LC Algebras and LC Frames

Yong Chan Kim and Jung Mi Ko

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr; jmko@gwnu.ac.kr

Abstract

We investigate the properties of LC (resp. LD) algebras and α -LC (resp. β -LC) frames. We show that each α -LC frame induces a complete LC algebra. Moreover, each β -LC frame induces a complete LD algebra.

Mathematics Subject Classification: 03E72, 54A40,54B10

Keywords: l-stable and r-stable sets, doubly fuzzy preordered sets, LC algebras, LC algebras, α -LC frames

1 Introduction

Urquhart [13] showed that the dual space of a bounded lattice is a doubly ordered topological space. This viewpoint develops many representation theorems for various algebraic structures [1,5,6]. On the other hand, Bělohlávek [2-4] developed the notion of lattice structures with $R \in L^{X \times Y}$ on a complete residuated lattice L. Lattice structures are important mathematical tools for data analysis and knowledge processing [2-4,11]. In [10], using doubly fuzzy preordered sets, we defined l-stable and r-stable fuzzy sets and showed that the family of l-stable fuzzy sets is a bounded lattice.

In this paper, we investigate the properties of LC (resp. LD) algebras and α -LC (resp. β -LC) frames as a sense in [5,6]. We show that every α -LC frame induces an complete LC algebra. Moreover, each β -LC frame induces a complete LD algebra.

2 Preliminaries

Definition 2.1 [8,9,12] A triple (L, \leq, \odot) is called a *complete residuated* lattice iff it satisfies the following properties:

- (L1) $(L, \leq, 1, 0)$ is a complete lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;
 - (L2) $(L, \odot, 1)$ is a commutative monoid;
 - $(L3) \odot$ is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

Example 2.2 [8,9,12] (1) Each frame (L, \leq, \land) is a complete residuated lattice.

- (2) The unit interval with a left-continuous t-norm t, ([0, 1], \leq , t), is a complete residuated lattice.
- (3) Define a binary operation \odot on [0,1] by $x\odot y=\max\{0,x+y-1\}$. Then $([0,1],\leq,\odot)$ is a complete residuated lattice.

Let (L, \leq, \odot) be a complete residuated lattice. A order reversing map $^*: L \to L$ defined by $a^* = a \to 0$ is called a *strong negation* if $(a^*)^* = a$ for each $a \in L$.

In this paper, we assume $(L, \leq, \odot, ^*)$ is a complete residuated lattice with a strong negation * .

Definition 2.3 [8,9,12] Let X be a set. A function $e_X : X \times X \to L$ is called *fuzzy preorder* on X if it satisfies the following conditions:

- (E1) $e_X(x,x) = 1$ for all $x \in X$,
- (E2) $e_X(x,y) \odot e_X(y,z) \le e_X(x,z)$, for all $x,y,z \in X$,

The pair (X, e_X) is a fuzzy preorder set.

Let e_X^1, e_X^2 be fuzzy preorder on X. A structure (X, e_X^1, e_X^2) is called a doubly fuzzy preordered set. If for all $x, y \in X$, $e_X^1(x, y) = e_X^2(x, y) = 1$ implies x = y, (X, e_X^1, e_X^2) is called a doubly fuzzy ordered set.

Let (X, e_X^1, e_X^2) and (Y, e_Y^1, e_Y^2) be doubly fuzzy preordered sets. A function $f: X \to Y$ is a doubly order preserving map if $e_X^i(x,y) \le e_Y^i(f(x),f(y))$ for all $x,y \in X$ and $i \in \{1,2\}$.

Lemma 2.4 [8,9,12] For each $x, y, z, x_i, y_i \in L$, we define $x \to y = \bigvee \{z \in L \mid x \odot z \leq y\}$. Then the following properties hold.

- (1) If $y \le z$, $(x \odot y) \le (x \odot z)$ and $x \to y \le x \to z$ and $z \to x \le y \to x$.
- (2) $x \odot y \le x \land y \text{ and } x \odot (x \to y) \le y$.
- (3) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i).$
- $(4) (\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y).$
- $(5) x \to (\bigvee_{i \in \Gamma} y_i) \ge \bigvee_{i \in \Gamma} (x \to y_i)$
- (6) $(\bigwedge_{i \in \Gamma} x_i) \to y \ge \bigvee_{i \in \Gamma} (x_i \to y).$
- (7) $\bigwedge_{i \in \Gamma} y_i^* = (\bigvee_{i \in \Gamma} y_i)^*$ and $\bigvee_{i \in \Gamma} y_i^* = (\bigwedge_{i \in \Gamma} y_i)^*$.
- (8) $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$.

- (9) $1 \to x = x$.
- (10) $x < y \text{ iff } x \to y = 1.$
- $(11) (x \to y) \odot (y \to z) \le x \to z.$
- $(12) (x_1 \to y_1) \odot (x_2 \to y_2) \le (x_1 \odot x_2 \to y_1 \odot y_2).$

Example 2.5 (1) We define a map $e_L: L \times L \to L$ $e_L(x,y) = x \to y =$ $\bigvee\{z\in L\mid x\odot z\leq y\}$ and $e_L^{-1}(x,y)=e_L(y,x)$. Then (L,e_L,e_L^{-1}) is a doubly fuzzy ordered set from Lemma 2.4 (10-11).

- (2) We define a function $e_{L^X}: L^X \times L^X \to L$ as $e_{L^X}(f,g) = \bigwedge_{x \in X} (f(x) \to L^X)$ g(x)). Then (L^X, e_{L^X}) is a fuzzy preordered set.
- (3) If (X, e_X) is a fuzzy preordered set and we define a function $e_X^{-1}(x, y) =$ $e_X(y,x)$, then (X,e_X^{-1}) is a fuzzy preordered set.

 $\begin{array}{l} \textbf{Definition 2.6} \ \ [10] \ \text{Let} \ e_X^1, e_X^2 \ \text{be fuzzy preorder on} \ X. \\ (1) \ A \in L^X \ \text{is} \ e_X^1\text{-extensional iff} \ A(x) \odot e_X^1(x,y) \leq A(y). \\ (2) \ B \in L^X \ \text{is} \ e_X^2\text{-extensional iff} \ B(x) \odot e_X^2(x,y) \leq B(y). \\ \text{The family of} \ e_X^1\text{-extensional (resp.} \ e_X^2\text{-extensional) fuzzy sets will be denoted by} \ E_1(L^X) \ \text{(resp.} \ E_2(L^X)). \\ \end{array}$

Definition 2.7 [10] Let (X, e_X^1, e_X^2) be a doubly fuzzy preorderd set. We define maps $l, r: L^X \to L^X$ as

$$l(A)(x) = \bigwedge_{y \in X} (e_X^1(x, y) \to A^*(y)),$$

$$r(A)(x) = \bigwedge_{y \in X} (e_X^2(x, y) \to A^*(y)).$$

A fuzzy set $A \in L^X$ is called *l*-stable (resp. *l*-stable) iff lr(A) = A (resp. rl(A)=A). The family of all l-stable (resp. r-stable) fuzzy sets will be denoted by $L(L^X)$ (resp. $R(L^X)$).

Theorem 2.8 [10] Let (X, e_X^1, e_X^2) be a doubly fuzzy preorderd set. We have the following properties.

- (1) $l(A) \in E_1(L^X)$ and $l(A) \leq A^*$.
- (2) $r(A) \in E_2(L^X)$ and $r(A) \leq A^*$.
- (3) If $A \in E_1(L^X)$, then $A \leq lr(A)$.
- (4) If $A \in E_2(L^X)$, then $A \leq rl(A)$.
- (5) If A is $(e_X^2)^{-1}$ -extensional, then $lr(A) = l(A^*) \le A$.
- (6) If A is $(e_X^1)^{-1}$ -extensional, then $rl(A) = r(A^*) \le A$.
- (7) If $A \in E_1(L^X)$, then $r(A) \in R(L^X)$.
- (8) If $A \in E_2(L^X)$, then $l(A) \in L(L^X)$.
- (9) If $A \in L(L^X)$, then $r(A) \in R(L^X)$.
- (10) If $A \in R(L^X)$, then $l(A) \in L(L^X)$.
- (11) If $A, B \in L(L^X)$, then $r(A) \wedge r(B) \in R(L^X)$.

3 LC algebra and LC Frames

Definition 3.1 Let $(X, \wedge, \vee, 0, 1)$ be a bounded lattice.

- (1) The structure $(X, \wedge, \vee, 0, 1, \gamma)$ is called an LC algebra if a map $\gamma : X \to X$ satisfies the following conditions:
 - (C1) $\gamma(\gamma(a)) = a$,
 - (C2) $\gamma(a \vee b) = \gamma(a) \vee \gamma(b)$.
- If $(X, \wedge, \vee, 0, 1)$ is a complete lattice, $(X, \wedge, \vee, 0, 1, \gamma)$ is called a *complete LC algebra*.
- (2) The structure $(X, \wedge, \vee, 0, 1, \eta)$ is called an *LD algebra* if a map $\eta: X \to X$ satisfies the following conditions:
 - (D1) $a \leq \eta(\eta(a)),$
 - (D2) $a \le \eta(b)$ iff $b \le \eta(a)$.
- If $(X, \wedge, \vee, 0, 1)$ is a complete lattice, $(X, \wedge, \vee, 0, 1, \eta)$ is called a *complete LD algebra*.

Lemma 3.2 Let $(X, \wedge, \vee, 0, 1, \gamma)$ be an LC algebra. Then the following properties hold:

- (1) $\gamma(0) = 0$ and $\gamma(1) = 1$.
- (2) If $a \leq b$, then $\gamma(a) \leq \gamma(b)$.
- (3) $\gamma(a \wedge b) = \gamma(a) \wedge \gamma(b)$.

Proof. (1) It follows from:

$$\gamma(0) = 0 \lor \gamma(0) = \gamma(\gamma(0)) \lor \gamma(0) = \gamma(\gamma(0) \lor 0) = \gamma(\gamma(0)) = 0,$$

$$1 = 1 \lor \gamma(1) = \gamma(\gamma(1)) \lor \gamma(1) = \gamma(\gamma(1) \lor 1) = \gamma(1).$$

- (2) Let $a \leq b$ be given. Then $a \vee b = b$. Thus $\gamma(a \vee b) = \gamma(a) \vee \gamma(b) = \gamma(b)$. Hence $\gamma(a) \leq \gamma(b)$.
- (3) By (2), $\gamma(a \wedge b) \leq \gamma(a)$, $\gamma(a \wedge b) \leq \gamma(b)$. Then $\gamma(a \wedge b) \leq \gamma(a) \wedge \gamma(b)$. Since $\gamma(a) \wedge \gamma(b) \leq \gamma(a)$, $\gamma(\gamma(a) \wedge \gamma(b)) \leq \gamma(\gamma(a)) = a$ and $\gamma(\gamma(a) \wedge \gamma(b)) \leq \gamma(\gamma(b)) = b$. Thus $\gamma(\gamma(a) \wedge \gamma(b)) \leq a \wedge b$ implies $\gamma(a) \wedge \gamma(b) \leq \gamma(a \wedge b)$.

Lemma 3.3 Let $(X, \wedge, \vee, 0, 1, \eta)$ be an LD algebra. Then the following properties hold:

- (1) $a = \eta(\eta(a))$, for all $a \in X$.
- (2) If $a \leq b$, then $\eta(a) \geq \eta(b)$.
- (3) $\eta(a \wedge b) = \eta(a) \vee \eta(b)$ and $\eta(a \vee b) = \eta(a) \wedge \eta(b)$.
- (4) $\eta(0) = 1$ and $\eta(1) = 0$.

Proof. (1) Since $\eta(a) \leq \eta(a)$, by (D2), $a \leq \eta(\eta(a))$.

- (2) Let $a < b = \eta(\eta(b))$ be given. By (D2), $\eta(a) > \eta(b)$.
- (3) By (2), $\eta(a \wedge b) \geq \eta(a), \eta(a \wedge b) \geq \eta(b)$. Then $\eta(a \wedge b) \geq \eta(a) \vee \eta(b)$. Since $\eta(a) \vee \eta(b) \geq \eta(a)$, $\eta(a) \vee \eta(b) \geq \eta(b)$ and $\eta(\eta(a) \vee \eta(b)) \leq \eta(\eta(a)) = a$, $\eta(\eta(a) \vee \eta(b)) < \eta(\eta(b)) = b$, we have $\eta(\eta(a) \vee \eta(b)) < a \wedge b$ implies $\eta(a) \vee \eta(b) < a \wedge b$ $\eta(a \wedge b)$. Hence $\eta(a \wedge b) = \eta(a) \vee \eta(b)$. Similarly, $\eta(a \vee b) = \eta(a) \wedge \eta(b)$.
 - (4) It follows from:

$$\eta(0) = \eta(0 \land \eta(1)) = \eta(0) \lor \eta(\eta(1)) = \eta(0) \lor 1$$
$$0 \lor \eta(1) = \eta(\eta(0)) \lor \eta(1) = \eta(\eta(0) \land 1) = 0.$$

Remark 3.4 Let $(X, \wedge, \vee, 0, 1, \gamma)$ be an LC algebra. By Lemma 3.2, we regard $\gamma: X \to X$ as a lattice isomorphism.

Definition 3.5 Let (X, e_X^1, e_X^2) be a doubly fuzzy preordered set. A structure $(X, e_X^1, e_X^2, \alpha)$ is called an α -LC-frame with a map $\alpha: X \to X$ satisfying the following conditions:

- $\begin{array}{l} ({\rm A1})\ e_X^1(x,y) \leq e_X^1(\alpha(x),\alpha(y)), \\ ({\rm A2})\ e_X^2(x,y) \leq e_X^2(\alpha(x),\alpha(y)), \\ ({\rm A3})\ \alpha(\alpha(x)) = x. \end{array}$

Remark 3.6 Let $(X, e_X^1, e_X^2, \alpha)$ be an α -LC-frame. Then

$$e_X^i(x,y) \leq e_X^i(\alpha(x),\alpha(y)) \leq e_X^i(\alpha(\alpha(x)),\alpha(\alpha(y))) = e_X^i(x,y).$$

Hence $e_X^i(x,y) = e_X^i(\alpha(x),\alpha(y))$, for i = 1,2. Furthermore, $\alpha(x) = \alpha(y)$ implies $x = \alpha(\alpha(x)) = \alpha(\alpha(y)) = y$. Thus α is injective. By (A3), α is surjective. Hence α is a bijective function. Furthermore, α, α^{-1} are doubly order preserving maps, then α is a doubly order isomorphism.

Theorem 3.7 Let $(X, e_X^1, e_X^2, \alpha)$ be an α -LC-frame. Define a map α^{\rightarrow} : $L^X \to L^X$ as

$$\alpha^{\rightarrow}(A)(y) = \bigvee_{x \in \alpha^{-1}(\{y\})} A(x)$$

Then we have the following properties.

- $(1) \alpha^{\rightarrow}(A)(\alpha(x)) = A(x), \alpha^{\rightarrow}(A)(x) = A(\alpha(x)).$
- (2) $\alpha^{\rightarrow}(\alpha^{\rightarrow}(A)) = A$.
- (3) $\alpha^{\rightarrow}(A) \leq \alpha^{\rightarrow}(B)$ for $A \leq B$,
- $(4) \ \alpha^{\rightarrow}(A \wedge B) = \alpha^{\rightarrow}(A) \wedge \alpha^{\rightarrow}(B).$
- (5) $\alpha^{\rightarrow}(A \vee B) = \alpha^{\rightarrow}(A) \vee \alpha^{\rightarrow}(B)$.
- (6) $l(\alpha^{\rightarrow}(A)) = \alpha^{\rightarrow}(l(A)).$
- $(7) \ r(\alpha^{\rightarrow}(A)) = \alpha^{\rightarrow}(r(A)).$
- (8) If A is l-stable, then so is $\alpha^{\rightarrow}(A)$.

Proof. (1) Since α is bijective,

$$\alpha^{\to}(A)(\alpha(x)) = \bigvee_{w \in \alpha^{-1}(\{\alpha(x)\})} A(w) = A(x),$$

$$\alpha^{\rightarrow}(A)(\alpha(\alpha(x))) = \alpha^{\rightarrow}(A)(x) = A(\alpha(x))...$$

(2) Since $\alpha(\alpha(y)) = y$ and α is bijective,

$$\alpha^{\rightarrow}(\alpha^{\rightarrow}(A))(y) = \alpha^{\rightarrow}(A)(\alpha(y)) = A(\alpha(\alpha(y))) = A(y).$$

- (3) It is easy.
- (4) By (3), since $\alpha^{\rightarrow}(A \wedge B) \leq \alpha^{\rightarrow}(A)$ and $\alpha^{\rightarrow}(A \wedge B) \leq \alpha^{\rightarrow}(B)$, then $\alpha^{\rightarrow}(A \wedge B) \leq \alpha^{\rightarrow}(A) \wedge \alpha^{\rightarrow}(B)$.

Furthermore, $\alpha^{\rightarrow}(\alpha^{\rightarrow}(A) \wedge \alpha^{\rightarrow}(B)) \leq \alpha^{\rightarrow}(\alpha^{\rightarrow}(A)) \wedge \alpha^{\rightarrow}(\alpha^{\rightarrow}(B)) = A \wedge B$. Thus $\alpha^{\rightarrow}(A) \wedge \alpha^{\rightarrow}(B) = \alpha^{\rightarrow}(\alpha^{\rightarrow}(\alpha^{\rightarrow}(A) \wedge \alpha^{\rightarrow}(B)) \leq \alpha^{\rightarrow}(A \wedge B)$.

- (5) It is similarly proved as in (4).
- (6)

$$\begin{array}{ll} \alpha^{\rightarrow}(l(A))(y) &= l(A)(\alpha(y)) \\ &= \bigwedge_{z \in X} (e^1_X(\alpha(y),z) \rightarrow A^*(z)) \\ &= \bigwedge_{z \in X} (e^1_X(\alpha(y),\alpha(z)) \rightarrow A^*(\alpha(z)) \\ &= \bigwedge_{z \in X} (e^1_X(y,z) \rightarrow A^*(\alpha(z)) = l(\alpha^{\rightarrow}(A))(y). \end{array}$$

- (7) It is similarly proved as in (6).
- (8) It follows from $lr(\alpha^{\rightarrow}(A)) = l\alpha^{\rightarrow}(r(A)) = \alpha^{\rightarrow}(lr(A)) = \alpha^{\rightarrow}(A)$.

Lemma 3.8 Let (X, e_X^1, e_X^2) be a doubly fuzzy preordered set.

- (1) If A_i are l-stable, then $\bigwedge_{i \in \Gamma} A_i$ is l-stable.
- (2) If A_i are l-stable, then $\bigwedge_{i\in\Gamma} rA_i$ is r-stable.

Proof. (1) Since $A_i = lr(A_i) \in E_1(L^X)$ and $(\bigwedge A_i(x)) \odot e_X^1(x, y) \leq \bigwedge A_i(y)$, then $\bigwedge A_i \in E_1(L^X)$. By Theorem 2.8 (3), $\bigwedge A_i \leq lr(\bigwedge A_i)$.

Suppose there exists $x \in X$ such that

$$lr(\bigwedge A_i)(x) \not\leq \bigwedge A_i(x).$$

Then there exists $j \in \Gamma$ such that

$$lr(\bigwedge A_i)(x) \not\leq A_j(x).$$

By the definition of $lr(A_j) = A_j$, there exists $j \in \Gamma$ such that

$$lr(\bigwedge A_i)(x) \not\leq e_1(x,y) \to r(A_j)^*(y)$$

On the other hand, since $r(A_i) \leq r(\bigwedge A_i)$, then

$$lr(\bigwedge A_i)(x) \leq e_1(x,y) \rightarrow r(\bigwedge A_i)^*(y)$$

 $\leq e_1(x,y) \rightarrow r(A_j)^*(y).$

It is a contradiction. Hence $lr(\bigwedge A_i) \leq \bigwedge A_i$.

(2) Since $r(A_i) \in E_2(L^X)$, then $\bigwedge r(A_i) \in E_2(L^X)$. Thus $\bigwedge r(A_i) \leq rl(\bigwedge r(A_i))$.

Suppose there exists $x \in X$ such that

$$rl(\bigwedge r(A_i))(x) \not\leq \bigwedge r(A_i)(x).$$

Then there exists $j \in \Gamma$ such that

$$rl(\bigwedge r(A_i))(x) \not\leq r(A_j)(x)$$

By the definition of $r(A_i)$, there exists $j \in \Gamma$ such that

$$rl(\bigwedge r(A_i))(x) \not\leq e_2(x,y) \to A_i^*(y).$$

On the other hand, since $\bigwedge r(A_i) \leq r(A_i)$, $l(\bigwedge r(A_i)) \geq A_i$. Thus,

$$rl(\bigwedge r(A_i))(x) \leq e_2(x,y) \to l(\bigwedge r(A_i))^*(y)$$

 $\leq e_2(x,y) \to A_j^*(y).$

It is a contradiction. Hence $rl(\bigwedge r(A_i)) \leq \bigwedge r(A_i)$.

Definition 3.9 Let (X, e_X^1, e_X^2) be a doubly fuzzy preordered set. A structure (X, e_X^1, e_X^2, β) is called a β -LC-frame with a map $\beta: X \to X$ satisfying the following conditions:

- (B1) $e_X^1(x,y) \le e_X^2(\beta(x),\beta(y))$,
- (B2) $e_X^2(x,y) \le e_X^1(\beta(x),\beta(y)),$
- (B3) $\beta(\beta(x)) = x$.

Remark 3.10 Let (X, e_X^1, e_X^2, β) be an β -LC-frame. Then

$$e_X^i(x,y) \le e_X^j(\beta(x),\beta(y)) \le e_X^i(\beta(\beta(x)),\beta(\beta(y))) = e_X^i(x,y).$$

Hence $e_X^i(x,y) = e_X^j(\beta(x),\beta(y))$, for $i \neq j \in \{1,2\}$. Furthermore, $\beta(x) = \beta(y)$ implies $x = \beta(\beta(x)) = \beta(\beta(y)) = y$. Thus β is injective. By (B3), β is surjective. Hence β is a bijective function. Furthermore, $\beta: (X,e_X^1,e_X^2) \to (X,e_X^2,e_X^1)$ and β^{-1} are doubly order preserving maps, then β is a doubly order isomorphism.

Theorem 3.11 Let (X, e_X^1, e_X^2, β) be a β -LC-frame. Define a map $\beta^{\rightarrow}: L^X \rightarrow L^X$ as

$$\beta^{\to}(A)(y) = \bigvee_{x \in \beta^{-1}(\{y\})} A(x)$$

Then we have the following properties.

- $(1) \beta^{\rightarrow}(A)(\beta(x)) = A(x), \beta^{\rightarrow}(A)(x) = A(\beta(x)).$
- (2) $\beta^{\rightarrow}(\beta^{\rightarrow}(A)) = A$.
- (3) $\beta^{\rightarrow}(A) < \beta^{\rightarrow}(B)$ for A < B.
- $(4) \ \beta^{\to}(A \wedge B) = \beta^{\to}(A) \wedge \beta^{\to}(B).$
- $(5) \ \beta^{\to}(A \vee B) = \beta^{\to}(A) \vee \beta^{\to}(B).$
- (6) $r(\beta^{\rightarrow}(A)) = \beta^{\rightarrow}(l(A)).$
- $(7) \ l(\beta^{\rightarrow}(A)) = \beta^{\rightarrow}(r(A)).$
- (8) If A is r-stable (resp. l-stable), then $\beta^{\rightarrow}(A)$ is l-stable (resp. r-stable).

Proof. (1-5) are similarly proved as in Theorem 3.7 (1-5). (6)

$$\begin{array}{ll} \beta^{\rightarrow}(l(A))(y) & == l(A)(\beta(y)) \\ & = \bigwedge_{z \in X} (e^1_X(\beta(y),z) \rightarrow A(z)) \\ & = \bigwedge_{z \in X} (e^1_X(\beta(y),\beta(z)) \rightarrow A(\beta(z)) \\ & = \bigwedge_{z \in X} (e^2_X(y,z) \rightarrow A(\beta(z)) = r(\beta^{\rightarrow}(A))(y). \end{array}$$

- (7) It is similarly proved as in (6).
- (8) It follows from $lr(\beta^{\rightarrow}(A)) = l\beta^{\rightarrow}(l(A)) = \beta^{\rightarrow}(rl(A)) = \beta^{\rightarrow}(A)$.

Theorem 3.12 Let (X, e_X^1, e_X^2, β) be a β -LC-frame. For $A \in L(L^X)$, we define a map $\eta^{\rightarrow}: L(L^X) \rightarrow L(L^X)$ as $\eta^{\rightarrow}(A)(x) = r(A)(\beta(x))$.

- $(1) \eta^{\rightarrow}(\eta^{\rightarrow}(A))(x) = r(\eta^{\rightarrow}(A))(\beta(x)) = A(x) \text{ for all } x \in X.$
- (2) $lr(\eta^{\to}(A)) = \eta^{\to}(A)$.
- (3) $A \leq \eta^{\rightarrow}(B)$ iff $B \leq \eta^{\rightarrow}(A)$, for each $A, B \in L(L^X)$.
- (4) If $A \leq B$, for each $A, B \in L(L^X)$, then $\eta^{\rightarrow}(A) \geq \eta^{\rightarrow}(B)$.
- (5) $\eta^{\rightarrow}(A \sqcup B) = \eta^{\rightarrow}(A) \wedge \eta^{\rightarrow}(B)$ and $\eta^{\rightarrow}(A \wedge B) = \eta^{\rightarrow}(A) \sqcup \eta^{\rightarrow}(B)$, for each $A, B \in L(L^X)$.

Proof. (1) We have $\eta^{\rightarrow}(\eta^{\rightarrow}(A))(x) = r(\eta^{\rightarrow}(A))(\beta(x))$. Suppose there exists $x \in X$ such that $r\eta^{\rightarrow}(A)(\beta(x)) \not\leq A(x)$. Since A = lr(A), there exists $w \in X$ such that

$$r\eta^{\rightarrow}(A)(\beta(x)) \not\leq e_X^1(x,w) \rightarrow (rA)^*(w).$$

Since $e_X^1(x, w) \to (rA)^*(w) = e_X^2(\beta(x), \beta(w)) \to (\eta^{\to}(A))^*(\beta(w)),$

$$r\eta^{\rightarrow}(A)(\beta(x)) \le e_X^2(\beta(x), \beta(w)) \to (\eta^{\rightarrow}(A))^*(\beta(w)).$$

It is a contradiction.

Suppose there exist $x \in X$ such that $A(x) \nleq r\eta^{\rightarrow}(A)(\beta(x))$. By the definition of $r\eta^{\rightarrow}(A)$, there exists $w \in X$ such that

$$A(x) \not< e_X^2(\beta(x), w) \to (\eta^{\to}(A))^*(w) = e_X^1(x, \beta(w)) \to (rA)^*(\beta(w)).$$

Thus, $A(x) \not\leq lr A(x)$. It is a contradiction.

(2) Suppose there exist $x \in X$ such that $lr\eta^{\rightarrow}(A)(x) \not\leq \eta^{\rightarrow}(A)(x) = rA(\beta(x))$. By the definition of r(A), there exists $w \in X$ such that

$$lr\eta^{\rightarrow}(A)(x) \not\leq e_X^2(\beta(x), w) \rightarrow A^*(w).$$

Since $(r\eta^{\to}(A))^*(\beta(w)) = (r\eta^{\to}(A)(\beta(w)))^* = (\eta^{\to}(\eta^{\to}(A))(x))^* = A^*(x)$,

$$\begin{array}{ll} lr\eta^{\rightarrow}(A)(x) & \leq e_X^1(x,\beta(w)) \rightarrow (r\eta^{\rightarrow}(A))^*(\beta(w)) \\ & \leq e_X^1(x,\beta(w)) \rightarrow (r\eta^{\rightarrow}(A))^*(\beta(w)) \\ & \leq e_X^2(\beta(x),w) \rightarrow A^*(w) \end{array}$$

It is a contradiction.

(3) Let $A \leq \eta^{\rightarrow}(B)$. Suppose there exist $x \in X$ such that $B(x) \nleq \eta^{\rightarrow}(A)(x) = rA(\beta(x))$. By the definition of r(A), there exists $w \in X$ such that

$$B(x) \not\leq e_X^2(\beta(x), w) \to A^*(w) = e_X^1(x, \beta(w)) \to A^*(w).$$

Since $A \leq \eta^{\rightarrow}(B)$,

$$B(x) \not\leq e_X^1(x,\beta(w)) \to \eta^{\to}(B)^*(w) = e_X^1(x,\beta(w)) \to (rB(\beta(w)))^*.$$

Hence $B(x) \not\leq lr(B)(x)$. It is a contradiction.

- (4) It follows from $r(A) \ge r(B)$ for $A \le B$.
- (5) Since $A \sqcup B = l(r(A) \wedge r(B))$ and $r(A) \wedge r(B) \in R(L^X)$,

$$\begin{array}{ll} \eta^{\rightarrow}(A \sqcup B)(x) &= r(A \sqcup B)(\beta(x)) = rl(r(A) \wedge r(B))(\beta(x)) \\ &= (r(A) \wedge r(B))(\beta(x)) = (\eta^{\rightarrow}(A) \wedge \eta^{\rightarrow}(B))(x). \end{array}$$

$$\eta^{\rightarrow}(A \wedge B) = \eta^{\rightarrow} \Big(\eta^{\rightarrow}(\eta^{\rightarrow}(A)) \wedge \eta^{\rightarrow}(\eta^{\rightarrow}(B)) \Big)$$
$$= \eta^{\rightarrow} \Big(\eta^{\rightarrow}(\eta^{\rightarrow}(A) \sqcup \eta^{\rightarrow}(B)) \Big)$$
$$= \eta^{\rightarrow}(A) \sqcup \eta^{\rightarrow}(B).$$

Theorem 3.13 Let (X, e_X^1, e_X^2) be a doubly fuzzy preordered set. We define

$$\bigwedge A_i, \bigsqcup A_i = l(\bigwedge rA_i), \ A_i \in L(L^X).$$

Then:

- (1) $(L(L^X), \Lambda, \sqcup, \overline{0}, \overline{1})$ is a complete lattice.
- (2) If $(X, e_X^1, e_X^2, \alpha)$ is an α -LC frame, then $(L(L^X), \wedge, \sqcup, \overline{0}, \overline{1}, \alpha^{\rightarrow})$ is a complete LC-algebra.
- (3) If (X, e_X^1, e_X^2, β) is a β -LC frame, then $(L(L^X), \wedge, \sqcup, \overline{0}, \overline{1}, \eta^{\rightarrow})$ is a complete LD-algebra.

Proof. (1) It follows from $A_i \leq B$ for all i iff $r(B) \leq r(A_i)$ for all i iff $r(B) \leq \bigwedge r(A_i)$ iff $r(B) = r(B) \wedge \bigwedge r(A_i)$ iff $lr(B) = l(r(B) \wedge \bigwedge r(A_i)) = B \sqcup l(\bigwedge r(A_i))$ iff $B = B \sqcup (\coprod A_i)$ iff $\coprod A_i \leq B$.

(2) $\alpha^{\rightarrow}: L(L^X) \rightarrow L(L^X)$ is well-defined from Theorem 3.7 (8). Furthermore, we have $\alpha^{\rightarrow}(\alpha^{\rightarrow}(A)) = A$ and

$$\alpha^{\rightarrow}(A \sqcup B) = \alpha^{\rightarrow}(l(r(A) \land r(B)) = l(\alpha^{\rightarrow}(r(A) \land r(B)))$$

= $l(\alpha^{\rightarrow}(r(A)) \land \alpha^{\rightarrow}(r(B))) = l(r(\alpha^{\rightarrow}(A)) \land r(\alpha^{\rightarrow}(B)))$
= $\alpha^{\rightarrow}(A) \sqcup \alpha^{\rightarrow}(B)$

(3) $\eta^{\rightarrow}: L(L^X) \rightarrow L(L^X)$ is well-defined from Theorem 3.12 (2). Furthermore, we have $\eta^{\rightarrow}(\eta^{\rightarrow}(A)) = A$ and $A \leq \eta^{\rightarrow}(B)$ iff $B \leq \eta^{\rightarrow}(A)$ for all $A, B \in L(L^X)$.

Example 3.14 Let $X = \{0, x, y, z, 1\}$ be a set and $(L = [0, 1], \odot)$ with $x \odot y = \max\{0, x + y - 1\}$. Let $(X, \wedge, \vee, 0, 1)$ be a bounded lattice as follows:

\wedge	0	X	у	Z	1
0	0	0	0	0	0
X	0	X	0	0	X
У	0	0	у	0	У
\mathbf{z}	0	0	0	\mathbf{Z}	\mathbf{Z}
1	0	X	у	\mathbf{Z}	1

V	0	X	У	Z	1
0	0	X	у	Z	1
X	X	X	1	1	1
У	У	1	У	1	1
\mathbf{z}	\mathbf{z}	1	1	\mathbf{Z}	1
1	1	1	1	1	1

(1) Define $\alpha: X \to X$ as

$$\alpha(0) = 0, \alpha(1) = 1, \alpha(x) = y, \alpha(y) = x, \alpha(z) = z.$$

We define $e_i: X \times X \to L$ as

	e_1	0	X	У	\mathbf{Z}	1
Ī	0	1	0.5	0.5	0.4	0.6
	X	0.6	1	0.8	0.6	0.7
	У	0.6	0.8	1	0.6	0.7
	\mathbf{Z}	0.4	0.4	0.4	1	0.3
	1	0.3	0.8	0.8	0.6 1 0.5	1

e_2	0	X	У	Z	1
0	1	0.6	0.6	0.5	0.5
X	0.7	1	0.4	0.7	0.6
У	0.7	0.4	1	0.7	0.6
\mathbf{z}	0.5	0.5	0.5	1	0.3
1	0.4	0.6	0.6	0.4	1

Since $e_i(x,y) = e_i(\alpha(x),\alpha(x))$ for $i = 1, 2, (X, e_1, e_2, \alpha)$ is an α -frame. For $A = (A(0), A(x), A(y), A(z), A(1))^t = (0.5, 0.6, 0.4, 0.7, 0.5)^t$, we have

$$l(\alpha^{\rightarrow}(A)) = (0.5, 0.6, 0.4, 0.3, 0.5)^t = \alpha^{\rightarrow}(l(A)).$$

(2) Define $\beta: X \to X$ as

$$\beta(0) = 0, \beta(1) = 1, \beta(x) = x, \beta(y) = z, \beta(z) = y.$$

We define $e_i: X \times X \to L$ as

e_1	0	X	У	Z	1
0		0.5			
X	0.6	1	0.8	0.6	0.7
у	0.6	$0.8 \\ 0.4$	1	0.6	0.7
\mathbf{z}	0.4	0.4	0.4	1	0.3
1	0.3	0.8	0.8	0.5	1

e_2	0	X	у	Z	1
0	1	0.5	0.4	0.5	0.6
X	0.6	1	0.6	0.8	0.7
у	0.4	0.4	1	0.4	0.3
\mathbf{z}	0.6	0.8	0.6	1	0.7
1	0.3	0.8	0.5	0.8	1

Since $e_1(x,y) = e_2(\beta(x), \beta(y))$ and $e_2(x,y) = e_1(\beta(x), \beta(y))$, (X, e_1, e_2, β) is a β -frame. We denote $A = (A(0), A(x), A(y), A(z), A(1))^t = (0.5, 0.6, 0.4, 0.7, 0.5)^t$, we have $A \in L(L^X)$. We obtain

$$\eta^{\rightarrow}(A) = rA(\beta(x)) = rA(0.5, 0.6, 0.7, 0.4, 0.5)^t = (0.5, 0.4, 0.3, 0.6, 0.5)^t \in L(L^X).$$

For $B = (0.4, 0.4, 0.3, 0.5, 0.4)^t \in L(L^X)$, we have

$$A \le \eta^{\rightarrow}(B) = (0.6, 0.6, 0.5, 0.7, 0.6)^t \text{ iff } B \le \eta^{\rightarrow}(A) = (0.5, 0.4, 0.3, 0.6, 0.5)^t.$$

References

- [1] G. Allwein, J.M. Dunn, Kripke models for linear logic, J. Symb. Logic 58, (1993) 514-545.
- [2] R. Bělohlávek, Similarity relations in concept lattices, J. Logic and Computation 10 (6) (2000) 823-845.
- [3] R. Bělohlávek, Fuzzy equational logic, Arch. Math. Log. 41 (2002) 83-90.
- [4] R. Bělohlávek, Similarity relations and BK-relational products, Information Sciences 126 (2000) 287-295.
- [5] I. Düntsch, E. Orłowska, A.M. Radzikowska, Lattice-based relation algebras and their rpresentabilty, Lecture Notes in Computer Science 2929, Springer-Verlag, 234-258, 2003.
- [6] I. Düntsch, E. Orłowska, A.M. Radzikowska, Lattice-based relation algebras II, Lecture Notes in Artificial Intelligence 4342, Springer-Verlag, 267-289, 2006.
- [7] W.Gähler, The general fuzzy filter approach to fuzzy topology I, Fuzzy Sets and Systems, **76**(1995), 205-224.
- [8] P. Hájek, *Metamathematices of Fuzzy Logic*, Kluwer Academic Publishers, Dordrecht (1998).

- [9] U. Höhle, E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston, 1995.
- [10] Y.C. Kim, Y.S.Kim, Doubly fuzzy preordered sets, to appear Mathematica Aeterna.
- [11] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, Int. J. Approx. Reasoning **50** (2009) 695-707.
- [12] E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co., 1999.
- [13] A. Urquhart, A topological representation theorem for lattices, Algebra Universalis 8, 1978, 45-58.

Received: April, 2012