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INTRODUCTION

In this paper, we consider the following unipolar hydrodynamic 
model of semiconductor: 
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Where (x,t) ∈ Ω × (0,∞) with \Omega being a dounded open set in 
Rd, d ≥1. The unknowns n(x,t)> 0, J(x,t) represent the scaled partial 
density and current density of the electrons. The unknown function 
E denotes the electric field, which is generated by the Coulomb 
force of particles. If we introduce the electrostatic potential φ  
then φ∇=E . In this paper, we consider the isothermal case

nnp =)( , which is of importance in industry. The symbols ⊗  
and ( ⋅∇ ) denote the Kronecker tensor product and the divergence 
in R^{d}. D(x)>0 is the doping profile, which means the density of 
impurities in semiconductor materials. We suppose.
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In this paper, we consider problem (1.1) with the initial conditions

( ) 0)(0, 0 >= xnxn , ，)()0,( 0 xx JJ =               
(1.3)

And the following insulating boundary conditions
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Where n is the outer unit normal vector on ∂Ω.

Now let’s recall some known results for the model (1.1). The 
existence and uniqueness of the subsonic steady solutions was 

first established by Degond- Markowich, Gamba investigated the 
stationary transonic solutions [1-5]. For the time dependent model, 
Hsiao-Yang, Luo-Natalini-Xin and Guo-Strauss proved the existence 
of global smooth solutions near a given steady state for different 
kinds of initial or initial-boundary conditions [6-14]. However, 
Chen proved the existence of the local generalized solutions and 
gave the blow up phenomenon of this equation [3]. Therefore, it 
is necessary to study weak solutions. The existence result of weak 
solutions was given in [7,15-26]. Huang and Yu proved the weak 
solutions converge to the stationary solutions exponentially in time 
when space dimension [9,25]. For more results about the unipolar 
model of semiconductor, we can refer to [1,8,10-12,14,16-20].

In this paper, our main goal is to prove the exponential 
convergence of multi-dimensional unipolar hydrodynamic model 
of semiconductor with insulating boundary conditions and non-
zero doping profile. That is, all weak entropy solutions of problem 
(1.1) (1.3) (1.4) converge to the corresponding stationary system.
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With an exponential decay rate, when d=1,2, he existence to smooth 
solution of problem (1.5) can be proved by variation method [6].

Before stating the main result, we first give the definition of weak 
entropy solution and some common notations.

Definition 1.1. A For every T>0, the function (n, J,E)
(x,t)∈(L2(Ω×[0,T]))2d+1 is said to be a L2
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weak solution of problem (1.1)(1.3)(1.4) if,
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(1.6)

For all )),0[(1
0 TH ×Ω∈ϕ , with 0),( =⋅ Ω∂tϕ  and 0),( =⋅ Ω∂tϕ , 

and J, E satisfies               (1.4)

In the sense of trace. Furthermore, a weak solution of system (1.1) 
(1.3) (1.4) is called an entropy solution if the following entropy 
solution if the following entropy inequality.
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Hold in the distributional sense, where (1.7) use the Einstein’s 
summation symbols ),( qη , is entropy flux pair satisfying.
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Let Tn ),( JU = , TnU ),~(~ 0=
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to represent 
different positive constants in different places.

The main result of this paper is given below. 

Theorem 1.1. Suppose ( , )( ) ( , , )( )U x n x=E 0 E    is a smooth solution 
of problem (1.5),( , )( , ) ( , , )( , )x t n x t=U E J E  is any L2 weak entropy 
solution of problem (1.1)(1.3)(1.4). If there exist positive constants 
N*, N

* 
 and C

0 
such that,
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For any x ∈ Ω, t > 0, then 
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Holds for some positive constants α and β.

THE PROOF OF THEOREM 1.1

From equations (1.1) and (1.5), we obtain the following system.
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Satisfies in the sense of Definition 1.1.

The proof of Theorem 1.1 is completed in the following two theorem.

Theorem 2.1. Suppose (U,E) (x,t) be a weak entropy solution 
of (1.1)(1.3)(1.4) in the time interval [0,T], [U , E ] is a smooth 
solution of problem (1.5), If (1.9) and (1.10) satisfy for any Ω∈x
and 0>t , then,
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Holds for some positive constants C
1

Proof: Using Einstein’s summation convention, we can rewrite the 
first 1+d
 equations of (1.1) as a hyperbolic system of conservation laws.
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Where,
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From (1,7), we obtain 
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With the energy production
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Where,

1ln (ln )( )Q n n n n n= + + −   
; 
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From(1.5) and (2.6) - (2.8), we obtain
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      (2.9)

Integrating the last equation in (2.9) over Ω and using the boundary 
condition (1.4), we get
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On the other hand, after integrating by parts and using the 
boundary condition (1.4) for several times, we obtain 
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Combining (2.10) with (2.11), we obtain
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Moreover, we notice thatη~

is the quadratic remainder of the Taylor expansion of the convex 
function lnn n  around 0~

* >> Nn . Therefore, using (1.9) and 
(1.10), we obtain there exist positive constants 2C and 3C  such 
that,
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We finish the proof of Theorem 2.1.

Theorem 2.2. Under the same assumptions as in Theorem 
2.1, we further have the exponential decay rate, that is,
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For some positive constants α and β .

Proof: To get the exponential decay rate, we would like to use the 
Gronwall inequality. To do this we define,
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Where µ
 is a real number which will be determined later? In terms of (2.1)
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and the boundary condition (1.4), we get,
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We calculate the right side of (2.14) item by item. Firstly, using 
Young’s inequality, we have,
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Which gives,
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We also have,
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We obtain
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Where we have used (1.5)
2
 and the fact that
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From the above analysis (2.14)-(2.20) and (2.11) (2.12), we deduce
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As the proof in [2], we can choose μ

 small enough such that W and Y are positive definite quadratic 
forms. So there exist positive constants K

W
 and K

Y
 such that,
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The estimate (2.21) turns into
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From Gronwall inequality we get Theorem 2.2, with wy KK=β

By Theorem 2.2 we can easily deduce Theorem 1.1.
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