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1 Introduction

Let ∆ = {z ∈ C : |z| < 1} be the unit disk and T = {z1 ∈ C : |z1| = 1}
be the unit circle in the complex plane C; ∂∆ it’s boundary, dA(z) be the
normalized area measure on the unit disk ∆, so that A(∆) = 1 and dθ be
the Lebesgue measure on the unit circle T. Let H(∆) and M(∆) denote the
classes of functions holomorphic and meromorphic in ∆, respectively. The
Green’s function of ∆ with logarithmic singularity at a ∈ ∆ is denoted by
g(z, a) = log|1−āz

a−z
|. Let Aut(∆) be the group of all conformal mapping from

∆ onto itself ( also called disk automorphisms of ∆). It is well known that
Aut(∆) coincides with the set of all Möbius transformations of ∆ onto itself:

Aut(∆) = {λϕa : |λ| = 1, a ∈ ∆}.

Recall that the well known Bloch space (cf.[2]) is defined as follows:

B = {f : fanalytic in∆and sup
z∈∆

(1− |z|2)|f ′(z)| < ∞}

and the little Bloch space B0 (cf. [2]) is given as follows

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.
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Let 0 < p < ∞. Then the Qp-type spaces consist of analytic functions on ∆
such that

Qp =
{

f : f analytic in ∆ and sup
a∈∆

∫

∆

|f ′(z)|
2
gp(z, a) dA(z) < ∞

}

,

this definition is equivalent to

sup
a∈∆

∫

∆

|f ′(z)|2(1− |ϕa(z)|
2)p dA(z) < ∞

these classes are introduced and studied intensively in ([2, 3]).
Now, we give some definitions of different classes of meromorphic functions
which recently have been studied intensively in the theory of complex function
spaces, while the theory of such spaces like the class of normal functions N ,
B#, Q#

p and Q
#
K spaces. For a meromorphic function f , a natural counterpart

of the derivative |f ′(z)| of analytic case is the spherical derivative f#(z) defined
by

f#(z) =
|f ′(z)|

1 + |f(z)|2
.

The meromorphic counterpart of the Bloch space is the class of normal func-
tions N , which is defined as follows:

Definition 1.1 (see [1, 31]) The class of normal functions is defined by

N = {f ∈ M(∆) : ‖f‖N = sup
a∈∆

(1− |z|2)f#(z) < ∞}.

Moreover, the class of little normal functions is defined by

N0 = {f ∈ M(∆) : ‖f‖N0
= lim

|a|→1
(1− |z|2)f#(z) = 0}.

For a point a ∈ ∆ and 0 < r < 1, the pseudo-hyperbolic disk ∆(a, r)
with pseudo-hyperbolic center a and pseudo-hyperbolic radius r is defined by
∆(a, r) = ϕa(r∆).
The pseudo-hyperbolic disk ∆(a, r) is also an Euclidean disk: its Euclidean

center and Euclidean radius are (1−r2)a
1−r2|a|2 and (1−|a|2)r

1−r2|a|2 , respectively (see [32]).

Definition 1.2 (see [22]) For some r ∈ (0, 1) the class of spherical Bloch
functions B# is defined by

B# = {f ∈ M(∆) : sup
a∈∆

∫

∆(a,r)

(f#(z))2dA(z) < ∞}.

We clearly have N ⊂ B#. Yamashita in [35] has proved that there is an
essential difference between N and B#.
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Definition 1.3 (see [33]) Let 0 < p < ∞. Then the meromorphic Q#
p

define by

Q#
p

=
{

f : f meromorphic in ∆ and sup
a∈∆

∫

∆

(f#(z))
2
gp(z, a) dA(z) < ∞

}

,

Now, we give the following definition:

Definition 1.4 Let 0 < p < ∞, for a function ω : (0, 1] → (0,∞), The
meromorphic Q#

p,ω is define by

Q#
p,ω =

{

f : f meromorphic in ∆ and sup
a∈∆

∫

∆

(f#(z))
2 (1− |ϕa(z)|)

p

ω(1− |z|)
dA(z) < ∞

}

,

Thought this paper ω : (0, 1] → (0,∞), stands for a nondecreasing right con-
tinuous function.
It should be remarked that there are some papers used the weight function
ω to study some classes of function spaces, for more details, we refer to
[10, 12, 16, 17, 18, 19, 30, 31].
Two quantities Af and Bf , both depending on an analytic function f on ∆,

are said to be equivalent, written as Af ≈ Bf , if there exists a finite positive
constant C not depending on f such that for every analytic function f on ∆
we have:

1

C
Bf ≤ Af ≤ CBf .

If the quantities Af and Bf , are equivalent, then in particular we have Af < ∞
if and only if Bf < ∞.

Let f(z), g(z) ∈ H(∆) with Taylor series expansions given by

f(z) =
∞
∑

n=0

anz
n and g(z) =

∞
∑

n=0

bnz
n,

then, the Hadamard product of f(z) and g(z) is defined by

(f ∗ g)(z) =
∞
∑

n=0

anbnz
n.

We will need the following two lemmas in the sequel:

Lemma 1.5 Let 0 < p < ∞. If {nk} is an increasing sequence of positive
integers satisfying nk+1

nk
≥ λ > 1 for all k, then there is a constant A depending

only on p and λ such that

A−1
(

∞
∑

k=1

|ak|
2
)

1
2

≤
( 1

2π

∫ 2π

0

∣

∣

∣

∞
∑

k=1

ake
inkθ|pdθ

)

1
p

≤ A
(

∞
∑

k=1

|ak|
2
)

1
2

for any number ak(k = 1, 2, ...).
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The above lemma is due to Zygmund [36].

Lemma 1.6 Let α > 0, p > 0, n ≥ 0, an ≥ 0, In = {k : 2n ≤ k <

2n+1, k ∈ N}, tn =
∑

k∈In

ak and f(r) =
∞
∑

n=1

anr
n. Then there exists a constant

K depending only on p and α such that

1

K

∞
∑

n=0

2−nαtpn ≤

∫ 1

0

(1− r)α−1f(r)p dr ≤ K

∞
∑

n=0

2−nαtpn.

For the proof of Lemma 1.6, we refer to [28].
Remark 1.1 It should be remarked that using simple computations will allow

that Lemma 1.6 is still satisfied for the function f(r) =
∞
∑

n=1

anr
n−1.

Lemma 1.7 (see [3]) For 0 < p ≤ 1, a ∈ ∆ and z = reiθ,

Ia,θ =

∫ 2π

0

dθ

|1− āreθ|2p
≤

C

(1− |a|r)p
.

For our purpose we will use the following inequalities, which follow immediately
from Holder’s inequality. Let an ≥ 0 and let N be a positive integer. Then for
0 < p ≤ 1,

1

N1−p

(

N
∑

n=1

apn

)

≤
(

N
∑

n=1

an

)p

≤
(

N
∑

n=1

apn

)

; (1)

for 1 ≤ p < ∞,

(

N
∑

n=1

apn

)

≤
(

N
∑

n=1

an

)p

≤ Np−1
(

N
∑

n=1

apn

)

. (2)

The following lemma is useful in our study

Lemma 1.8 [34] Let α ∈ (0,∞) and suppose that f(z) =
∞
∑

j=1

ajz
nj belongs

to Hadamard gap class. Then f ∈ Bα if and only if

sup
j∈N

|aj|n
1−α
j < ∞ , where N = {1, 2, 3, . . .} .

Hadamard gaps are known to study some classes and spaces of holomorphic
and hyperholomorphic functions. A wide variety of characterization not only
in the type of function spaces, where functions are holomorphic and hyper-
holomorphic, but also in the coefficients which extend over Taylor or Fourier
series expansions. It is one of the important tasks in the study of function
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spaces to seek for characterizations of functions by the help of their Taylor or
Fourier series expansions. In the past few decades both Taylor and Fourier
series expansions were studied by the help of Hadamard gap class also called
Hadamard’s lacunarity condition (see e.g., [4, 7, 8, 11, 13, 25, 27, 29] and oth-
ers). In this paper some characterizations of the lacunary series that belong
to Qp spaces of meromorphic are obtained under some mild assumptions. One
key to the proofs of the main theorems is the paper by [29]. Another key is
the recent paper [26, 27].

2 Series expansions

In this section, we obtain characterizations of the meromorphic Q#
p,ω functions

by the coefficients of certain lacunary series expansions in the unit disc. Now,
we give the following theorem:

Theorem 2.1 Let 0 < p ≤ 1, In = {k : 2n ≤ k < 2n+1, k ∈ N} and let

f(z) =
∞
∑

n=0

anz
n be analytic function on ∆. Let

(

∞
∑

k=0

|ak|r
nk

)2

≈
∞
∑

k=0

|ak|r
nk (3)

and
(

∞
∑

n=0

anz
n
)(

∞
∑

n=0

bnz
n
)

=

∞
∑

k=0

anbn
√

ω(1− |z|) zn. (4)

If
∞
∑

n=0

2n(1−p)
∑

k∈In

(−1)2k|ak|
4 < ∞,

then f ∈ Q
#
p,0, where

Q
#
p,0 = lim

|a|→1

∫

∆

(f#(z))
2 (1− |ϕa(z)|2)p

ω(1− |z|)
dA(z) = 0.

Proof: We have
∫

∆

(f#(z))2
(1− |ϕa(z)|2)p

ω(1− |z|)
dA(z)

≤

∫

∆

(

∞
∑

n=1

n|an||z|
n−1

∞
∑

n=0

(−1)n(
∞
∑

n=0

|an||z|
n)2n

)2 (1− |z|2)p(1− |a|2)p

|1− āz|2pω(1− |z|)
dA(z)

≤

∫

∆

(

∞
∑

n=1

n|an||z|
n−1

∞
∑

n=0

(−1)n(

∞
∑

n=0

|an||z|
n)2n

)2 (1− |z|2)p

|1− āz|pω(1− |z|)
dA(z)
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≤

∫ 1

0

(

∞
∑

n=1

n|an|r
n−1

∞
∑

n=0

(−1)n(
∞
∑

n=0

|an|r
n)2n

)2 1− |a|2)p(1− r2)p

|1− āz|2p
rdr

≤

∫ 1

0

(

∞
∑

n=1

n|an|r
n−1

∞
∑

n=0

(−1)n(
∞
∑

n=0

|an|r
n)2n

)2

(1− |a|2)p(1− r2)p(Ia,θ) dr

Using Lemma 1.7, we obtain

∫

∆

(f#(z))2
(1− |ϕa(z)|2)p

ω(1− |z|)
dA(z)

≤ 2p+1Cπ

∫ 1

0

(

∞
∑

n=1

n|an|r
n−1

∞
∑

n=0

(−1)n(

∞
∑

n=0

|an|r
n)2n

)2

(1− r)prdr,

Using (1) and (2), we obtain

∫

∆

(f#(z))2(1− |ϕa(z)|
2)pdA(z)

≤ 2p+1π

∫ 1

0

(

∞
∑

n=1

n|an|r
n−1

∞
∑

n=0

(−1)n(

∞
∑

n=0

|an|r
2n)

)2

(1− r)prdr

≤ 2p+1π

∫ 1

0

(

∞
∑

n=1

n|an|r
n−1

∞
∑

n=0

(−1)n(
∞
∑

n=1

|an|r
n−1)

)2

(1− r)pdr

≤ 2p+1π

∫ 1

0

(

∞
∑

n=1

(−1)nn|an|
2rn−1

)2

(1− r)pdr

≤ 2p+1πK

∞
∑

n=0

2−n(p+1)t2n,

where

tn =
∑

k∈In

(−1)kk|ak|
3 < 2n+1

∑

k∈In

(−1)k|ak|
2.

Then we get

‖f‖2
Q

#
p,ω

= sup
a∈∆

∫

∆

(f(z)#)2
(1− |ϕa(z)|2)p

ω(1− |z|)
dA(z)

≤ λ(p)

∞
∑

n=0

2n(1−p)
(

∑

k∈In

(−1)k|ak|
)2

≤ λ(p)

∞
∑

n=0

2n(1−p)
∑

k∈In

(−1)2k|ak|
4 < ∞,
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that is, f ∈ Q#
p,ω, where λ(p) is a positive constant depends only on p.

To prove that f ∈ Q
#
p,ω,0 ⊂ Q#

p,ω, we note that the integral

∫ 1

0

(

∞
∑

n=1

(−1)nn|an|
2rn−1

)p

(1− r)pdr

is convergent, for
∞
∑

n=0

2n(1−p)
∑

k∈In

(−1)2k|ak|
4 < ∞.

Hence for any ǫ > 0, there is a δ ∈ (0, 1) such that

∫ 1

δ

(

∞
∑

n=1

(−1)nn|an|
2rn−1

)2

(1− r2)pdr < ǫ.

Then, we obtain
∫

∆

(f(z)#)2(1− |z|2)p
(1− |a|2)p

|1− āz|2pω(1− |z|)
dA(z)

≤ 2π

∫ 1

0

(

∞
∑

n=1

(−1)nn|an|
2rn−1

)2

(1− r2)p(1− |a|2)p1− |a|2pr2pdr

< 2π

∫ δ

0

(

∞
∑

n=1

(−1)nn|an|
2rn−1

)2

(1− r2)p(1− |a|2)p(1− |a|2pr2p)dr + 2πǫ.

< 2π
(1− |a|2)p

1− δ2p

∫ 1

0

(

∞
∑

n=1

(−1)nn|an|
2rn−1

)2

(1− r2)pdr + 2πǫ.

If |a| is chosen appropriately so 1−|a| may be sufficiently small, then the above
quantity can be less than 4πǫ. Hence

lim
|a|→1−

∫

∆

(f(z)#)2
(1− |ϕa(z)|2)p

ω(1− |z|)
dA(z) = 0.

According to the definition of meromorphic Qp,ω space, we deduce that f ∈

Q
#
p,ω,0. This completes the proof of Theorem 2.1.

Theorem 2.2 Let 0 < p ≤ 1. Suppose that f(z) =
∞
∑

k=1

akz
nk is analytic in

∆ and has Hadamard gaps, that is, if

nk+1

nk

≥ λ > 1, (k = 1, 2, . . .).

If

(

∞
∑

k=0

|ak|
4r2nk)nk≈

∞
∑

k=0

|ak|
4r2nk
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and
(

∞
∑

n=0

anz
n
)(

∞
∑

n=0

bnz
n
)

=
∞
∑

k=0

anbn
√

ω(1− |z|) zn. (5)

Then the following statements are equivalent:

(a) f ∈ Q#
p,ω (b) f ∈ Q

#
p,ω,0 (c)

∞
∑

n=0

2n(1−p)
∑

k∈In

(−1)2k|ak|4 <

∞.

Proof: It is clear that (b) implies (a). We first prove that (c) follows from (a).
Applying Lemma 1.1 and Lemma 1.2, we obtain

‖f‖2
Q

#
p,ω

≥

∫

∆

(f#(z))2
(1− |z|2)p

ω(1− |z|)
dA(z)

=

∫

∆

(

∞
∑

k=1

nk|ak||z|
nk−1

∞
∑

k=0

(−1)nk(

∞
∑

k=0

|ak||z|
nk)2nk

)2 (1− |z|2)p

ω(1− |z|)
dA(z)

≥
2π

A2

∫ 1

0

(

∞
∑

k=1

nk|ak|r
nk−1

∞
∑

k=0

(−1)nk

(

∞
∑

k=0

|ak|r
nk−1

)2nk
)2 (1− r2)p

ω(1− r)
r2dr

≥
2πC

A2

∫ 1

0

(

∞
∑

k=1

nk|ak|r
nk−1

∞
∑

k=0

(−1)nk

(

∞
∑

k=0

|ak|r
nk−1

))2 (1− r2)p

ω(1− r)
r2dr.

Using (5), we obtain

‖f‖2
Q

#
p
≥

2πC

A2

∫ 1

0

(

∞
∑

k=0

(−1)nk

∞
∑

k=1

nk|ak|
2rnk−1

√

ω(1− r)
)2 (1− r2)p

ω(1− r)
rrdr

=
2πC

A2

∫ 1

0

(

∞
∑

k=0

(−1)nk

∞
∑

k=1

nk|ak|
2rnk−1

√

ω(1− r)
)2

(1− r2)prrdr (6)

Then, by (6), we deduce that

‖f‖2
Q

#
p,ω

≥ λ(p)
∞
∑

k=0

2−k(p+1)t2k,

where
tk =

∑

nj∈Ik

(−1)njnj |aj|
2.

Therefore,

‖f‖2
Q

#
p,ω

≥ λ(p)
∞
∑

n=0

2−n(p+1)
∑

nj∈In

(−1)2njn2
j |aj |

4

≥ λ(p)

∞
∑

n=0

2n(1−p)
∑

nj∈Ik

(−1)2nj |aj |
4.
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Combining the above inequalities yields that (c) holds.
By Theorem 2.1 it is easy to prove that (b) follows from (c). Assuming that

∞
∑

n=0

2n(1−p)
∑

k∈In

(−1)2k|ak|
4 < ∞.

By Theorem 2.1, we see that f ∈ Q
#
p,ω,0, and the proof of Theorem 2.2 is there-

fore established.

Remark 2.1

It should be remarked that the product

(

∞
∑

n=0

anz
n
)(

∞
∑

n=0

bnz
n
)

=
∞
∑

k=0

anbn
√

ω(1− |z|) zn.

is a modification of the Hadamard produts. If ω(1− |z|) = 1, then we obtain
the Hadamard produts (see [15]).
Remark 2.2

It is still an open problem to study composition operators in Clifford analysis.
For more details on some classes of quaternion function spaces, we refer to
([5, 6, 7, 8, 9, 14, 20, 21, 23, 24, 25]) and others.

3 CONCLUSIONS

We have established some important characterizations for meromorphic Qp,ω-
type spaces using some mild conditions on the used functions. From the ob-
tained results in Section 2, one can see the established theorems give represen-
tations and convergence of power series for meromorphic Qp,ω-functions.
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