Mathematica Aeterna, Vol. 5, 2015, no. 1, 159 - 162

Lie algebras with idempotent derivations

BAI Ruipu

College of Mathematics and Information Science Hebei University, Baoding, 071002, China email: bairuipu@hbu.edu.cn

GAO Yansha

College of Mathematics and Information Science Hebei University, Baoding, 071002, China

LI Zhengheng

College of Mathematics and Information Science Hebei University, Baoding, 071002, China Department of Mathematical Sciences University of South Carolina Aiken, Aiken, SC 29801, USA

Abstract

The structure of Lie algebras with idempotent derivations is studied. It is proved that a Lie algebra L has an idempotent derivation D if and only if $L = I \oplus K$, where I is an abelian ideal which is the image of D, K is a subalgebra of L which is the kernel of D, and D is identity on I.

Mathematics Subject Classification: 17B05, 17B30.

Keywords: Lie algebra, derivation, idempotent derivation

1 Introduction

It is well known that derivations are very important in the study of the structure of Lie algebras [1, 2, 3]. For example, a Lie algebra is nilpotent if it has an invertible derivation [4]. In this paper, we study Lie algebras with idempotent derivations. First we recall some definitions used in the paper. A Lie algebra L [5] is a vector space over a field F which with a bilinear skew-symmetric multiplication satisfying Jacobi identity, that is, for all $x, y, z \in L$,

$$[[x, y], z] = [[x, z], y] + [x, [y, z]].$$
(1)

If a linear map $D \in End(L)$ satisfies for all $x, y \in L$,

$$D([x,y]) = [D(x),y] + [x,D(y)],$$
(2)

then D is a derivation of L. The set of all derivations of L, is denoted by Der(L), is a linear Lie algebra. For $D \in Der(L)$, if $D^2 = D$, then D is called an idempotent derivation.

In the following we suppose L is a finite dimensional Lie algebra over the complex field.

2 Main results

Lemma 1 Let L be a Lie algebra and D be an idempotent derivation. Then for all $x, y \in L$,

1) [Dx, Dy] = 0; 2) D([D(x), y]) = [D(x), y]. **Proof** By identity (2), for all $x, y \in L$, we have $D([x, y]) = D^2([x, y]) = [D(x), y] + 2[D(x), D(y)] + [x, D(y)]$ = D([x, y]) + 2[D(x), D(y)].

Thanks to chF = 0, [Dx, Dy] = 0, and

 $D([D(x), y]) = [D^2(x), y] + [D(x), D(y)] = [D(x), y].$ The proof is completed.

Lemma 2 Let L be a Lie algebra, D be an idempotent derivation. Then the image of D on L, is denoted by I = D(L), is an abelian ideal of L, and the kernel of D, is denoted by K = KerD is a subalgebra of L.

Proof By Lemma 1, we know that for all $x, y \in L$, [D(x), D(y)] = 0, so [D(L), D(L)] = 0. It implies that I is an abelian subalgebra of L.

Since for all $x, y \in L$, [D(x), y] = D([x, y]) - [x, D(y)] = D([x, y]) + [D(y), x] = D([x, y]) + D([D(y), x]), it follows that $[D(L), L] \subset D(L)$, that is, I is an abelian ideal of L.

For all $x, y \in K$, by identity (2), D([x, y]) = [D(x), y] + [x, D(y)] = 0. It shows that K = KerD is a subalgebra of L. The result follows.

Theorem 1 Let L be a Lie algebra, and D be an idempotent derivation. Then L has the semi-direct decomposition: $L = I \oplus K$, where I = D(L) is an abelian ideal, and K = KerD is a subalgebra of L.

Proof The result follows from Lemma 1 and Lemma 2.

Theorem 2 Let L be a Lie algebra, D be an idempotent derivation. Then there exists a basis $\{x_1, \dots, x_r, y_1, \dots, y_s\}$ of L such that

$$\begin{cases} D(x_i) = x_i, 1 \le i \le r, \\ D(y_j) = 0, 1 \le j \le s. \end{cases}$$

160

And the multiplication of L is

$$[x_i, x_j] = 0, 1 \le i, j \le r,$$

$$[x_i, y_k] = \sum_{t=1}^r a_t^{ik} x_t, \ a_t^{ik} \in F, \ 1 \le i \le r, \ 1 \le k \le s,$$

$$[y_k, y_l] = \sum_{t=1}^s b_t^{kl} y_t, \ b_t^{kl} \in F, \ 1 \le k, \ l \le s.$$

Proof Since dim $L < \infty$ and $D^2 = D$, from the property of linear algebra, D is triangled and the eigenvalue of D are 1 and zero. Therefore, there is a basis $\{x_1, \dots, x_r, y_1, \dots, y_s\}$ of L such that $D(x_i) = x_i, 1 \leq i \leq r$, and $D(y_j) = 0$, $1 \leq j \leq s$. Thanks to Lemma 1 and Lemma 2, $I = \sum_{i=1}^r Fx_i$ is an abelian ideal and $K = \sum_{j=1}^r Fy_j$ is a subalgebra. Therefore, the multiplication of L in the basis $\{x_1, \dots, x_r, y_1, \dots, y_s\}$ is $[x_i, x_j] = 0, 1 \leq i, j \leq r$, $[x_i, y_k] = \sum_{t=1}^r a_t^{ik} x_t, 1 \leq i \leq r, 1 \leq k \leq s, [y_k, y_l] = \sum_{t=1}^s b_t^{kl} y_t, 1 \leq k, l \leq s$, where $a^{ik}, b^{kl} \in F$, $1 \leq i \leq r, 1 \leq k, l \leq s$. The result follows.

Theorem 3 Let L be a Lie algebra. Then there exists an idempotent derivation on L if and only if $L = I \oplus K$, where I is an abelian ideal, and K is a subalgebra.

Proof If there exists an idempotent derivation D on L, by Theorem 1 $L = I \oplus K$, where I = D(L) is an abelian ideal and K = KerD is a subalgebra. Conversely, define linear map $D : L \to L$ by

$$D(z) = \begin{cases} z, \text{ for all } z \in I, \\ 0, \text{ for all } z \in K. \end{cases}$$

Obviously, D satisfies $D^2 = D$, and for all $x_1, x_2 \in I, y_1, y_2 \in K$,

$$D([y_1, y_2]) = 0 = [D(y_1), y_2] + [y_1, D(y_2)],$$
$$D([x_1, x_2]) = [x_1, x_2] = 0, \quad [D(x_1), x_2] + [x_1, D(x_2)] = 0,$$
$$D([x_1, y_2]) = [x_1, y_2] = [D(x_1), y_2] = [D(x_1), y_2] + [x_1, D(y_2)]$$

It shows that D is a derivation of Lie algebra L.

Remark Let (A, [,]) be a finite dimensional Lie algebra over the complex field, (M, ρ) be an A-module. Then $L = A \oplus M$ is a Lie algebra in the multiplication $[,]_L$: for all $x, y \in A$ and $s, t \in M$,

$$[x, y]_L = [x, y], \ [s, t]_L = 0, [x, s]_L = \rho(x)(s).$$

Then M is an abelian ideal of L and A is a subalgebra. By Theorem 3 the linear map $D: L \to L$, defined by D(x) = 0, D(s) = s for all $x \in A, s \in M$, is an idempotent derivation of L.

Acknowledgements

The first author (R.-P. Bai) was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2014201006).

References

- R. BAI, Y. ZHNAG, Y. GAO, Three classes of 3-Lie algebras, Mathematica Aeterna, 2014, 4(3): 231-237.
- [2] R. BAI, Q. LI, 3-Lie algebras and triangular matrices, Mathematica Aeterna, 2014, 4(3): 3, 239-244.
- [3] R. BAI, W. WANG, H. ZHOU, Hom-structure of a class of infinite dimensional 3-Lie algebras, Journal of natural science of Heilongjiang university, 2014, 31(1):26-31.
- [4] N. JACOBISONG. Lie algebra, Wiley (Interscience) New York, 1962.
- [5] J. E. HUMPHREYS, Introduction to Lie algebras and representation theory, Berlin Heidelbers New York, 1972.

Received: January, 2015