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1 Introduction

Hájek [2] introduced a complete residuated lattice which is an algebraic struc-
ture for many valued logic. Pawlak [7,8] introduced rough set theory as a for-
mal tool to deal with imprecision and uncertainty in data analysis. Radzikowska
[9] developed fuzzy rough sets in complete residuated lattice. Bělohlávek [1]
investigated information systems and decision rules in complete residuated
lattices. Lai [5,6] introduced Alexandrov L-topologies induced by fuzzy rough
sets. Kim [3,4] investigated the properties of Alexandrov topologies in com-
plete residuated lattices. Algebraic structures of fuzzy rough sets are developed
in many directions [3,9,10]

In this paper, we introduce join meet approximation operators with Galois
connection in complete residuated lattices. We investigate relations between
their operations and Alexandrov L-topologies.

Definition 1.1 [1,2] An algebra (L,∧,∨,⊙,→,⊥,⊤) is called a complete
residuated lattice if it satisfies the following conditions:
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(C1) L = (L,≤,∨,∧,⊥,⊤) is a complete lattice with the greatest element
⊤ and the least element ⊥;

(C2) (L,⊙,⊤) is a commutative monoid;
(C3) x⊙ y ≤ z iff x ≤ y → z for x, y, z ∈ L.

In this paper, we assume (L,∧,∨,⊙,→,∗⊥,⊤) is a complete residuated
lattice with the law of double negation;i.e. x∗∗ = x. For α ∈ L,A,⊤x ∈ LX ,
(α → A)(x) = α → A(x), (α ⊙ A)(x) = α ⊙ A(x) and ⊤x(x) = ⊤,⊤x(x) =
⊥, otherwise.

Lemma 1.2 [1,2] For each x, y, z, xi, yi ∈ L, we have the following proper-
ties.

(1) If y ≤ z, (x⊙ y) ≤ (x⊙ z), x → y ≤ x → z and z → x ≤ y → x.
(2) x → (

∧
i∈Γ yi) =

∧
i∈Γ(x → yi).

(3) (
∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y).
(4)

∧
i∈Γ y

∗
i = (

∨
i∈Γ yi)

∗ and
∨

i∈Γ y
∗
i = (

∧
i∈Γ yi)

∗.

(5) (x⊙ y) → z = x → (y → z) = y → (x → z).
(6) x⊙ y = (x → y∗)∗.
(7) x⊙ (x → y) ≤ y.
(8) (x → y)⊙ (y → z) ≤ x → z.
(9) (x → y) → (x → z) ≥ y → z and (x → z) → (y → z) ≥ y → x.
(10) x⊙ y → x⊙ z ≥ y → z.

Definition 1.3 [3,4] (1) A map H : LX → LX is called an L-upper approx-

imation operator iff it satisfies the following conditions
(H1) A ≤ H(A),
(H2) H(α⊙A) = α⊙H(A) where α(x) = α for all x ∈ X ,
(H3) H(

∨
i∈I Ai) =

∨
i∈I H(Ai).

(2) A map J : LX → LX is called an L-lower approximation operator iff it
satisfies the following conditions

(J1) J (A) ≤ A,
(J2) J (α → A) = α → J (A),
(J3) J (

∧
i∈I Ai) =

∧
i∈I J (Ai).

(3) A map K : LX → LX is called an L-join meet approximation operator

iff it satisfies the following conditions
(K1) K(A) ≤ A∗,
(K2) K(α⊙A) = α → K(A),
(K3) K(

∨
i∈I Ai) =

∧
i∈I K(Ai).

(4) A map M : LX → LX is called an L-meet join approximation operator

iff it satisfies the following conditions
(M1) A∗ ≤ M(A),
(M2) M(α → A) = α⊙M(A),
(M3) M(

∧
i∈I Ai) =

∨
i∈I M(Ai).
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Definition 1.4 [4,5] A subset τ ⊂ LX is called an Alexandrov L-topology

if it satisfies:
(T1) ⊥X ,⊤X ∈ τ where ⊤X(x) = ⊤ and ⊥X(x) = ⊥ for x ∈ X .
(T2) If Ai ∈ τ for i ∈ Γ,

∨
i∈ΓAi,

∧
i∈Γ Ai ∈ τ .

(T3) α⊙ A ∈ τ for all α ∈ L and A ∈ τ .
(T4) α → A ∈ τ for all α ∈ L and A ∈ τ .

Theorem 1.5 [4] (1) τ is an Alexandrov topology on X iff τ∗ = {A∗ ∈ LX |
A ∈ τ} is an Alexandrov topology on X.

(2) If H is an L-upper approximation operator, then τH = {A ∈ LX |
H(A) = A} is an Alexandrov topology on X.

(3) If J is an L-lower approximation operator, then τJ = {A ∈ LX |
J (A) = A} is an Alexandrov topology on X.

(4) If K is an L-join meet approximation operator, then τK = {A ∈ LX |
K(A) = A∗} is an Alexandrov topology on X.

(5) If M is an L-meet join operator, then τM = {A ∈ LX | M(A) = A∗}
is an Alexandrov topology on X.

2 L-join meet approximation operators with

Galois connections

Theorem 2.1 Let K : LX → LX be an L-join meet approximation opera-

tors. Then the following properties hold.

(1) For A ∈ LX , K(A)(y) =
∧

x∈X(A(x) → K(⊤x)(y)).
(2) Define K1(B) =

∨
{A | B ≤ K(A)}. Then K1 : L

X → LX with

K1(B)(x) =
∧

y∈X

(B(y) → K(⊤x)(y))

is an L-join meet approximation operator such that (K,K1) is a Galois con-

nection;i.e.,

A ≤ K1(B) iff B ≤ K(A).

Moreover, τK1
= (τK)∗.

(3) If K(K∗(A)) = K(A) for A ∈ LX , then K1(K
∗
1(A)) = K1(A) for A ∈ LX

such that τK1
= (τK)∗ with

τK = {K∗(A) =
∨

x∈X

(A(x)⊙K∗(⊤x)) | A ∈ LX},
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τK1
= {K∗

1(A)(y) =
∨

x∈X

(A(x)⊙K∗(⊤y)(x)) | A ∈ LX}.

(4) If K(K(A)) = K∗(A) for A ∈ LX , then K(K∗(A)) = K(A) such that

τK = {K(A) =
∧

x∈X

(A(x) → K(⊤x)) | A ∈ LX} = (τK)∗.

(5) Define MK(A) = K(A∗)∗. Then MK : LX → LX with

MK(A)(y) =
∨

x∈X

(A∗(x)⊙K∗(⊤x)(y))

is an L-meet join approximation operator. Moreover, the pair (MK ,MK1
) is

a dual Galois connection;i.e.,

MK(A) ≤ B, iff MK1
(B) ≤ A

such that τK1
= τMK

= (τK)∗ = (τMK1
)∗.

(6) If K(K∗(A)) = K(A) for A ∈ LX , then MK(M
∗
K(A)) = MK(A) for

A ∈ LX such that τK1
= τMK

= (τK)∗ = (τMK1
)∗. with

τMK
= {M∗

K(A) =
∧

x∈X

(K∗(⊤x) → A(x)) | A ∈ LX},

τ(MK )1 = {(MK)
∗
1(A)(y) =

∧

x∈X

(K∗(⊤y)(x) → A(x)) | A ∈ LX}.

(7) If K(K(A)) = K∗(A) for A ∈ LX , then MK(MK(A)) = M∗
K(A) such

that

τMK
= {MK(A) =

∨

x∈X

(A∗(x)⊙K∗(⊤x)) | A ∈ LX} = (τMK
)∗.

(8) Define JK(A) = K(A∗). Then JK : LX → LX with

JK(A)(y) =
∧

x∈X

(A∗(x) → K(⊤x)(y)) =
∧

x∈X

(K∗(⊤x)(y) → A(x))).

is an L-lower approximation operator.

(9) If K(K∗(A)) = K(A) for A ∈ LX , then JK(JK(A)) = JK(A) for

A ∈ LX such that τJK1
= (τJK

)∗ with

τJK
= {JK(A) =

∧

x∈X

(K∗(⊤x) → A(x))) | A ∈ LX},

τJK1
= {JK1

(A)(x) =
∧

x∈X

(K∗(⊤x)(y) → A(y))) | A ∈ LX}.
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(10) If K(K(A)) = K∗(A) for A ∈ LX , then JK(J
∗
K(A)) = J ∗

K(A) such

that

τJK
= {J ∗

K(A) =
∨

x∈X

(K∗(⊤x)⊙ A∗(x))) | A ∈ LX} = (τJK
)∗.

(11) Define HK(A) = (K(A))∗. Then HK : LX → LX with

HK(A)(y) =
∨

x∈X

(A(x)⊙K∗(⊤x)(y))

is an L-upper approximation operator. Moreover, τHK
= τK.

(12) If K(K∗(A)) = K(A) for A ∈ LX , then HK(HK(A)) = HK(A) for

A ∈ LX such that τHK1
= (τHK

)∗ with

τHK
= {HK(A) =

∨

x∈X

(A(x)⊙K∗(⊤x)) | A ∈ LX},

τ(HK)1 = {(HK)1(A)(y) =
∨

x∈X

(A(x)⊙K∗(⊤y)(x)) | A ∈ LX}.

(13) If K(K(A)) = K∗(A) for A ∈ LX , then HK(HK(A)) = H∗
K(A) such

that

τHK
= {H∗

K(A) =
∧

x∈X

(A(x) → K(⊤x)) | A ∈ LX} = (τHK
)∗.

(14) (HK1
,JK) and (HK ,JK1

) are a residuated connetion;i.e,

HK1
(A) ≤ B iff A ≤ JK(B),

HK(A) ≤ B iff A ≤ JK1
(B).

Moreover, τJK
= τHK1

and τJK1
= τHK

.

Proof (1) For A =
∨

x∈X(A(x) ⊙ ⊤x) ∈ LX , K(A)(y) =
∧

x∈X(A(x) →
K(⊤x)(y)).

(2) (K1) Since B ≤ K(K1(B)) ≤ K∗
1(B), we have K1(B) ≤ B∗.

(K2) Since K1(B) ≤ K1(B), then B ≤ K(K1(B)). Thus,

B ≤ K(K1(B)) ≤ K(a⊙ (a → K1(B))) = a → K(a → K1(B))
iff a⊙B ≤ K(a → K1(B))
iff a → K1(B) ≤ K1(a⊙ B).

a⊙ B ≤ K(K1(a⊙ B))
iff B ≤ a → K(K1(a⊙ B)) = K(a⊙K1(a⊙B))
iff a⊙K1(a⊙B) ≤ K1(B)
iff K1(a⊙B) ≤ a → K1(B).
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(K3) K1(
∨

i∈Γ Ai) =
∧

i∈Γ K1(Ai). By the definition of K1, since K1(A) ≤
K1(B) for B ≤ A, we have

K1(
∨

i∈Γ

Ai) ≤
∧

i∈Γ

K1(Ai).

Since K(
∧

i∈ΓK1(Ai)) ≥ K(K1(Ai)) ≥ Ai, then K(
∧

i∈Γ K1(Ai)) ≥
∨

i∈Γ Ai.
Thus

K1(
∨

i∈Γ

Ai) ≥
∧

i∈Γ

K1(Ai).

Thus K1 : LX → LX is an L-join meet approximation operator. By the
definition of K1, we have

A ≤ K1(B) iff B ≤ K(A).

Since A∗ ≤ K1(A) iff A ≤ K(A∗), we have τK1
= (τK)∗.

(3) Let K(K∗(A)) = K(A) for A ∈ LX . Then
K∗

1(A) ≤ K(B) iff K1(A) ≥ K∗(B) iff K(K∗(B)) = K(B) ≥ A

K1(K
∗
1(A)) =

∨
{B | K∗

1(A) ≤ K(B)}
=

∨
{B | A ≤ K(B)}

= K1(A).

(4) Let K(A) ∈ τK. Since K(K(A)) = K∗(A), K(K∗(A)) = K(K(K(A))) =
(K(K(A)))∗ = K(A). Hence K∗(A) ∈ τK; i.e. K(A) ∈ (τK)∗.

Let A ∈ (τK)∗. Then A = K(A∗). Since K(A) = K(K(A∗)) = K∗(A∗) = A∗,
then A ∈∈ τK. Thus, (τK)∗ ⊂ τK.

(5) (M1) Since A ≤ K(A∗), MK(A) = K(A∗)∗ ≤ A∗.
(M2)

MK(α → A) = (K((α → A)∗)∗ = (K(α⊙A∗))∗

= (α → K(A∗))∗ = α⊙K(A∗)∗

= α⊙MK(A).

(M3)
MK(

∧
i∈ΓAi) = (K(

∧
i∈Γ Ai)

∗)∗ = (K(
∨

i∈Γ A
∗
i ))

∗

= (
∧

i∈Γ K(A∗
i ))

∗ =
∨

i∈Γ(K(A∗
i ))

∗

=
∨

i∈Γ MK(Ai).

Moreover, the pair (MK ,MK1
) is a dual Galois connection from:

MK(A) ≤ B iff B∗ ≤ K(A∗) iff A∗ ≤ K1(B
∗)

K∗
1(B

∗) ≤ A iff MK1
(B) ≤ A.

We have τK1
= τMK

= (τK)∗ = (τMK1
)∗ from:

A∗ ≤ K1(A) iff A ≤ K(A∗)
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MK(A) ≤ A∗ iff MK1
(A∗) ≤ A.

(6) Let K(K∗(A)) = K(A) for A ∈ LX . Then

MK(M
∗
K(A)) = K∗(MK(A)) = (K(K∗(A∗)))∗

= K∗(A∗) = MK(A).

By (3), sinceK1(K
∗
1(A)) = K1(A) for A ∈ LX , (MK)1((MK)

∗
1(A)) = (MK)1(A)

for A ∈ LX . Thus,

τMK
= {M∗

K(A) | A ∈ LX}, τ(MK)1 = {(MK)
∗
1(A) | A ∈ LX}.

(7) Let K(K(A)) = K∗(A) for A ∈ LX . Then

MK(MK(A)) = K∗(M∗
K(A)) = (K(K(A∗)))∗

= (K∗(A∗))∗ = M∗
K(A).

By the similarly method in (4), MK(M
∗
K(A)) = MK(A) for A ∈ LX . Thus,

τMK
= {MK(A) | A ∈ LX} = (τMK

)∗.

(8) It is similarly proved as (5).
(9) If K(K∗(A)) = K(A) for A ∈ LX , then JK(JK(A)) = JK(A)

JK(JK(A)) = JK(K(A∗)) = K(K∗(A∗))
= K(A∗) = JK(A).

Similarly, JK1
(JK1

(A)) = JK1
(A). Thus, the results hold.

(10) If K(K(A)) = K∗(A) for A ∈ LX , then JK(J
∗
K(A)) = J ∗

K(A)

JK(J
∗
K(A)) = JK(K

∗(A∗)) = K(K(A∗))
= K∗(A∗) = J ∗

K(A).

Since JK(J
∗
K(A)) = J ∗

K(A)

JK(JK(A)) = JK(J
∗
K(J

∗
K(A)))

= J ∗
K(J

∗
K(A)) = JK(A).

Hence τJK
= {J ∗

K(A) | A ∈ LX} = (τJK
)∗.

(11) and (12) are similarly proved as (5) and (6), respectively.
(13) If K(K(A)) = K∗(A) for A ∈ LX , then HK(H

∗
K(A)) = H∗

K(A) from:

HK(H
∗
K(A)) = HK(K(A)) = (K(K(A)))∗

= (K∗(A))∗ = H∗
K(A).

(14) (HK1
,JK) is a residuated connection;i.e,

HK1
(A) ≤ B iff K1(A) ≥ B∗,

A ≤ K(B∗) iff A ≤ JK(B),

Similarly,(HK ,JK1
) is a residuated connection.
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Example 2.2 Let R be a reflexive L-fuzzy relation. Define KR∗ : LX → LX

as follows:

KR∗(A)(y) =
∧

x∈X

(A(x) → R∗(x, y)).

(1) (K1) KR∗(A)(y) ≤ A(y) → R∗(y, y)) = A∗(x).

(K2) KR∗(a⊙ A)(y) =
∧

x∈X((a⊙ A)(x) → R∗(x, y)) = a →
∧

x∈X(A(x) →
R∗(x, y)) = a → KR∗(A)(y).

(K3)KR∗(
∨

i∈Γ Ai)(y) =
∧

x∈X(
∨

i∈Γ Ai(x) → R∗(x, y)) =
∧

x∈X

∧
i∈Γ(Ai(x) →

R∗(x, y)) =
∧

i∈Γ KR∗(Ai)(y). Hence KR∗ is an L-join meet approximation op-
erator.

(2) Define (KR∗)1(B) =
∨
{A | B ≤ KR∗(A)}. Since B(y) ≤ KR∗(B)(y) iff

B(y) ≤ A(x) → R∗(x, y) iff A(x) ≤ B(y) → R∗(x, y)), then

(KR∗)1(B)(x) = KR−1∗(B)(x) =
∧

y∈X

(B(y) → R−1∗(y, x)).

Then (KR∗)1 = KR−1∗ with

KR−1∗(A)(y) =
∧

x∈X

(A(x) → R−1∗(x, y))

is an L-join meet approximation operator such that (KR,KR−1∗) is a Galois
connection;i.e.,

A ≤ KR−1∗(B) iff B ≤ KR∗(A).

Moreover, τK
R−1∗

= (τKR∗
)∗.

(3) If R is an L-fuzzy preorder, then R−1 is an L-fuzzy preorder. Since
R(x, y)⊙R(y, z) ≤ R(x, z) iff

A(x)⊙R(x, y)⊙ (A(x) → R∗(x, z) ≤ R(x, y)⊙ R∗(x, z) ≤ R∗(y, z)
iff A(x) → R∗(x, z) ≤ A(x)⊙R(x, y) → R∗(y, z)

KR∗(K∗
R∗(A))(z) =

∧
y∈X(K

∗
R∗(A)(y) → R∗(y, z))

=
∧

y∈X(
∨

x∈X(A(x)⊙R(x, y) → R∗(y, z))
=

∧
x∈X(A(x) → R∗(x, z)) = KR∗(A)(z).

Thus KR∗(K∗
R∗(A)) = KR∗(A) for A ∈ LX . Similarly, KR−1∗(K∗

R−1∗(A)) =
KR−1∗(A) for A ∈ LX such that τK

R−1∗
= (τKR∗

)∗ with

τKR∗
= {K∗

R∗(A) =
∨

x∈X

(A(x)⊙R(x,−)) | A ∈ LX},

τK
R−1∗

= {K∗
R−1∗(A) =

∨

x∈X

(A(x)⊙ R(−, x)) | A ∈ LX}.
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(4) Let R be a reflexive and Euclidean L-fuzzy relation. Since R(x.z) ⊙
R(y, z) ≤ R(x, y) iff R(y, z) ≤ R(x, z) → R(x, y) iff R(x, z) ⊙ R∗(x, y) ≤
R∗(y, z), then

A(x)⊙R(x, z)⊙ (A(x) → R∗(x, y)) ≤ R(x, z)⊙ R∗(x, y) ≤ R∗(y, z)
iff A(x)⊙ R(x, z) ≤ (A(x) → R∗(x, y)) → R∗(y, z).

KR∗(KR∗(A))(z) =
∧

y∈X(KR∗(A)(y) → R∗(y, z))
=

∧
y∈X(

∧
x∈X(A(x) → R∗(x, y)) → R∗(y, z))

≥
∨

x∈X(A(x)⊙ R(x, z)) = KR∗(A)(z).

Thus, KR∗(KR∗(A)) = K∗
R∗(A) for A ∈ LX such that τKR∗

= (τKR∗
)∗ with

τKR∗
= {KR∗(A) =

∧

x∈X

(A(x) → R(x,−)) | A ∈ LX}.

(5) Define MKR∗
(A) = KR∗(A∗)∗. By Theorem 2.1 (5), MKR∗

= MR and
M(KR∗)1 = MK

R−1∗
= MR−1 are L-meet join approximation operators such

that

MKR∗
(A)(y) = (

∧

x∈X

(A∗(x) → R(x, y)))∗ =
∨

x∈X

(A∗(x)⊙ R(x, y)),

MK
R−1∗

(A)(y) = (
∧

x∈X

(A∗(x) → R−1(x, y)))∗ =
∨

x∈X

(A∗(x)⊙R−1(x, y)).

Moreover, the pair (MR,MR−1) is a dual Galois connection such that
τK

R−1∗
= τMR

= (τK
R−1∗

)∗ = (τM
R−1

)∗.
(6) If R is an L-fuzzy preorder, by (3), KR∗(K∗

R∗(A)) = KR∗(A) and
KR−1∗(K∗

R−1∗(A)) = KR−1∗(A) forA ∈ LX . By Theorem 2.1(6),MR(M
∗
R(A)) =

MR(A) and MR−1(M∗
R−1(A)) = MR−1(A) for A ∈ LX such that τK

R−1∗
=

τMR
= (τK

R−1∗
)∗ = (τM

R−1
)∗ with

τMR
= {M∗

R(A) =
∧

x∈X

(R(x,−) → A(x)) | A ∈ LX},

τM
R−1

= {M∗
R−1(A) =

∧

x∈X

(R(−, x) → A(x)) | A ∈ LX}.

(7) IfR is a reflexive and Euclidean L-fuzzy relation, by (4), KR∗(KR∗(A)) =
K∗

R∗(A) for A ∈ LX . By Theorem 2.1(7), then MR(MR(A)) = M∗
R(A) for

A ∈ LX such that τMR
= (τMR

)∗ with

τMR
= {MR(A) =

∨

x∈X

(A∗(x)⊙R(x,−)) | A ∈ LX}.

(8) Define JKR∗
(A) = KR∗(A∗). By Theorem 2.1(8), JKR∗

= JR and
JK

R−1∗
= JR−1 are L-lower approximation operators such that

JKR∗
(A)(y) =

∧

x∈X

(A∗(x) → R∗(x, y)) =
∧

x∈X

(R(x, y) → A(x)),
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JK
R−1∗

(A)(y) =
∧

x∈X

(A∗(x) → R−1∗(x, y)) =
∧

x∈X

(R(y, x) → A(x)).

Moreover, τJR
= (τKR∗

)∗ = τK
R−1∗

and τJ
R−1

= (τK
R−1∗

)∗ = τKR∗
.

(9) If R is an L-fuzzy preorder, by (3), KR∗(K∗
R∗(A)) = KR∗(A) and

KR−1∗(K∗
R−1∗(A)) = KR−1∗(A) forA ∈ LX . By Theorem 2.1(9), then JR(JR(A)) =

JR(A) and JR−1(JR−1(A)) = JR−1(A) for A ∈ LX such that τJ
R−1

= (τJR
)∗

with
τJR

= {JR(A) =
∧

x∈X

(R(x,−) → A(x)) | A ∈ LX},

τJ
R−1

= {JR−1(A) =
∧

x∈X

(R(−, x) → A(x)) | A ∈ LX}.

(10) IfR is a reflexive and Euclidean L-fuzzy relation, by (4), KR∗(KR∗(A)) =
K∗

R∗(A) for A ∈ LX . By Theorem 2.1(10), JR(J
∗
R(A)) = J ∗

R(A) for A ∈ LX

such that τJR
= (τJR

)∗ with

τJR
= {J ∗

R(A) =
∨

x∈X

(A∗(x)⊙ R(x,−)) | A ∈ LX}.

(11) Define HKR∗
(A) = (KR∗(A))∗. Then HKR∗

= HR is an L-upper ap-
proximation operator such that

HKR∗
(A)(y) =

∨

x∈X

(R(x, y)⊙A(x)).

Moreover, τHR
= τKR∗

.

(12) If R is an L-fuzzy preorder, by (3), KR∗(K∗
R∗(A)) = KR∗(A) and

KR−1∗(K∗
R−1∗(A)) = KR−1∗(A) forA ∈ LX . By Theorem 2.1(12),HKR∗

(HKR∗
(A)) =

HKR∗
(A) and HK

R−1∗
(HK

R−1∗
(A)) = HK

R−1∗
(A) for A ∈ LX such that τH

R−1
=

(τHR
)∗ with

τHR
= {HR(A) =

∨

x∈X

(R(x,−)⊙ A(x)) | A ∈ LX},

τH
R−1

= {HR−1(A) =
∨

x∈X

(R(−, x)⊙A(x)) | A ∈ LX}.

(13) IfR is a reflexive and Euclidean L-fuzzy relation, by (4), KR∗(KR∗(A)) =
K∗

R∗(A) for A ∈ LX . By Theorem 2.1(13), HR(H
∗
R(A)) = H∗

R(A) for A ∈ LX

such that τHR
= (τHR

)∗ with

τHR
= {H∗

R(A) =
∧

x∈X

(A(x) → R∗(x,−)) | A ∈ LX}.

(14) (HR−1 ,JR) is a residuated connection;i.e,

HR−1(A) ≤ B iff KR−1∗(A) ≥ B∗,

A ≤ KR∗(B∗) iff A ≤ JR(B).

Similarly, (HR,JR−1) is a residuated connection. Moreover, τJR
= τH

R−1
and

τJ
R−1

= τHR
.
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