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1 Introduction

Urquhart [13] showed that the dual space of a bounded lattice is a doubly
ordered topological space. This viewpoint develops many representation the-
orems for various algebraic structures [1,5,6]. On the other hand, Bélohldvek
[2-4] developed the notion of lattice structures with R € L*X*Y on a complete
residuated lattice L. Lattice structures are important mathematical tools for
data analysis and knowledge processing [2-4,11]. In [10], using doubly fuzzy
preordered sets, we defined l-stable and r-stable fuzzy sets and showed that
the family of l-stable fuzzy sets is a bounded lattice.

In this paper, we investigate the properties of LC (resp. LD) algebras
and a-LC (resp. (-LC) frames as a sense in [5,6]. We show that every a-LC
frame induces an complete LC algebra. Moreover, each S-LC frame induces a
complete LD algebra.

2 Preliminaries

Definition 2.1 [8,9,12] A triple (L, <,®) is called a complete residuated
lattice iff it satisfies the following properties:
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(L1) (L, <,1,0) is a complete lattice where 1 is the universal upper bound
and 0 denotes the universal lower bound;

(L2) (L,®,1) is a commutative monoid;

(L3) @ is distributive over arbitrary joins, i.e.

el el

Example 2.2 [8,9,12] (1) Each frame (L, <,A) is a complete residuated
lattice.

(2) The unit interval with a left-continuous t-norm t, ([0, 1], <,t), is a
complete residuated lattice.

(3) Define a binary operation ® on [0,1] by x ® y = max{0,z +y — 1}.
Then ([0, 1], <, ®) is a complete residuated lattice.

Let (L,<,®) be a complete residuated lattice. A order reversing map
*: L — L defined by a* = a — 0 is called a strong negation if (a*)* = a for
each a € L.

In this paper, we assume (L, <,®,*) is a complete residuated lattice with
a strong negation *.

Definition 2.3 [8,9,12] Let X be a set. A function ex : X x X — L is
called fuzzy preorder on X if it satisfies the following conditions:

(E1) ex(z,z) =1 forall z € X

(E2) ex(x,y) ©®ex(y, 2) < ex(x,2), for all z,y,z € X,

The pair (X, ex) is a fuzzy preorder set.

Let ek, e% be fuzzy preorder on X. A structure (X, ek, e%) is called a
doubly fuzzy preordered set. If for all x,y € X, el(x,y) = ek (z,y) = 1
implies = = vy, (X, ek, €%) is called a doubly fuzzy ordered set.

Let (X, ek, e%) and (Y, e}, e2) be doubly fuzzy preordered sets. A function
f: X — Y is a doubly order preserving map if e’ (x,y) < e\ (f(z), f(y)) for
all z,y € X and ¢ € {1, 2}.

Lemma 2.4 [8,9,12] For each x,y, z,z;,y; € L, we define x — y = \/{z €
L|z®z<uy}. Then the following properties hold.
(D Ify<z, (z0y)<(z0z2)andr —y<z—zandz >z <y— x.

)

) ® = (Nier ¥i) = Nier(z — 4i).

) (Vier zi) =y = Nier(zi — ¥).

) 2 = (Vier¥i) > Vier(z — us)

) (Nier i) = y = Vier(®i — y).

) Nier Ui = (Vier ¥i)* and Vier yi = (Nier ¥i)*
J(xoy) mz=2x—=(y—=2) =y — (r— 2).
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9)1—z=ux.

(10) z <y iffct »y=1.

(1) (z—=>y) O (y—2) <z— =2

(12) (21 = y1) © (22 = y2) < (21 © T2 = Y1 O Ya).

Example 2.5 (1) We define amap e, : Lx L — Leg(z,y) = —y =
V{z€L|r®z<y}and e;*(z,9) = er(y,r). Then (L,er,e;') is a doubly
fuzzy ordered set from Lemma 2.4 (10-11).

(2) We define a function e;x : LY x LX — L as epx(f,9) = Npex (f(z) —
g(z)). Then (LX,epx) is a fuzzy preordered set.

(3) If (X, ex) is a fuzzy preordered set and we define a function ey'(z, y) =
ex(y,z), then (X, ex') is a fuzzy preordered set.

Definition 2.6 [10] Let ek, €% be fuzzy preorder on X.

(1) A € LY is ek-extensional iff A(x) ® ek (z,y) < A(y).

(2) B € L* is e%k-extensional iff B(x) ® €% (z,y) < B(y).

The family of el -extensional (resp. e%-extensional) fuzzy sets will be de-
noted by E;(L¥) (resp. Ey(LX)).

Definition 2.7 [10] Let (X, ek, e%) be a doubly fuzzy preorderd set. We
define maps {,r : L* — L¥ as

(A) () = N (ex(@,y) = A(y)),

yeX

r(A)(z) = A (k(z,y) = A" ().
yeX
A fuzzy set A € LY is called [-stable (resp. I-stable) iff Ir(A) = A (resp.
rl(A)=A). The family of all [-stable (resp. r-stable) fuzzy sets will be denoted
by L(LYX) (resp. R(LY)).

Theorem 2.8 [10] Let (X, ek, €%) be a doubly fuzzy preorderd set. We have
the following properties.

(1) I(A) € E (LX) and I(A) < A*.

(2) 7(A) € E5(LY) and r(A) < A*.

(3) If A€ Ey(LY), then A <lr(A).

(4) If A e E2(LX) then A < ri(A).

(5) If A is (e%)'-extensional, then lr(A)

(6) If A is (k) t-extensional, then ri(A)
(7) If A € E\(LY), then r(A) € R(LY).
(8)
(9)
(10
(11

[(A*) < A.

r(A*) < A.

If A € By(LY), then I(A) € L(LY).
If A e L(LY), then r(A) € R(LY).
) If A e R(LYX), then I(A) € L(LY).
) If A, B € L(LX), then r(A) Ar(B) € R(LY).
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3 LC algebra and LC Frames

Definition 3.1 Let (X, A,V,0,1) be a bounded lattice.

(1) The structure (X, A,V,0,1,7) is called an LC algebra if a map v : X —
X satisfies the following conditions:

(C1) v(v(a)) = a,

(C2) y(aVb) =~(a) V(b).

If (X,A,V,0,1) is a complete lattice, (X, A,V,0,1,v) is called a complete
LC algebra.

(2) The structure (X, A, V,0,1,n) is called an LD algebra if amap n: X —
X satisfies the following conditions:

(D1) a < n(n(a)),

(D2) a < n(b) iff b < n(a).

If (X,A,V,0,1) is a complete lattice, (X, A, V,0,1,7n) is called a complete
LD algebra.

Lemma 3.2 Let (X, A,V,0,1,7) be an LC algebra. Then the following
properties hold:

(1) v(0) = 0 and ~(1) = 1.

(2) If a < b, then y(a) < y(b).

(3) v(anb) =~(a) A(b).

Proof. (1) It follows from:
7(0) = 0V ~(0) = 7(7(0)) v 7(0) = 7(7(0) v 0) = 7(~(0)) = 0,

1=1Vy(1) =~(v(1) V(1) =v(v(1) V1) =~(1).

(2) Let a < b be given. Then aVb =b. Thus v(aVb) = ~vy(a) V~y(b) = v(b).
Hence v(a) < y(b).

(3) By (2), v(a Ab) <~(a),y
Since y(a) Ay(b) < v(a), 7(v(a)
7(7(b)) = b. Thus y(y(a) A~(b))

(a Ab) < 4(b). Then vy(a A b) < ~vy(a) A~(b).
Y

A (b)) < v(v(a)) = a and y(y(a) A y(b)) <
< a A b implies y(a) A y(b) < y(a Ab).

Lemma 3.3 Let (X, A,V,0,1,7) be an LD algebra. Then the following
properties hold:

(1) a =n(n(a)), for all a € X.

(2) If a <b, then n(a) > n(b).

(3) n(a Ab) =n(a) Vn(b) and n(a Vv b) = n(a) An(b).

(4) n(0) =1 and n(1) = 0.
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Proof. (1) Since 7(a) < n(a), by (D2), a < n(n(a)).
(2) Let a < b=mn(n(b)) be given. By ( 2) n(a) > n(b).
(3) By (2), n(a Ab) = n(a),n(a Ab) = n(b). Then n(a Ab) = n(a) Vv (b)-
Since n(a) V n(b) = n(a), n(a) v n(b) = n(b) and n(n(a) v (b)) < n( )
n(n(a)Vn(b)) < n(n(b)) = b, we have n(n(a)Vn(b)) < aAbimplies n(a
n(a Ab). Hence n(a Ab) = n(a) VvV n(b). Similarly, n(a VvV b) =n(a) An
(4) It follows from:

1n(0) = n(0 An(1)) =n(0) vn(n(1)) =n(0) V1
0V (1) =n(n0))Vvn(l)=mnn0o)Al)=0.

Remark 3.4 Let (X,A,V,0,1,7) be an LC algebra. By Lemma 3.2, we
regard v : X — X as a lattice isomorphism.

Definition 3.5 Let (X, ek, %) be a doubly fuzzy preordered set. A struc-
ture (X, ek, €%, a) is called an a-LC-frame with a map « : X — X satisfying
the following conditions:

(A1) ex(z,y) < ex(a(z),aly)),
(A2) & (2.9) < & (ala), aly),
(A3) a(a(zr)) = =.

Remark 3.6 Let (X, ek, e%,a) be an a-LC-frame. Then

e (@,y) < ex(a(@), aly)) < ex(ala()),ala(y))) = ex(z,y).

Hence €' (x,y) = ek (a(z),a(y)), for i = 1,2. Furthermore, a(z) = a(y)
implies z = a(a(z)) = a(a(y)) = y. Thus « is injective. By (A3), « is
surjective. Hence « is a bijective function. Furthermore, o, ™! are doubly
order preserving maps, then « is a doubly order isomorphism.

Theorem 3.7 Let (X, ek, ek, a) be an a-LC-frame. Define a map o™

L*X = LX as
o (Ay) = VAl
zea~({y})

Then we have the following properties.

(1) a7 (A)(a(z)) = A(z), a7 (A)(z) = A(a(z)).
(2) a7 (a7(4)) = A.

(3) a7(A) < a™(B) for A< B,

(4) a7 (AN B) a”(A)ANa”(B).

(5) a?(AV B)=a7(A)Va?(B).

(6) lla™(A)) = a (Z(A))-

(7) r(a7(A)) = a7 (r(A)).

(8) If A is l-stable, then so is a7 (A).
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Proof. (1) Since « is bijective,

a”(A)(ex) =\ Alw)=A),

wea™! ({a(z)})
a” (A)(a(a(r)) = a7 (A)(z) = A(a(z))..
(2) Since a(a(y)) = y and « is bijective,

(3) It is easy.

(4) By (3), since a7(AA B) < a”(A) and a”(A A B) < a7 (B), then
a7 (AANB) <a7(A) ANa7(B).

Furthermore, a7 (a7 (A) Aa7(B)) < a7 (a7 (A) ANa7 (a7 (B)) = AN B.
Thus a7 (A) Ao (B) = a7 (« (a (A)Na”(B)) <a (A A B).

(5) It is similarly proved as in (4).

(6)

Q
e
S
S
&
)
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>=>=
m
b
A/C?/—\
Bt et et

(oW

(7) It is similarly proved as in (6).
(8) It follows from Ir(a™(A)) =la7(r(A)) = a7 (Ir(A)) = a7 (A).

Lemma 3.8 Let (X, ek, e3) be a doubly fuzzy preordered set.
(1) If A; are l-stable, then N\;cr A; is [-stable.
(2) If A; are l-stable, then N\;crrA; is r-stable.

Proof. (1) Since A; = Ir(4;) € E;(L¥) and (A A;i(x))®ek (z,y) < A Ai(y),

then A A; € E(L¥). By Theorem 2.8 (3), A A; < Ir(AA).
Suppose there exists x € X such that

Ir(\ Ai)(z) £ N\ Ai(w)

Then there exists 7 € I' such that

Ir(\ A (x) £ Ay(x).

By the definition of ir(A;) = A;, there exists j € I" such that

Ir(\Ai)(x) £ ex(,y) = r(4A;)"(y)
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On the other hand, since r(4;) < r(A 4;), then

Ir(NA)(z) < ez, y) — r(AA) (y)
< ei(z,y) (A; )

It is a contradiction. Hence Ir(A A4;) < A A;.

(2) Since r(A;) € Ey(LX), then Ar(A;) € Ey(L¥). Thus Ar(4;) <
rl(Ar(A4;)).

Suppose there exists x € X such that

ri(Ar(A))(x) £ Ar(Ai)(z).

Then there exists j € I' such that

rl(Ar(A)(z) £ r(4;)(z)

By the definition of r(A;), there exists j € I such that

rl(Ar(A)) (@) £ eaf@,y) = Aj(y).
On the other hand, since A7(A4;) < r(A4;), (Ar(4;)) > A;. Thus,

rl(Ar(A)) (@) < ez, y) — I(AT(A))" (y)
<ea(z,y) = A5(y).

It is a contradiction. Hence rI(A7(A4;)) < Ar(A4).

Definition 3.9 Let (X, ek, e%) be a doubly fuzzy preordered set. A struc-
ture (X, ek, e%, B) is called a B-LC-frame with a map 3 : X — X satisfying
the following conditions:

(B1) ex(z,y) < eX(B(2), By)),
(B2) X (z,y) < ex(B(2), By)),
(B3) B(B(x)) = =.

Remark 3.10 Let (X, ek, e%, 3) be an 3-LC-frame. Then

ex(,y) < ek (B(x), B(y) < ex (B(B(x)), B(BY))) = ex(z,y).
Hence €% (z,y) = & (8(x), B(y)), for i # j € {1,2}. Furthermore, 3(z) = 5(y)
implies z = B(B(x)) = B(B(y)) = y. Thus B is injective. By (B3), g is
surjective. Hence f3 is a bijective function. Furthermore, 3 : (X, ek, e%) —
(X, e%,ek) and 71 are doubly order preserving maps, then 3 is a doubly
order isomorphism.
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Theorem 3.11 Let (X, ek, €%, 3) be a B-LC-frame. Define a map 5~ :

L*X = LX as
Ay =V Al)
zef~1({y})

Then we have the following properties.
(1) B7(A)(B(x)) = A(z), 57 (A)(z) = A(B(x)).
B7(B7(A) = A
B7(A) < B7(B) for A< B.
T(ANB) =p7(A)AB7 (D).
(AV B) =p7(A) V37 (B).
r(B87(A)) = B7(1(A)).
U(B™(A)) =B~ (r(A)).

If A is r-stable (resp. l-stable), then B~ (A) is l-stable (resp. r-stable).

) B
2)
3)
4) p
5) B~
6)
7)
8)

NN N N N N

Proof. (1-5) are similarly proved as in Theorem 3.7 (1-5).
(6)

prUA)(Y) == UA)(B(y))
= Ncex(ex(B(y), 2) = A(2))
= Aeex(ex(B(y), B(2)) = A(B(2))
= Neex(ex(y,2) = A(B(2)) = (87 (4)(y)

(7) It is similarly proved as in (6).
(8) It follows from Ir(57(A)) =187 (I(A)) = B~ (rl(A)) = B~ (A).

Theorem 3.12 Let (X, ek, e, 8) be a B-LC-frame. For A € L(L¥X), we
define a map n~ : L(LX) — L(LX) as n~ (A)(x) = r(A)(B(x)).

(1) 7 (7 (A))(z) = r(n~ (A)(B(x)) = A(z) for all z € X.
(2) lr(n~(A)) =n~(A).
(3) A< n7(B) iff B<n?(A), for each A, B € L(LY).
(4) If A < B, for each A, B € L(LY), then n~(A) > n~(B).
(5) 0 (AU B) = 0~ (A) Ao (B) and (A A B) = ™ (A) Ui (B), for
each A, B € L(LY).

3
4
3

Proof. (1) We have n7(n~(A))(x) = r(n~(A))(B(x)). Suppose there
exists x € X such that rn~(A)(B(z)) £ A(z). Since A = Ir(A), there exists
w € X such that

m” (A)(B(x) £ ex(z,w) = (r4)*(w).
Since ex (z, w) — (rA)*(w) = X (B(x), B(w)) = (17 (A4))*(B(w)),
r” (A)(B(x)) < ex(B(x), B(w)) = (17 (A))"(B(w)).
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It is a contradiction.
Suppose there exist © € X such that A(z) £ rn~(A)(5(z)). By the defini-
tion of rn~(A), there exists w € X such that

A(z) £ ek (B(x),w) = (7 (A))"(w) = ex (@, B(w)) = (rA)"(B(w))).
Thus, A(z) £ lrA(x). It is a contradiction.

(2) Suppose there exist © € X such that Irn~(A)(z) £ n7(A)(z) =
rA(G(z)). By the definition of r(A), there exists w € X such that

lrn” (A) () £ ex(B(x),w) = A"(w).

Since (rn7 (A))*(B(w)) = (rn~ (A)(B(w)))* = (n~ (7 (A))(x))" = A*(x),
iy~ (A)(z) < ex(z, B(w)) — (ry~ (A))"(B(w))
< ex(x, B(w)) = (rn~ (A))"(B(w))
< ek (B(x),w) = A*(w)

It is a contradiction.

(3) Let A < n7(B). Suppose there exist x € X such that B(z) £
n~(A)(z) = rA(B(z)). By the definition of r(A), there exists w € X such
that

B(z) £ ex(B(z),w) = A*(w) = ex (2, B(w)) — A™(w).
Since A < n7(B),
B(z) % ex(z, B(w)) = 17 (B)"(w) = ex(z, B(w)) = (rB(B(w)))".
Hence B(z) £ lr(B)(x). It is a contradiction.

(4) It follows from r(A) > r(B) for A < B.
(5) Since AU B = I(r(A) Ar(B)) and r(A) Ar(B) € R(LY),

n7(AUB)(x) =r(AUB)(S(x)) =ri(r(A) Ar(B))(6(z))
= (r(A) Ar(B))(B(x)) = (7 (A) A~ (B))(2).
n(ANB) = (0= (0 (A) An~ (77 (B)))
2 (A) un(B)))

n
n
n

U
“(Aun(B).

Theorem 3.13 Let (X, e, e%) be a doubly fuzzy preordered set. We define

NAi | |Ai =1(A\r4;), A; € L(LY).
Then:
(1) (L(LY), /\ |_| 0,1) is a complete lattice.
(2) If (X, ek, €%, ) is an a-LC frame, then (L(LX),A\,1,0,1,a7) is a
complete LC-algebra.
(3) If (X, ek, €%, B) is a B-LC frame, then (L(LX),A,11,0,1,77) is a com-
plete LD-algebra.
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Proof. (1) It follows from A; < B for all i iff r(B) < r(A;) for all 7 iff
HB) < Ar(A)) iff r(B) = r(B) A Ar(A) iff Ir(B) = (r(B) A Ar(Ap) =
BUI(Ar(A;)) iff B=BU(UA,;) iff UA; < B.

(2) a7 : L(LX) — L(LY) is well-defined from Theorem 3.7 (8). Further-
more, we have o~ (a7 (A)) = A and

a”(AUB) = a7 (l(r(A) Ar(B)) = lla”(r(A) Ar(B))

= (a7 (r(A)) A a7 (r(B))) = l(r(a” (A)) Ar(a™(B)))
=a”(A)Ua™(B )
(3) 7 : L(LX) — L(LY) is well-defined from Theorem 3.12 (2). Fur-

thermore, we have n7(n7(A)) = A and A < n7(B) iff B < n7(A) for all
A, B e L(LY).

Example 3.14 Let X = {0,z,y,2,1} be a set and (L = [0,1],®) with
x©®y=max{0,z+y—1}. Let (X,A,V,0,1) be a bounded lattice as follows:

A0 x v z 1 VIi0 x vy z 1
00 0 0 0 O 0/0 x y z 1
x|0 x 0 0 x x|x x 1 1 1
yi0 0y 0y yviy 1 y 1 1
z|0 0 0 z z z|lz 1 1 z 1
110 x y z 1 11 1 1 1 1

(1) Define o : X — X as
a(0) =0,a(1) =1, a(z) =y, a(y) = z,a(z) = =

We define e; : X x X — L as

el X y V/ 1 €9 X y Z 1
01 05 05 04 06 01 06 06 05 0.5
x|06 1 08 06 0.7 x |07 1 04 07 06
y |06 08 1 06 0.7 y |07 04 1 07 06
z 04 04 04 1 03 z 05 05 05 1 0.3
1103 08 08 05 1 1104 06 06 04 1

Since e;(z,y) = e;(a(x), a(x)) for i = 1,2, (X, e1,e2,) is an a-frame. For
A = (A(0), A(x), A(y), A(z), A(1))t = (0.5,0.6,0.4,0.7,0.5)", we have

I(a”(A)) = (0.5,0.6,0.4,0.3,0.5)" = a7 (I(A)).
(2) Define g : X — X as
A0) =0,8(1) = 1, 8(x) = =, B(y) = 2,8(2) = y.
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We define e; : X x X — L as

ep | 0 X y Z 1 ea | 0 X y z 1
01 05 05 04 06 0] 1 05 04 05 06
x|06 1 08 06 0.7 x |06 1 06 08 0.7
y |06 08 1 06 0.7 y 04 04 1 04 0.3
z 04 04 04 1 03 z |06 08 06 1 0.7
1103 08 08 05 1 1103 08 05 08 1

Since ey(z,y) = ea(B(x), B(y)) and ex(z,y) = er(B(x), B(y)), (X, e1, €2, 0) is a
[-frame. We denote A = (A(0), A(x), A(y), A(z ) A(1))* = (0.5,0.6,0.4,0.7,0.5)",
we have A € L(LX). We obtain

1 (A) = rA(B(x)) = rA(0.5,0.6,0.7,0.4,0.5)" = (0.5,0.4,0.3,0.6,0.5) € L(LY).
For B = (0.4,0.4,0.3,0.5,0.4) € L(LY), we have

A<n7(B)=(0.6,0.6,0.5,0.7,0.6)" iff B <n~(A)=(0.5,0.4,0.3,0.6,0.5)".
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