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Abstract

In this paper, we investigate the properties of (L, ®)-fuzzy topologies
and (L, ®)-filters induced by functions on strictly two-sided, commuta-
tive quantale lattices (L,®) and (L, x). Furthermore, we study their
convergence and functorial relations.
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1 Introduction

Héhle and Sostak [6] introduced the notion of (L, ®)-fuzzy topological spaces
on a complete quasi-monoidal lattice (or GL-monoid) instead of a completely
distributive lattice or an unit interval. Hohle and Sostak [6] introduced the
concept of (L, ®)-filters for a complete quasi-monoidal lattice L.

In this paper, we investigate the products of (L, ®)-fuzzy topologies and
(L, ®)-filters induced by functions on strictly two-sided, commutative quan-
tale lattices (L,®) and (L,x*). Furthermore, we study relations among LF-
continuous maps, filter convergence, (F?, x)-neighborhood filters and L-filter
maps.

2 Preliminaries

Definition 2.1 [8] A triple (L, <,®) is called a strictly two-sided, commu-
tative quantale (stsc-quantale, for short) iff it satisfies the following properties:

(L1) L =(L,<, T, 1) is a complete lattice where T is the universal upper
bound and 1 denotes the universal lower bound;
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(L2) (L, ®) is a commutative semigroup;
(L3) a=a® T, for each a € L;
(L4) ® is distributive over arbitrary joins, i.e.

el el

Example 2.2 [8] (1) Each frame is a stsc-quantale. In particular, the unit
interval ([0, 1], <,V,A,0,1) is a stsc-quantale.

(2) The unit interval with a left-continuous t-norm ¢, ([0, 1], <, ), is a stsc-
quantale.

(3) Every GL-monoid is a stsc-quantale.

(4) Define a binary operation @ on [0,1] by z ® y = max{0,z +y — 1}.
Then ([0, 1], <,®) is a stsc-quantale.

Definition 2.3 [6,8] A mapping 7 : L¥ — L is called an (L, ®)-fuzzy
topology on X if it satisfies the following conditions:
(T1) 7(1p) = T and 7(1x) = T,
(T2) 7(f © g) 2 7(f) @ 7(g), for each f,g € L*,
(T3) 7(Vier fi) = Nier 7(f3)-
An (L, ®)-fuzzy topology is called enriched if
(S) 7(a® f) > 7(f) for each f € L* and o € L.
The pair (X, 7) is called an (resp. enriched)(L,®)-fuzzy topological space.
T5(X) is a family of (L, ®)-fuzzy topologies on X.

Let (X, 7) and (Y, 73) be two (L,®)-fuzzy topological spaces and a map
¢ : X =Y called LF-continuous if 75(g) < 71(¢*(g)) for all g € LY.

Definition 2.4 [6,8] A mapping F : L* — L is called an (L, ®)-filter on
X if it satisfies the following conditions:

(F1) F(1p) = L and F(1x) =T,

(F2) F(f @ g) = F(f) © Flg), for cach f,g € L,

(F3)if f < g, F(f) < F(9)

An (L, ®)-filter is called stratified if

(S) Fla® f) > a® F(f) for each f € L* and « € L.
The pair (X, F) is called an (resp. a stratified)(L, ®)-filter space. F(X) is a
family of (L, ®)-filters on X.

Let (X, Fy) and (Y, F2) be two (L, ®)-filter spaces and ¢ : X — Y called
an L-filter map if Fa(g) < Fi(¢*(g)) for all g € LY.

Example 2.5 (1) Define a map [z] : L* — L as [z](f) = f(z). Then [z] is
a stratified (L, ®)-filter on X.

(2) Define a map inf : LX — L as inf(f) = Ayex f(x). Then inf is a
stratified (L, ®)-filter on X.
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Definition 2.6 [6] Let (L,*) and (L, ®) be stsc-quantales. An operation
® dominates x if it satisfies:

(@1 % y1) © (22 % y2) 2 (21 © T2) * (Y1 © Y2).
Example 2.7 (1) For any left-continuous t-norm *, A dominates * because

(21 % Y1) A (22 % y2) > (01 A 22) * (Y1 A ya).

(2) Define t-norms as t ©y = and x*xy = zy. Then ® dominates .

x+§ Ty
Lemma 2.8 [9] Let (L,®) and (L,*) be stsc-quantales which induce two
implications a — b= \{c|a®c < b} and a = b= \{c | ax*c < b}, respec-
tively. Let ® dominates x. For each a,b,c,a;,b; € L, we have the following
properties.
(1) Ifb<c,thena®b<a®Gcandaxb<axc.
(2)a®b<ciffa<b— c. Moreover,axb<ciffa<b=c.
3)Ifb<c, thena—b<a—candc— a<b—a for € {— =}
4 axb<a®ba—b<a=bandax(bOc) < (axb)®ec.
(5)(a:>b)®(c:>d)_( ®c)= (bed).
(6) (b=c b) = (a®c).
(7)
(8) ai = bi < (Aier ai) = (Nier bi)-
(9) a; — b < el al) ( el b)
(10) (c=a)*x(b—d) < (a—b) = (c=d).

)< (a®
b—c)<(a=b) = (a=c)and (b=a)<(a—c)—= (b=c¢)

(A

(V

Theorem 2.9 [10] Let (X, T) be an (L, ®)-fuzzy topology and {F* | v € X}
a family of (L, ®)-filters. An operation x dominates ©. We define a map
NZ: LX — L as follows:

NI =V (F(g) x7(9))

g<f

Then

(1) NZ is an (L, ®)-filter.

(2) If F* is a stratified (L, ®)-filter and T is an enriched (L, ®)-fuzzy topol-
ogy , then N* is a stratified (L, ®)-filter

(3) If F* > H*, then Tz > 7.

(4) If F* < HZ, then N&, < Fe.

Definition 2.10 [10] In above theorem, a map N® : LX — L is called
(F*, x)-neighborhood filter induced by F*, 7 and operation *. A family {N* |
x € X} is called (F?, x)-neighborhood system.
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Theorem 2.11 [10] An operation x dominates ®. Let (X, 7x) and (Y, y)
be (L, ®)-fuzzy topological spaces,{F* | x € X} and {FY |y € Y} two families
of (L,®)-filters and v : X —'Y be a map. Then for h € LY,

(1 (h) = (¥ (h))) * (FY@ (h) = F2 (¥ (b)) < NED(h) = N (0 ()

In particular, if ¥ : (X, 7x) — (Y, 7y) is LF continuous and ¢ : (X, F*) —
(Y, F¥®) is an L-filter map, then v : (X,NZ2) — (Y,N¥@) is an L-filter
map.

Theorem 2.12 [10] An operation % dominates ®. Let F = {F* € L*" |
x € X} and G = {G* € L | © € X} be two families of (L,®)-filters
satisfying the condition F*(f) « G*(g) = L for each f ©® g = L. We define
Frx G LX — L as follows:

FrxGo(h) =\{F"(f) = G"(9) | f© g < h}.

Let 71,79 be an (L, ®)-fuzzy topologies on X. We define 7 * 7o : LX — L
as follows:

(1 #7)(h) = \V{nu(f) xm(9) | f © g = h}.

(1) F* % G* is an (L, ®)-filter on X which is finer than F* and G*. If
x = ©, then F* ©® G” is the coarsest (L, ®)-filter on X which is finer than F*
and G*. Moreover, if x = © and F* = G*, then F* ©® F* = F”.

(2) If F* or G* is a stratified (L,®)-filter, then F* x G* is a stratified
(L, ®)-filter on X.

(3) 71 * 12 is an (L, ®)-fuzzy topology on X which is finer than 71 and 7.
If x = ®, then 71 ® 1y is the coarsest (L, ®)-fuzzy topology on X which is finer
than 1 and 7.

(4) If 1y or Ty is an enriched (L, ®)-fuzzy topology, then T1xTy is an enriched
(L, ®)-fuzzy topology on X.

(5) Tpe = T % 7 where Fx G = {F*+G* e L™ |z € X}.

(6) Niom > N3 O NG

Definition 2.13 [10] Let (X, 7) be an (L, ®)-fuzzy topological space, N*
(F2, *)-neighborhood filter, G an (L, ®)-filter , f,g € L* and z € X.

(1) x is called (F*, x)-cluster point of G, denoted by Goox(F?*,x), if for
every N*(f) * G(g) # L, we have f ® g # 1.

(2) x is called (F*, x)-limit point of G | denoted by G — z(F?, *), if N* < G.

We denote

clu-(G)(F*, %) = J{z € X | x is (F", x)-cluster point of G},

lim,(G)(F*,*) = | J{z € X |z is (F", »)-limit point of G}.
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Theorem 2.14 [10] Let (X, 7) be an (L, ®)-fuzzy topological space and N*
be (F*,x)-neighborhood filter. Let F and G be (L, ®)-filters on X which F is
coarser than G. For each x € X, the following properties hold:

(1) NE(f) = F(f) S NZ(F) = G(f), forall f € L.
) If F — :c(f“’” ), then G — x(F*, ).
) lim (F)(F?, %) < limo (G)(F*, *).
) If Goox(F* ), then Foox(F*, *).
) clu(G)(F®, %) < clu(F)(F?, *).
(6) If F — :c(f“’”, %) and (L, ®)-filter FxF exists, then Foox(F?, ). In par-
ticular, if © = % and F — x(F*,®), then Foox(F*, ®) and lim,(F)(F*, @) <
clu (F)(F*,©).

(2
(3
(4
(5
6

Theorem 2.15 [10] Let (X, 7) be an (L, ®)-fuzzy topological space, N* be
(F*, *)-neighborhood filter and F an (L, ®)-filter.

Then: (1) If Foox(F*, ), then F has a finer (L,®)-filter G such that
G — x(F7, %).

(2) If F has a finer (L, ®)-filter G such that G — x(F7, x) which an (L, ®)-
filter F x F exists, then Foox(F*,*).

(3) If © = % and F has a finer (L, ®)-filter G such that G — x(F*, ), then
Foor(F*, *).

3 (L,®)-fuzzy topologies induced by
functions

Theorem 3.1 Let ¢ : X — Y be a map. Let F and G be (L,®)-filters on
X and Y, respectively. Let Tx and 1y be (L, ®)-fuzzy topologies on X and Y,
respectively.

(1) Let F be an (L, ®)-filter on X. We define a map ¢~ (F) : LY — L as
o~ (F)(g) = F(¢(g)). Then ¢~ (F) is the finest (L, ®)-filter on' Y for which
each ¢ : (X, F) — (Y,G) is an L-filter map.

(2) Let Tx be an (L, ®)-fuzzy topology on X. We define a map ¢~ (1x) :
LY — L as ¢7(7x)(9) = 7x(¢(g)). Then ¢~ (7x) is the finest (L, ®)-fuzzy
topology on'Y for which each ¢ : (X, 7x) — (Y, 7y) is an LF-continuous map.

(3) Let G be an (L, ®)-filter on' Y with G(g) = L for ¢*(g9) = 13. We
define a map 6(G) : LY — L as ¢(G)(f) = V{G(9) | ¢ (9) < f}. Then
»<=(G) is the coarsest (L, ®)-filter on'Y for which each ¢ : (X, F) — (Y, G) is
an L-filter map.

(4) Let 1v be an (L, ®)-fuzzy topology on Y. We define a map ¢=(1y) :
LY = L as ¢<(1v)(f) = V{rv(9) | #"(g9) = f}. Then ¢=(1y) is the coarsest
(L, ®)-fuzzy topology on Y for which each ¢ : (X, 7x) — (Y, 7y) is an LF-
continuous map.
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Proof. (2) (T1) 6= (rx)(1g) = 7x((1g) = T and ¢ (7x)(1y) = 7x((1x) =

T.
(T2) For f,g € LY, we have
o7 (rx)(f©g) =7x(67(f©g))
=7x(¢"(f) © 67 (9))
> 7x (07 (f)) © 7x (67 (9))
= o7 (1x)(f) © 67 (7x)(9)-

(T3) For a family {f; € L~ | i € I'}, we have

¢~ (7x)(Vier fi) = 7x (0" (Vier /1))
> /\ieF TX(Cb(_(fz)) = /\ieF ¢:>(TX)(f2)

Hence ¢™ (7x) is an (L, ®)-topology on Y. Also, ¢ : (X, 7x) — (Y, 07 (7x))
is an LF-continuous map. Since 7v(g9) < 7x(¢(9)) = ¢~ (7x)(g), then
¢~ (7x) is the finest (L, ®)-topology on Y for which each ¢ : (X, 7x) — (Y, 1v)
is an L F-continuous map.

(4) (T1) is easy.

(T2) For f1, fo € LX, we have

o= (1v)(f1) © ¢ (7v)(f2)

=V{v(g1) | 9 (g1) = fi} ©V{tv(92) | 9 (92) = fo}
<V{mv(g1) ©7v(92) | 67 (91 © g2) = L © fa}
<V{ry(h) | ¢ (h) = {1 © fa}

= ¢~ (1v)(f1 © f2).

(T3) For a family {f; € L~ | i € I'}, we have

Nier (v )(fi) = Nier V{7v(9:) | 9" (9:) = [i}
=V Nier{rv(9i) | ¢ (9:) = [fi}
< V{rv(Vier 91) | ¢ (Vier 9i) = Vier fi}
< ¢=(1v) (Vier f1)
Hence ¢=(7v) is an (L, ®)-fuzzy topology on X. Since 7y (g) < ¢=(7v)(¢* (9))
for g € LY, ¢ : (X,05(1y)) — (Y,7y) is an LF-continuous map. Let
¢ (X,7x) = (Y,7v) be an LF-continuous map. Then mv(g) < 7x (¢ (9)).

Thus ¢=(7v)(f) < 7x(f).
(1) and (3) are similarly proved as in (2) and (4), respectively.

Theorem 3.2 Let ¢ : X — Y be a function, F; € F(X) and G; € F(Y)
fori={1,2}. Then we have the following properties.
(1) If Fi* Fa € Fio(X), then ¢7 (F1) x ¢7 (F2) € Fo(Y).

(2) @7 (F1) * ¢~ (F2) < ¢ (F1 * Fa) with equality if ¢ is injective.

(3) If (G1 * G2) € Fo(Y) with g = L for ¢ (g) = 19, $<(G1) * 9°(G2) €
Fo(X).

(4) ¢7(G1 * G2) = 67 (G1) * = (Ga).
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Proof. (1) For g1 ©® g2 = 1p, ¢ (g1) © ¢ (g2) = ¢ (91 © g2) = 1p. Since
Fi "E];z € Fo(X), 7 (F1)(g1) * 07 (Fa)(g2) = Fi1(¢ (g1)) * Fa(9 (g2)) = L.
2

(07 (F1) x ¢~ (F2)(h)

= V{07 (F1)(f1) * o7 (F2)(f2) | fr © fo < h}

S V{FU(OT(f1) * Fa(d™(f2) | 97 (f1) © 67 (f2) < 9T (h)}
< (Frx Fo) (9 (h) = ¢7 (F1* Fo)(h).

Let ¢ be an injective function. Suppose there exists h € LY such that

(67 (F1) * 07 (F2))(h) 2 &7 (F1 = F2)(h).

By the definition of ¢~ (F * F»), there exist fi, fo € LX with fi ® fo < ¢ (h)
such that
¢~ (F1) * 07 (F2)(h) Z Filfr) * Fa( fo)-

Since ¢ is an injective function, ¢~ (f1)©d 7 (f2) = ¢~ ([1Of2) < ¢~ (67 (h)) <
h. Thus,

(07 (F1) 67 (F2))(h) 2 67 (F1) (07 (/1)) x &7 (F2) (@7 (f2)) = F1(fi) = Falf2).

It is a contradiction. Hence ¢~ (Fy) * ¢~ (Fa) > ¢~ (F1 * Fa).

(3) For each f1 ® fa = 1p, ¢ (g1 © g2) = 1p implies g; ® g» = 1p. Since
(G5 Go) € Fo(Y), Gi(gh) * Galgn) = L. Hence 6=(Gr)(f1) * 6=(G) (f) = L.
Hence ¢=(G1) * 0= (Ga) € Fio(X).

(4) Suppose there exists h € LY such that

¢ (G1 % G2)(h) 2 (67(G1) * 97(G2))(R).

By the definition of ¢=(G;) * ¢=(Gs), there exist hy, hy with hy ® hy < h such
that

d=(G1* G2)(h) 2 07 (G1)(h1) * ¢ (Ga)(ha).

By the definitions of ¢<(G;), for each i € {1,2}, there exists g; € LY with
»(g:) < h; such that

= (G1 % G2)(h) Z Gi(g1) * G2(g2)-
Since ¢ (g1) © ¢ (92) = ¢ (91 © g2) < h,
¢ (Gr# Ga2)(h) =2 (G1 % G2)(91 © g2) = Gi(g1) * G2(g2)-
It is a contradiction. Hence

¢7(G1 % Ga) > ¢ (G1) ¥ 97 (Ga).
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Suppose there exists k € L* such that
¢ (G1 * Ga) (k) £ (97 (G1) * ¢ (Ga)) ().
By the definition of ¢ (G, * G,), there exists g with ¢ (g) < k such that
(G1 % G2)(g) £ (67(G1) * 6 (Ga)) (k).
By the definition of G; * Go, there exist g; € LY with g; ® g < g such that
G1(g1) * Ga(g2) £ (67(G1) x ¢ (G2)) (k).
Since ¢ (1) © ¢ (g2) = ¢ (g1 © g2) < k,
(97(G1) * 67(G2)) (k) = ¢T(G1) (0™ (1)) * 9™ (G2) (07 (92)) = Gi(g1) * Ga(g2)-
It is a contradiction. Hence

¢7(G1 % Ga) < 97 (G1) ¥ 97 (Ga).

Example 3.3 Let X = {z1, 29,23} and Y = {y1, y2} besets, (L = [0,1],®)
the stsc-quantale with z®y = 0V (x+y— 1) and let g1, g2 € [0, 1]" defined as
g1(y1) = 0.6, g2(y2) = 0.5 and g2(y1) = 0.5, ga(y2) = 0.2. We define ([0, 1], ®)-
filters G, : [0,1]Y — [0,1] as follows:

1 ifg=1y )
’ ) ’ 1 ifg=1y
< ) )
Gi(g) = 06, g <97 lv, Ga(g) =4 0.5, if g <g#ly,
0'3a 1f g1 @ g1 S g z 91, O OtherWise
0, otherwise. ’ ’

(1) If ¥ = ®, then we obtain G; ® G, as follows:

1, if g=1x,
0.6, if g <g# l1x,
0'57 if g2 S g z g1,

G1©Ga(g) = 03, iftgoqgn <gZ g,
0.1, ifg1©ge<gZq0Oa,
0, otherwise.
Moreover, we have ¢=(G; ® Gy) = ¢<(G1) ©® ¢ (G2) as follows:
1, if f - ]-Xa

0.6, if p~(g1) < f # 1x,

- ] 05, i et (g) < F# 6 (a),
OTGOG)N) =\ 03 it 6(g) 6 (01) < f # 6 (g0),
0.1, if 6(g2) ® 6" (gn) < f # 6 (g1) © 6" (),

0, otherwise.
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(2) If ¥ = A, then we obtain G; A Gy as follows:

1, ifg=1yx,

0.6, ifg <g# 1x,
0.5, ifg1©g92<g 2 g1,
0, otherwise.

Gi1 N Ga(g) =

Moreover, we have ¢=(G1 A G2) = ¢=(G1) N\ ¢=(G2) as follows:

1, if f=1x,
0.6, if o< (g1) < f # 1x,
0.5, if p(g2) ® ¢ (1) < f # ¢ (o),

0, otherwise.

9(G1 0 G)(f) =

Theorem 3.4 Let ¢ : X — Y be a function, 7 € To(X) and 7§ € T,(Y)
fori={1,2}. Then we have the following properties.

(1) ¢ (1%) * 07 (7%) < ¢~ (7% * T%) with equality if ¢ is bijective.

(2) ¢ (ry *79) = ¢ (73) * = (19).

Proof. (1) Let ¢ be a bijective function. Suppose there exists h € LY such
that

(67 (7x) % @7 (%)) (h) 2 ¢7 (rx *7%) ().

By the definition of ¢~ (7% * 7%), there exist f1, fo € LX with fi ® fo = ¢ (h)
such that

07 (7x) % 07 (3)(h) 2 7x (1) * 7% (fo)-

Since ¢ is a bijective function, ¢~ (f1) @07 (f2) = o7 (f1O f2) = o7 (¢ (h)) =
h. Thus,

(67 (7x) %67 (7)) (h) = 67 (1x)(¢7 (f1)) %67 (%) (67 (f2)) = 7x (f1) *7x (f2)-

It is a contradiction. Hence ¢= (7%) x ¢7 (7%) > ¢ (7% * 7%).

Theorem 3.5 Let (X, 1) and (Y, 12) be (L, ®)-fuzzy topological spaces. Let
¢: X =Y beamap. Let NT and N2 be (F7, x)-and (F*®), *)-neighborhood
filters, respectively. For each (L, ®)-filter F € LY 2z € X and h € LY, we
have the following statements:

(1)
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(r2(h) = 1i(¢* (R))) * (FP@ (h) — F*(¢*(R)))
< NEE(h) = NE (6% (h))
< (N2@D(h) % 6= (F)(g)) — (N2 (6 (h) = F(6 (9)))

(3) If ¢ : (X, 1) — (Y, 72) is LF-continuous and ¢ : (X, F*) — (Y, Fo@)
is an L-filter map for each x € X, then ¢ : (X, NZ) = (Y, N2@)) is an L-filter
map for each x € X.

(4) Let ¢ : (X, 1) — (Y, ) be LF-continuous and ¢ : (X, F*) — (Y, F*@)
an L-filter map for eachx € X. If F — x(F?, ), then ¢~ (F) — ¢(z)(F*@), ).
Furthermore, we have ¢(limp (F)(F®, %)) < limz; (¢~ (F))(FP@), %),

(5) Let ¢ : (X, 1) = (Y, ) be LF-continuous and ¢ : (X, F*) — (Y, F*@)
an L-filter map for eachx € X. If F oo x(F?, %), then ¢~ (F) oo ¢(z)(F*@), ).
Furthermore, we have ¢(cluy, (F)(F=, %)) < cltg, (¢~ (F))(F@, x).

Proof. (1) By Theorem 2.11 and Lemma 2.8(7), we have:

N (h) = N (6 (R))

< (W2 (67 (h) = F(o=(h) = (N2 (h) — 6= (F)(h)))
(2) It follows from Lemma 2.8(6).
(3) Since N2@) (h) — NZ (¢ (h)) = T, we have N2@(h) < NZ (¢ (h)).
(4) Let F be an (L,®)-filter and x € X such that F — z(F*, ). Since

F — z(F", *), we have N2 < F. Since N2@(g) < N (¢ (g)) from (1), we
have

N (g) S NE (6 (9)) < F(0(9)) = 67 (F)(9)-

Thus, ¢~ (F) — ¢(x)(F?), x).
(5) Let N2 (h) * 67 (F)(g) # L. By (2), since

= (NED(h) 67 (F)(9)) = (N5 (67 (h) = F(67(9))),
we have

NE(¢(R)) * F(65(9)) = N2W() x 67 (F)(g) # L.
Since Foox(F7*, *), we have ¢ (h) © ¢ (g) # L. Thus h® g # L.

Example 3.6 Let X = {x,y} be a set and fi(x) = 0.6, fi(y) = 0.5. Let
(L =[0,1], ® = %) be stsc-quantales where a®b = a*b = (a+b—1) V0. Then
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® dominates ®. We define ([0, 1], ®)-fuzzy topologies 71, 7 : [0, 1]¥ — [0,1] as
follows:

1, iff=0orl, 1, iff=0orl,
_J 06, if f=fi, ) 06, if f=fi,
=905 iwr-fon Y=Y 0s itr—nop,
0, otherwise, 0, otherwise.

(1) Since NZ(f) = Vy<s([z](9) © 7i(g)) for i € {1,2}, we obtain ([z],®)-
neighborhood filters N* = NZ N¥ = NY - [0,1]* — [0, 1] as follows:

T2

1, iff=1, 1, iff=1,
Ni(f)=1 02, ffi<f#T, NiI(f)=1{ 0L ffAA<f#T
0, otherwise, 0, otherwise.

An identity map idx : (X, 7) — (X, 72) is not LF-continuous because 0.5 =
To(f1 © f1) £ n(f1 ® f1) = 0.3. We have the following properties:
(A) Since N2 = N2, N¥ = NY for each z,y € X, then idx : (X, NZ) —
(X, NZ)is an L-filter map for each z € X.
(B) Fooz([z], ®) iff idx(F) = Fooz([z], ®) for each z € X.
(C) F = x([z], ®) iff idx(F) = F — x([z],®) for each x € X.
(D) lime, (F)([2), ©) = lime, (F)([2),©) and clur, (F)([a], ©) = clury (F) (], ®).
(2) Since NZ(f) = V,<;(inf(g) ® 7(g)) for i € {1,2}, we obtain (inf, ®)-
neighborhood filters N* = NZ = N¥ = NY : [0,1]* — [0, 1] as follows:

1, iff=1,
0, otherwise.
We have the following properties:
(E) Since NZ = N2 = NY = NY for each 2,y € X, then idy : (X,N*) —
(X, NZ)is an L-filter map for each z € X.
(F) Foox(inf, ®) iff idx (F) = Foox(inf, ®) for each z € X.
(G) F — z(inf, ®) iff idx (F) = F — z(inf, ®) for each z € X.
(H) lim,, (F)(inf, ®) = lim., (F)(inf, ®) and clu,, (F)(inf, ®) = clu,,(F)(inf, ®).
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