126(2002), 137-155.
- [10] Y.H. She, G.J. Wang, An axiomatic approach of fuzzy rough sets based on residuated lattices, *Computers and Mathematics with Applications*, 58(2009), 189-201.
- [11] Zhen Ming Ma, Bao Qing Hu, Topological and lattice structures of Lfuzzy rough set determined by lower and upper sets, *Information Sciences*, 218(2013), 194-204.

Received: March, 2014