(L,\odot) -fuzzy topologies induced by functions

Yong Chan Kim

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea yck@gwnu.ac.kr

Abstract

In this paper, we investigate the properties of (L, \odot) -fuzzy topologies and (L, \odot) -filters induced by functions on strictly two-sided, commutative quantale lattices (L, \odot) and (L, *). Furthermore, we study their convergence and functorial relations.

Mathematics Subject Classification: 03E72, 54A40,54B10

Keywords: Quantale lattice, (L, \odot) -fuzzy topologies, (L, \odot) -filters, LF-continuous, $(\mathcal{F}^x, *)$ -neighborhood filter.

1 Introduction

Höhle and Sostak [6] introduced the notion of (L, \odot) -fuzzy topological spaces on a complete quasi-monoidal lattice (or GL-monoid) instead of a completely distributive lattice or an unit interval. Höhle and Sostak [6] introduced the concept of (L, \odot) -filters for a complete quasi-monoidal lattice L.

In this paper, we investigate the products of (L, \odot) -fuzzy topologies and (L, \odot) -filters induced by functions on strictly two-sided, commutative quantale lattices (L, \odot) and (L, *). Furthermore, we study relations among LF-continuous maps, filter convergence, $(\mathcal{F}^x, *)$ -neighborhood filters and L-filter maps.

2 Preliminaries

Definition 2.1 [8] A triple (L, \leq, \odot) is called a *strictly two-sided, commutative quantale* (stsc-quantale, for short) iff it satisfies the following properties: (L1) $L = (L, \leq, \top, \bot)$ is a complete lattice where \top is the universal upper bound and \bot denotes the universal lower bound;

- (L2) (L, \odot) is a commutative semigroup;
- (L3) $a = a \odot \top$, for each $a \in L$;
- $(L4) \odot$ is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

Example 2.2 [8] (1) Each frame is a stsc-quantale. In particular, the unit interval $([0,1], <, \lor, \land, 0, 1)$ is a stsc-quantale.

- (2) The unit interval with a left-continuous t-norm t, ([0, 1], \leq , t), is a stsc-quantale.
 - (3) Every GL-monoid is a stsc-quantale.
- (4) Define a binary operation \odot on [0,1] by $x\odot y=\max\{0,x+y-1\}$. Then $([0,1],\leq,\odot)$ is a stsc-quantale.

Definition 2.3 [6,8] A mapping $\tau: L^X \to L$ is called an (L, \odot) -fuzzy topology on X if it satisfies the following conditions:

- (T1) $\tau(1_{\emptyset}) = \top$ and $\tau(1_X) = \top$,
- (T2) $\tau(f \odot g) \ge \tau(f) \odot \tau(g)$, for each $f, g \in L^X$,
- (T3) $\tau(\bigvee_{i\in\Gamma} f_i) \ge \bigwedge_{i\in\Gamma} \tau(f_i)$.
- An (L, \odot) -fuzzy topology is called *enriched* if
- (S) $\tau(\alpha \odot f) \ge \tau(f)$ for each $f \in L^X$ and $\alpha \in L$.

The pair (X, τ) is called an (resp. enriched) (L, \odot) -fuzzy topological space. $T_{\odot}(X)$ is a family of (L, \odot) -fuzzy topologies on X.

Let (X, τ_1) and (Y, τ_2) be two (L, \odot) -fuzzy topological spaces and a map $\phi: X \to Y$ called LF-continuous if $\tau_2(g) \leq \tau_1(\phi^{\leftarrow}(g))$ for all $g \in L^Y$.

Definition 2.4 [6,8] A mapping $\mathcal{F}: L^X \to L$ is called an (L, \odot) -filter on X if it satisfies the following conditions:

- (F1) $\mathcal{F}(1_{\emptyset}) = \bot$ and $\mathcal{F}(1_X) = \top$,
- (F2) $\mathcal{F}(f \odot g) \geq \mathcal{F}(f) \odot \mathcal{F}(g)$, for each $f, g \in L^X$,
- (F3) if $f \leq g$, $\mathcal{F}(f) \leq \mathcal{F}(g)$.

An (L, \odot) -filter is called *stratified* if

(S) $\mathcal{F}(\alpha \odot f) \geq \alpha \odot \mathcal{F}(f)$ for each $f \in L^X$ and $\alpha \in L$.

The pair (X, \mathcal{F}) is called an (resp. a stratified) (L, \odot) -filter space. $F_{\odot}(X)$ is a family of (L, \odot) -filters on X.

Let (X, \mathcal{F}_1) and (Y, \mathcal{F}_2) be two (L, \odot) -filter spaces and $\phi : X \to Y$ called an L-filter map if $\mathcal{F}_2(g) \leq \mathcal{F}_1(\phi^{\leftarrow}(g))$ for all $g \in L^Y$.

Example 2.5 (1) Define a map $[x]: L^X \to L$ as [x](f) = f(x). Then [x] is a stratified (L, \odot) -filter on X.

(2) Define a map inf: $L^X \to L$ as $\inf(f) = \bigwedge_{x \in X} f(x)$. Then inf is a stratified (L, \odot) -filter on X.

Definition 2.6 [6] Let (L, *) and (L, \odot) be stsc-quantales. An operation \odot dominates * if it satisfies:

$$(x_1 * y_1) \odot (x_2 * y_2) \ge (x_1 \odot x_2) * (y_1 \odot y_2).$$

Example 2.7 (1) For any left-continuous t-norm *, \wedge dominates * because

$$(x_1 * y_1) \land (x_2 * y_2) \ge (x_1 \land x_2) * (y_1 \land y_2).$$

(2) Define t-norms as $x \odot y = \frac{xy}{x+y-xy}$ and x * y = xy. Then \odot dominates *.

Lemma 2.8 [9] Let (L, \odot) and (L, *) be stsc-quantales which induce two implications $a \to b = \bigvee\{c \mid a \odot c \leq b\}$ and $a \Rightarrow b = \bigvee\{c \mid a * c \leq b\}$, respectively. Let \odot dominates *. For each $a, b, c, a_i, b_i \in L$, we have the following properties.

- (1) If $b \le c$, then $a \odot b \le a \odot c$ and $a * b \le a * c$.
- (2) $a \odot b \le c$ iff $a \le b \to c$. Moreover, $a * b \le c$ iff $a \le b \Rightarrow c$.
- (3) If $b \le c$, then $a \to b \le a \to c$ and $c \to a \le b \to a$ for $\to \in \{\to, \Rightarrow\}$.
- (4) $a * b \le a \odot b$, $a \rightarrow b \le a \Rightarrow b$ and $a * (b \odot c) \le (a * b) \odot c$.
- $(5) (a \Rightarrow b) \odot (c \Rightarrow d) \le (a \odot c) \Rightarrow (b \odot d).$
- (6) $(b \Rightarrow c) \le (a \odot b) \Rightarrow (a \odot c)$.
- $(7) (b \to c) \le (a \Rightarrow b) \to (a \Rightarrow c) \text{ and } (b \Rightarrow a) \le (a \to c) \to (b \Rightarrow c)$
- (8) $a_i \to b_i \le (\bigwedge_{i \in \Gamma} a_i) \to (\bigwedge_{i \in \Gamma} b_i).$
- $(9) \ a_i \to b_i \le (\bigvee_{i \in \Gamma} a_i) \to (\bigvee_{i \in \Gamma} b_i).$
- $(10) (c \Rightarrow a) * (b \rightarrow d) \le (a \rightarrow b) \rightarrow (c \Rightarrow d).$

Theorem 2.9 [10] Let (X, τ) be an (L, \odot) -fuzzy topology and $\{\mathcal{F}^x \mid x \in X\}$ a family of (L, \odot) -filters. An operation * dominates \odot . We define a map $\mathcal{N}^x_{\tau}: L^X \to L$ as follows:

$$\mathcal{N}_{\tau}^{x}(f) = \bigvee_{g \le f} (\mathcal{F}^{x}(g) * \tau(g))$$

Then

- (1) \mathcal{N}_{τ}^{x} is an (L, \odot) -filter.
- (2) If \mathcal{F}^x is a stratified (L, \odot) -filter and τ is an enriched (L, \odot) -fuzzy topology, then \mathcal{N}_{τ}^x is a stratified (L, \odot) -filter
 - (3) If $\mathcal{F}^x \geq H^x$, then $\tau_{\mathcal{N}_{\tau}^x} \geq \tau$.
 - (4) If $\mathcal{F}^x \leq H^x$, then $\mathcal{N}_{\tau_F}^x \leq \mathcal{F}^x$.

Definition 2.10 [10] In above theorem, a map $\mathcal{N}_{\tau}^{x}: L^{X} \to L$ is called $(\mathcal{F}^{x}, *)$ -neighborhood filter induced by \mathcal{F}^{x}, τ and operation *. A family $\{\mathcal{N}_{\tau}^{x} \mid x \in X\}$ is called $(\mathcal{F}^{x}, *)$ -neighborhood system.

Theorem 2.11 [10] An operation * dominates \odot . Let (X, τ_X) and (Y, τ_Y) be (L, \odot) -fuzzy topological spaces, $\{\mathcal{F}^x \mid x \in X\}$ and $\{\mathcal{F}^y \mid y \in Y\}$ two families of (L, \odot) -filters and $\psi : X \to Y$ be a map. Then for $h \in L^Y$,

$$(\tau_Y(h) \to \tau_X(\psi^{\leftarrow}(h))) * (\mathcal{F}^{\psi(x)}(h) \to \mathcal{F}^x(\psi^{\leftarrow}(h)) \le \mathcal{N}_{\tau_Y}^{\psi(x)}(h) \to \mathcal{N}_{\tau_X}^x(\psi^{\leftarrow}(h))$$

In particular, if $\psi: (X, \tau_X) \to (Y, \tau_Y)$ is LF continuous and $\psi: (X, \mathcal{F}^x) \to (Y, \mathcal{F}^{\psi(x)})$ is an L-filter map, then $\psi: (X, \mathcal{N}_{\tau_X}^x) \to (Y, \mathcal{N}_{\tau_Y}^{\psi(x)})$ is an L-filter map.

Theorem 2.12 [10] An operation * dominates \odot . Let $F = \{\mathcal{F}^x \in L^{L^X} \mid x \in X\}$ and $G = \{\mathcal{G}^x \in L^{L^X} \mid x \in X\}$ be two families of (L, \odot) -filters satisfying the condition $\mathcal{F}^x(f) * \mathcal{G}^x(g) = \bot$ for each $f \odot g = \bot$. We define $\mathcal{F}^x * \mathcal{G}^x : L^X \to L$ as follows:

$$\mathcal{F}^x * \mathcal{G}^x(h) = \bigvee \{ \mathcal{F}^x(f) * \mathcal{G}^x(g) \mid f \odot g \le h \}.$$

Let τ_1, τ_2 be an (L, \odot) -fuzzy topologies on X. We define $\tau_1 * \tau_2 : L^X \to L$ as follows:

$$(\tau_1 * \tau_2)(h) = \bigvee \{\tau_1(f) * \tau_2(g) \mid f \odot g = h\}.$$

- (1) $\mathcal{F}^x * \mathcal{G}^x$ is an (L, \odot) -filter on X which is finer than \mathcal{F}^x and \mathcal{G}^x . If $* = \odot$, then $\mathcal{F}^x \odot \mathcal{G}^x$ is the coarsest (L, \odot) -filter on X which is finer than \mathcal{F}^x and \mathcal{G}^x . Moreover, if $* = \odot$ and $\mathcal{F}^x = \mathcal{G}^x$, then $\mathcal{F}^x \odot \mathcal{F}^x = \mathcal{F}^x$.
- (2) If \mathcal{F}^x or \mathcal{G}^x is a stratified (L, \odot) -filter, then $\mathcal{F}^x * \mathcal{G}^x$ is a stratified (L, \odot) -filter on X.
- (3) $\tau_1 * \tau_2$ is an (L, \odot) -fuzzy topology on X which is finer than τ_1 and τ_2 . If $* = \odot$, then $\tau_1 \odot \tau_2$ is the coarsest (L, \odot) -fuzzy topology on X which is finer than τ_1 and τ_2 .
- (4) If τ_1 or τ_2 is an enriched (L, \odot) -fuzzy topology, then $\tau_1 * \tau_2$ is an enriched (L, \odot) -fuzzy topology on X.
 - (5) $\tau_{F*G} \ge \tau_F * \tau_G \text{ where } F * G = \{\mathcal{F}^x * \mathcal{G}^x \in L^{L^X} \mid x \in X\}.$
 - (6) $\mathcal{N}_{\tau_1 \odot \tau_2}^x \ge \mathcal{N}_{\tau_1}^x \odot \mathcal{N}_{\tau_2}^x$.

Definition 2.13 [10] Let (X, τ) be an (L, \odot) -fuzzy topological space, \mathcal{N}_{τ}^{x} $(\mathcal{F}^{x}, *)$ -neighborhood filter, \mathcal{G} an (L, \odot) -filter, $f, g \in L^{X}$ and $x \in X$.

- (1) x is called $(\mathcal{F}^x, *)$ -cluster point of \mathcal{G} , denoted by $\mathcal{G} \infty x(\mathcal{F}^x, *)$, if for every $\mathcal{N}_{\tau}^x(f) * \mathcal{G}(g) \neq \bot$, we have $f \odot g \neq 1_{\emptyset}$.
 - (2) x is called $(\mathcal{F}^x, *)$ -limit point of \mathcal{G} , denoted by $\mathcal{G} \to x(\mathcal{F}^x, *)$, if $\mathcal{N}_{\tau}^x \leq \mathcal{G}$. We denote

$$clu_{\tau}(\mathcal{G})(\mathcal{F}^x, *) = \bigcup \{x \in X \mid x \text{ is } (\mathcal{F}^x, *)\text{-cluster point of } \mathcal{G}\},$$

$$\lim_{\tau}(\mathcal{G})(\mathcal{F}^x,*) = \bigcup \{x \in X \mid x \text{ is } (\mathcal{F}^x,*)\text{-limit point of } \mathcal{G}\}.$$

Theorem 2.14 [10] Let (X, τ) be an (L, \odot) -fuzzy topological space and \mathcal{N}_{τ}^x be $(\mathcal{F}^x, *)$ -neighborhood filter. Let \mathcal{F} and \mathcal{G} be (L, \odot) -filters on X which \mathcal{F} is coarser than \mathcal{G} . For each $x \in X$, the following properties hold:

- (1) $\mathcal{N}_{\tau}^{x}(f) \to \mathcal{F}(f) \leq \mathcal{N}_{\tau}^{x}(f) \to \mathcal{G}(f)$, for all $f \in L^{X}$.
- (2) If $\mathcal{F} \to x(\mathcal{F}^x, *)$, then $\mathcal{G} \to x(\mathcal{F}^x, *)$.
- (3) $lim_{\tau}(\mathcal{F})(\mathcal{F}^x, *) \leq lim_{\tau}(\mathcal{G})(\mathcal{F}^x, *).$
- (4) If $\mathcal{G} \infty x(\mathcal{F}^x, *)$, then $\mathcal{F} \infty x(\mathcal{F}^x, *)$.
- (5) $clu_{\tau}(\mathcal{G})(\mathcal{F}^x, *) \leq clu_{\tau}(\mathcal{F})(\mathcal{F}^x, *).$
- (6) If $\mathcal{F} \to x(\mathcal{F}^x, *)$ and (L, \odot) -filter $\mathcal{F} * \mathcal{F}$ exists, then $\mathcal{F} \infty x(\mathcal{F}^x, *)$. In particular, if $\odot = *$ and $\mathcal{F} \to x(\mathcal{F}^x, \odot)$, then $\mathcal{F} \infty x(\mathcal{F}^x, \odot)$ and $\lim_{\tau} (\mathcal{F})(\mathcal{F}^x, \odot) \leq clu_{\tau}(\mathcal{F})(\mathcal{F}^x, \odot)$.

Theorem 2.15 [10] Let (X, τ) be an (L, \odot) -fuzzy topological space, \mathcal{N}_{τ}^{x} be $(\mathcal{F}^{x}, *)$ -neighborhood filter and \mathcal{F} an (L, \odot) -filter.

Then: (1) If $\mathcal{F} \infty x(\mathcal{F}^x, *)$, then \mathcal{F} has a finer (L, \odot) -filter \mathcal{G} such that $\mathcal{G} \to x(\mathcal{F}^x, *)$.

- (2) If \mathcal{F} has a finer (L, \odot) -filter \mathcal{G} such that $\mathcal{G} \to x(\mathcal{F}^x, *)$ which an (L, \odot) -filter $\mathcal{F} * \mathcal{F}$ exists, then $\mathcal{F} \infty x(\mathcal{F}^x, *)$.
- (3) If $\odot = *$ and \mathcal{F} has a finer (L, \odot) -filter \mathcal{G} such that $\mathcal{G} \to x(\mathcal{F}^x, *)$, then $\mathcal{F} \infty x(\mathcal{F}^x, *)$.

3 (L, \odot) -fuzzy topologies induced by functions

Theorem 3.1 Let $\phi: X \to Y$ be a map. Let \mathcal{F} and \mathcal{G} be (L, \odot) -filters on X and Y, respectively. Let τ_X and τ_Y be (L, \odot) -fuzzy topologies on X and Y, respectively.

- (1) Let \mathcal{F} be an (L, \odot) -filter on X. We define a map $\phi^{\Rightarrow}(\mathcal{F}): L^Y \to L$ as $\phi^{\Rightarrow}(\mathcal{F})(g) = \mathcal{F}(\phi^{\leftarrow}(g))$. Then $\phi^{\Rightarrow}(\mathcal{F})$ is the finest (L, \odot) -filter on Y for which each $\phi: (X, \mathcal{F}) \to (Y, \mathcal{G})$ is an L-filter map.
- (2) Let τ_X be an (L, \odot) -fuzzy topology on X. We define a map $\phi^{\Rightarrow}(\tau_X)$: $L^Y \to L$ as $\phi^{\Rightarrow}(\tau_X)(g) = \tau_X(\phi^{\leftarrow}(g))$. Then $\phi^{\Rightarrow}(\tau_X)$ is the finest (L, \odot) -fuzzy topology on Y for which each $\phi: (X, \tau_X) \to (Y, \tau_Y)$ is an LF-continuous map.
- (3) Let \mathcal{G} be an (L, \odot) -filter on Y with $\mathcal{G}(g) = \bot$ for $\phi^{\leftarrow}(g) = 1_{\emptyset}$. We define a map $\phi^{\leftarrow}(\mathcal{G}) : L^X \to L$ as $\phi^{\leftarrow}(\mathcal{G})(f) = \bigvee \{\mathcal{G}(g) \mid \phi^{\leftarrow}(g) \leq f\}$. Then $\phi^{\leftarrow}(\mathcal{G})$ is the coarsest (L, \odot) -filter on Y for which each $\phi : (X, \mathcal{F}) \to (Y, \mathcal{G})$ is an L-filter map.
- (4) Let τ_Y be an (L, \odot) -fuzzy topology on Y. We define a map $\phi^{\Leftarrow}(\tau_Y)$: $L^X \to L$ as $\phi^{\Leftarrow}(\tau_Y)(f) = \bigvee \{\tau_Y(g) \mid \phi^{\leftarrow}(g) = f\}$. Then $\phi^{\Leftarrow}(\tau_Y)$ is the coarsest (L, \odot) -fuzzy topology on Y for which each $\phi: (X, \tau_X) \to (Y, \tau_Y)$ is an LF-continuous map.

Proof. (2) (T1) $\phi^{\Rightarrow}(\tau_X)(1_{\emptyset}) = \tau_X((1_{\emptyset}) = \top \text{ and } \phi^{\Rightarrow}(\tau_X)(1_Y) = \tau_X((1_X) = \top.$

(T2) For $f, g \in L^Y$, we have

$$\phi^{\Rightarrow}(\tau_X)(f \odot g) = \tau_X(\phi^{\leftarrow}(f \odot g))$$

$$= \tau_X(\phi^{\leftarrow}(f) \odot \phi^{\leftarrow}(g))$$

$$\geq \tau_X(\phi^{\leftarrow}(f)) \odot \tau_X(\phi^{\leftarrow}(g))$$

$$= \phi^{\Rightarrow}(\tau_X)(f) \odot \phi^{\Rightarrow}(\tau_X)(g).$$

(T3) For a family $\{f_i \in L^X \mid i \in \Gamma\}$, we have

$$\phi^{\Rightarrow}(\tau_X)(\bigvee_{i\in\Gamma}f_i) = \tau_X(\phi^{\leftarrow}(\bigvee_{i\in\Gamma}f_i))$$

$$\geq \bigwedge_{i\in\Gamma}\tau_X(\phi^{\leftarrow}(f_i)) = \bigwedge_{i\in\Gamma}\phi^{\Rightarrow}(\tau_X)(f_i)$$

Hence $\phi^{\Rightarrow}(\tau_X)$ is an (L, \odot) -topology on Y. Also, $\phi: (X, \tau_X) \to (Y, \phi^{\Rightarrow}(\tau_X))$ is an LF-continuous map. Since $\tau_Y(g) \leq \tau_X(\phi^{\leftarrow}(g)) = \phi^{\Rightarrow}(\tau_X)(g)$, then $\phi^{\Rightarrow}(\tau_X)$ is the finest (L, \odot) -topology on Y for which each $\phi: (X, \tau_X) \to (Y, \tau_Y)$ is an LF-continuous map.

- (4) (T1) is easy.
- (T2) For $f_1, f_2 \in L^X$, we have

$$\phi^{\Leftarrow}(\tau_{Y})(f_{1}) \odot \phi^{\Leftarrow}(\tau_{Y})(f_{2})
= \bigvee \{\tau_{Y}(g_{1}) \mid \phi^{\leftarrow}(g_{1}) = f_{1}\} \odot \bigvee \{\tau_{Y}(g_{2}) \mid \phi^{\leftarrow}(g_{2}) = f_{2}\}
\leq \bigvee \{\tau_{Y}(g_{1}) \odot \tau_{Y}(g_{2}) \mid \phi^{\leftarrow}(g_{1} \odot g_{2}) = f_{1} \odot f_{2}\}
\leq \bigvee \{\tau_{Y}(h) \mid \phi^{\leftarrow}(h) = f_{1} \odot f_{2}\}
= \phi^{\Rightarrow}(\tau_{Y})(f_{1} \odot f_{2}).$$

(T3) For a family $\{f_i \in L^X \mid i \in \Gamma\}$, we have

Hence $\phi^{\Leftarrow}(\tau_Y)$ is an (L, \odot) -fuzzy topology on X. Since $\tau_Y(g) \leq \phi^{\Leftarrow}(\tau_Y)(\phi^{\leftarrow}(g))$ for $g \in L^Y$, $\phi : (X, \phi^{\Leftarrow}(\tau_Y)) \to (Y, \tau_Y)$ is an LF-continuous map. Let $\phi : (X, \tau_X) \to (Y, \tau_Y)$ be an LF-continuous map. Then $\tau_Y(g) \leq \tau_X(\phi^{\leftarrow}(g))$. Thus $\phi^{\Leftarrow}(\tau_Y)(f) \leq \tau_X(f)$.

(1) and (3) are similarly proved as in (2) and (4), respectively.

Theorem 3.2 Let $\phi: X \to Y$ be a function, $\mathcal{F}_i \in F_{\odot}(X)$ and $\mathcal{G}_i \in F_{\odot}(Y)$ for $i = \{1, 2\}$. Then we have the following properties.

- (1) If $\mathcal{F}_1 * \mathcal{F}_2 \in F_{\odot}(X)$, then $\phi^{\Rightarrow}(\mathcal{F}_1) * \phi^{\Rightarrow}(\mathcal{F}_2) \in F_{\odot}(Y)$.
- (2) $\phi^{\Rightarrow}(\mathcal{F}_1) * \phi^{\Rightarrow}(\mathcal{F}_2) \leq \phi^{\Rightarrow}(\mathcal{F}_1 * \mathcal{F}_2)$ with equality if ϕ is injective.
- (3) If $(\mathcal{G}_1 * \mathcal{G}_2) \in F_{\odot}(Y)$ with $g = \bot$ for $\phi^{\leftarrow}(g) = 1_{\emptyset}$, $\phi^{\Leftarrow}(\mathcal{G}_1) * \phi^{\Leftarrow}(\mathcal{G}_2) \in F_{\odot}(X)$.
 - $(4) \phi^{\Leftarrow}(\mathcal{G}_1 * \mathcal{G}_2) = \phi^{\Leftarrow}(\mathcal{G}_1) * \phi^{\Leftarrow}(\mathcal{G}_2).$

Proof. (1) For $g_1 \odot g_2 = 1_{\emptyset}$, $\phi^{\leftarrow}(g_1) \odot \phi^{\leftarrow}(g_2) = \phi^{\leftarrow}(g_1 \odot g_2) = 1_{\emptyset}$. Since $\mathcal{F}_1 * \mathcal{F}_2 \in F_{\odot}(X)$, $\phi^{\Rightarrow}(\mathcal{F}_1)(g_1) * \phi^{\Rightarrow}(\mathcal{F}_2)(g_2) = \mathcal{F}_1(\phi^{\leftarrow}(g_1)) * \mathcal{F}_2(\phi^{\leftarrow}(g_2)) = \bot$. (2)

$$(\phi^{\Rightarrow}(\mathcal{F}_{1}) * \phi^{\Rightarrow}(\mathcal{F}_{2})(h)$$

$$= \bigvee \{\phi^{\Rightarrow}(\mathcal{F}_{1})(f_{1}) * \phi^{\Rightarrow}(\mathcal{F}_{2})(f_{2}) \mid f_{1} \odot f_{2} \leq h\}$$

$$\leq \bigvee \{\mathcal{F}_{1}(\phi^{\leftarrow}(f_{1})) * \mathcal{F}_{2}(\phi^{\leftarrow}(f_{2})) \mid \phi^{\leftarrow}(f_{1}) \odot \phi^{\leftarrow}(f_{2}) \leq \phi^{\leftarrow}(h)\}$$

$$\leq (\mathcal{F}_{1} * \mathcal{F}_{2})(\phi^{\leftarrow}(h)) = \phi^{\Rightarrow}(\mathcal{F}_{1} * \mathcal{F}_{2})(h).$$

Let ϕ be an injective function. Suppose there exists $h \in L^Y$ such that

$$(\phi^{\Rightarrow}(\mathcal{F}_1) * \phi^{\Rightarrow}(\mathcal{F}_2))(h) \not\geq \phi^{\Rightarrow}(\mathcal{F}_1 * \mathcal{F}_2)(h).$$

By the definition of $\phi^{\Rightarrow}(\mathcal{F}_1 * \mathcal{F}_2)$, there exist $f_1, f_2 \in L^X$ with $f_1 \odot f_2 \leq \phi^{\leftarrow}(h)$ such that

$$\phi^{\Rightarrow}(\mathcal{F}_1) * \phi^{\Rightarrow}(\mathcal{F}_2)(h) \not\geq \mathcal{F}_1(f_1) * \mathcal{F}_2(f_2).$$

Since ϕ is an injective function, $\phi^{\rightarrow}(f_1)\odot\phi^{\rightarrow}(f_2)=\phi^{\rightarrow}(f_1\odot f_2)\leq\phi^{\rightarrow}(\phi^{\leftarrow}(h))\leq h$. Thus,

$$(\phi^{\Rightarrow}(\mathcal{F}_1) * \phi^{\Rightarrow}(\mathcal{F}_2))(h) \ge \phi^{\Rightarrow}(\mathcal{F}_1)(\phi^{\rightarrow}(f_1)) * \phi^{\Rightarrow}(\mathcal{F}_2)(\phi^{\rightarrow}(f_2)) \ge \mathcal{F}_1(f_1) * \mathcal{F}_2(f_2).$$

It is a contradiction. Hence $\phi^{\Rightarrow}(\mathcal{F}_1) * \phi^{\Rightarrow}(\mathcal{F}_2) \geq \phi^{\Rightarrow}(\mathcal{F}_1 * \mathcal{F}_2)$.

- (3) For each $f_1 \odot f_2 = 1_{\emptyset}$, $\phi^{\leftarrow}(g_1 \odot g_2) = 1_{\emptyset}$ implies $g_1 \odot g_2 = 1_{\emptyset}$. Since $(\mathcal{G}_1 * \mathcal{G}_2) \in F_{\odot}(Y)$, $\mathcal{G}_1(g_1) * \mathcal{G}_2(g_2) = \bot$. Hence $\phi^{\leftarrow}(\mathcal{G}_1)(f_1) * \phi^{\leftarrow}(\mathcal{G}_2)(f_2) = \bot$. Hence $\phi^{\leftarrow}(\mathcal{G}_1) * \phi^{\leftarrow}(\mathcal{G}_2) \in F_{\odot}(X)$.
 - (4) Suppose there exists $h \in L^Y$ such that

$$\phi^{\Leftarrow}(\mathcal{G}_1 * \mathcal{G}_2)(h) \not\geq (\phi^{\Leftarrow}(\mathcal{G}_1) * \phi^{\Leftarrow}(\mathcal{G}_2))(h).$$

By the definition of $\phi^{\Leftarrow}(\mathcal{G}_1) * \phi^{\Leftarrow}(\mathcal{G}_2)$, there exist h_1, h_2 with $h_1 \odot h_2 \leq h$ such that

$$\phi^{\Leftarrow}(\mathcal{G}_1 * \mathcal{G}_2)(h) \not\geq \phi^{\Leftarrow}(\mathcal{G}_1)(h_1) * \phi^{\Leftarrow}(\mathcal{G}_2)(h_2).$$

By the definitions of $\phi^{\leftarrow}(\mathcal{G}_i)$, for each $i \in \{1,2\}$, there exists $g_i \in L^Y$ with $\phi^{\leftarrow}(g_i) \leq h_i$ such that

$$\phi^{\Leftarrow}(\mathcal{G}_1 * \mathcal{G}_2)(h) \not\geq \mathcal{G}_1(g_1) * \mathcal{G}_2(g_2).$$

Since $\phi^{\leftarrow}(g_1) \odot \phi^{\leftarrow}(g_2) = \phi^{\leftarrow}(g_1 \odot g_2) \leq h$,

$$\phi^{\leftarrow}(\mathcal{G}_1 * \mathcal{G}_2)(h) \ge (\mathcal{G}_1 * \mathcal{G}_2)(g_1 \odot g_2) \ge \mathcal{G}_1(g_1) * \mathcal{G}_2(g_2).$$

It is a contradiction. Hence

$$\phi^{\Leftarrow}(\mathcal{G}_1 * \mathcal{G}_2) \ge \phi^{\Leftarrow}(\mathcal{G}_1) * \phi^{\Leftarrow}(\mathcal{G}_2).$$

Suppose there exists $k \in L^X$ such that

$$\phi^{\Leftarrow}(\mathcal{G}_1 * \mathcal{G}_2)(k) \not\leq (\phi^{\Leftarrow}(\mathcal{G}_1) * \phi^{\Leftarrow}(\mathcal{G}_2))(k).$$

By the definition of $\phi^{\leftarrow}(\mathcal{G}_1 * \mathcal{G}_2)$, there exists g with $\phi^{\leftarrow}(g) \leq k$ such that

$$(\mathcal{G}_1 * \mathcal{G}_2)(g) \not\leq (\phi^{\Leftarrow}(\mathcal{G}_1) * \phi^{\Leftarrow}(\mathcal{G}_2))(k).$$

By the definition of $\mathcal{G}_1 * \mathcal{G}_2$, there exist $g_i \in L^Y$ with $g_1 \odot g_2 \leq g$ such that

$$\mathcal{G}_1(g_1) * \mathcal{G}_2(g_2) \not\leq (\phi^{\Leftarrow}(\mathcal{G}_1) * \phi^{\Leftarrow}(\mathcal{G}_2))(k).$$

Since $\phi^{\leftarrow}(g_1) \odot \phi^{\leftarrow}(g_2) = \phi^{\leftarrow}(g_1 \odot g_2) \leq k$,

$$(\phi^{\leftarrow}(\mathcal{G}_1) * \phi^{\leftarrow}(\mathcal{G}_2))(k) \ge \phi^{\leftarrow}(\mathcal{G}_1)(\phi^{\leftarrow}(g_1)) * \phi^{\leftarrow}(\mathcal{G}_2)(\phi^{\leftarrow}(g_2)) \ge \mathcal{G}_1(g_1) * \mathcal{G}_2(g_2).$$

It is a contradiction. Hence

$$\phi^{\Leftarrow}(\mathcal{G}_1 * \mathcal{G}_2) \leq \phi^{\Leftarrow}(\mathcal{G}_1) * \phi^{\Leftarrow}(\mathcal{G}_2).$$

Example 3.3 Let $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2\}$ be sets, $(L = [0, 1], \odot)$ the stsc-quantale with $x \odot y = 0 \lor (x + y - 1)$ and let $g_1, g_2 \in [0, 1]^Y$ defined as $g_1(y_1) = 0.6, g_2(y_2) = 0.5$ and $g_2(y_1) = 0.5, g_2(y_2) = 0.2$. We define $([0, 1], \odot)$ -filters $\mathcal{G}_i : [0, 1]^Y \to [0, 1]$ as follows:

$$\mathcal{G}_{1}(g) = \begin{cases} 1, & \text{if } g = 1_{Y}, \\ 0.6, & \text{if } g_{1} \leq g \neq 1_{Y}, \\ 0.3, & \text{if } g_{1} \odot g_{1} \leq g \not\geq g_{1}, \\ 0, & \text{otherwise.} \end{cases} \quad \mathcal{G}_{2}(g) = \begin{cases} 1, & \text{if } g = 1_{Y}, \\ 0.5, & \text{if } g_{2} \leq g \neq 1_{Y}, \\ 0, & \text{otherwise.} \end{cases}$$

(1) If $* = \odot$, then we obtain $\mathcal{G}_1 \odot \mathcal{G}_2$ as follows:

$$\mathcal{G}_{1} \odot \mathcal{G}_{2}(g) = \begin{cases} 1, & \text{if } g = 1_{X}, \\ 0.6, & \text{if } g_{1} \leq g \neq 1_{X}, \\ 0.5, & \text{if } g_{2} \leq g \not\geq g_{1}, \\ 0.3, & \text{if } g_{1} \odot g_{1} \leq g \not\geq g_{2}, \\ 0.1, & \text{if } g_{1} \odot g_{2} \leq g \not\geq g_{1} \odot g_{1}, \\ 0, & \text{otherwise.} \end{cases}$$

Moreover, we have $\phi^{\Leftarrow}(\mathcal{G}_1 \odot \mathcal{G}_2) = \phi^{\Leftarrow}(\mathcal{G}_1) \odot \phi^{\Leftarrow}(\mathcal{G}_2)$ as follows:

$$\phi^{\Leftarrow}(\mathcal{G}_{1} \odot \mathcal{G}_{2})(f) = \begin{cases} 1, & \text{if } f = 1_{X}, \\ 0.6, & \text{if } \phi^{\leftarrow}(g_{1}) \leq f \neq 1_{X}, \\ 0.5, & \text{if } \phi^{\leftarrow}(g_{2}) \leq f \ngeq \phi^{\leftarrow}(g_{1}), \\ 0.3, & \text{if } \phi^{\leftarrow}(g_{1}) \odot \phi^{\leftarrow}(g_{1}) \leq f \ngeq \phi^{\leftarrow}(g_{2}), \\ 0.1, & \text{if } \phi^{\leftarrow}(g_{2}) \odot \phi^{\leftarrow}(g_{1}) \leq f \ngeq \phi^{\leftarrow}(g_{1}) \odot \phi^{\leftarrow}(g_{1}), \\ 0, & \text{otherwise.} \end{cases}$$

(2) If $* = \land$, then we obtain $\mathcal{G}_1 \land \mathcal{G}_2$ as follows:

$$\mathcal{G}_{1} \wedge \mathcal{G}_{2}(g) = \begin{cases} 1, & \text{if } g = 1_{X}, \\ 0.6, & \text{if } g_{1} \leq g \neq 1_{X}, \\ 0.5, & \text{if } g_{1} \odot g_{2} \leq g \not\geq g_{1}, \\ 0, & \text{otherwise.} \end{cases}$$

Moreover, we have $\phi^{\Leftarrow}(\mathcal{G}_1 \wedge \mathcal{G}_2) = \phi^{\Leftarrow}(\mathcal{G}_1) \wedge \phi^{\Leftarrow}(\mathcal{G}_2)$ as follows:

$$\phi^{\Leftarrow}(\mathcal{G}_1 \odot \mathcal{G}_2)(f) = \begin{cases} 1, & \text{if } f = 1_X, \\ 0.6, & \text{if } \phi^{\leftarrow}(g_1) \le f \ne 1_X, \\ 0.5, & \text{if } \phi^{\leftarrow}(g_2) \odot \phi^{\leftarrow}(g_1) \le f \not \ge \phi^{\leftarrow}(g_1), \\ 0, & \text{otherwise.} \end{cases}$$

Theorem 3.4 Let $\phi: X \to Y$ be a function, $\tau_X^i \in T_{\odot}(X)$ and $\tau_Y^i \in T_{\odot}(Y)$ for $i = \{1, 2\}$. Then we have the following properties.

- (1) $\phi^{\Rightarrow}(\tau_X^1) * \phi^{\Rightarrow}(\tau_X^2) \le \phi^{\Rightarrow}(\tau_X^1 * \tau_X^2)$ with equality if ϕ is bijective. (2) $\phi^{\Leftarrow}(\tau_Y^1 * \tau_Y^2) = \phi^{\Leftarrow}(\tau_Y^1) * \phi^{\Leftarrow}(\tau_Y^2)$.

Proof. (1) Let ϕ be a bijective function. Suppose there exists $h \in L^Y$ such that

$$(\phi^{\Rightarrow}(\tau_X^1) * \phi^{\Rightarrow}(\tau_X^2))(h) \not\geq \phi^{\Rightarrow}(\tau_X^1 * \tau_X^2)(h).$$

By the definition of $\phi^{\Rightarrow}(\tau_X^1 * \tau_X^2)$, there exist $f_1, f_2 \in L^X$ with $f_1 \odot f_2 = \phi^{\leftarrow}(h)$ such that

$$\phi^{\Rightarrow}(\tau_X^1) * \phi^{\Rightarrow}(\tau_X^2)(h) \not\geq \tau_X^1(f_1) * \tau_X^2(f_2).$$

Since ϕ is a bijective function, $\phi^{\rightarrow}(f_1) \odot \phi^{\rightarrow}(f_2) = \phi^{\rightarrow}(f_1 \odot f_2) = \phi^{\rightarrow}(\phi^{\leftarrow}(h)) =$ h. Thus,

$$(\phi^{\Rightarrow}(\tau_X^1) * \phi^{\Rightarrow}(\tau_X^2))(h) \ge \phi^{\Rightarrow}(\tau_X^1)(\phi^{\rightarrow}(f_1)) * \phi^{\Rightarrow}(\tau_X^2)(\phi^{\rightarrow}(f_2)) \ge \tau_X^1(f_1) * \tau_X^2(f_2).$$

It is a contradiction. Hence $\phi^{\Rightarrow}(\tau_X^1) * \phi^{\Rightarrow}(\tau_X^2) \ge \phi^{\Rightarrow}(\tau_X^1 * \tau_X^2)$.

Theorem 3.5 Let (X, τ_1) and (Y, τ_2) be (L, \odot) -fuzzy topological spaces. Let $\phi: X \to Y$ be a map. Let $\mathcal{N}_{\tau_1}^x$ and $\mathcal{N}_{\tau_2}^{\phi(x)}$ be $(\mathcal{F}^x, *)$ -and $(\mathcal{F}^{\phi(x)}, *)$ -neighborhood filters, respectively. For each (L, \odot) -filter $\mathcal{F} \in L^{L^X}$, $x \in X$ and $h \in L^Y$, we have the following statements:

(1)

$$(\tau_{2}(h) \to \tau_{1}(\phi^{\leftarrow}(h))) * (\mathcal{F}^{\phi(x)}(h) \to \mathcal{F}^{x}(\phi^{\leftarrow}(h)))$$

$$\leq \mathcal{N}^{\phi(x)}_{\tau_{2}}(h) \to \mathcal{N}^{x}_{\tau_{1}}(\phi^{\leftarrow}(h))$$

$$\leq \left(\mathcal{N}^{x}_{\tau_{1}}(\phi^{\leftarrow}(h)) \Rightarrow \mathcal{F}(\phi^{\leftarrow}(h))\right) \Rightarrow \left(\mathcal{N}^{\phi(x)}_{\tau_{2}}(h) \to \phi^{\Rightarrow}(\mathcal{F})(h)\right)$$

(2)

$$(\tau_{2}(h) \to \tau_{1}(\phi^{\leftarrow}(h))) * (\mathcal{F}^{\phi(x)}(h) \to \mathcal{F}^{x}(\phi^{\leftarrow}(h)))$$

$$\leq \mathcal{N}^{\phi(x)}_{\tau_{2}}(h) \to \mathcal{N}^{x}_{\tau_{1}}(\phi^{\leftarrow}(h))$$

$$\leq \left(\mathcal{N}^{\phi(x)}_{\tau_{2}}(h) * \phi^{\Rightarrow}(\mathcal{F})(g)\right) \to \left(\mathcal{N}^{x}_{\tau_{1}}(\phi^{\leftarrow}(h)) * \mathcal{F}(\phi^{\leftarrow}(g))\right)$$

- (3) If $\phi: (X, \tau_1) \to (Y, \tau_2)$ is LF-continuous and $\phi: (X, \mathcal{F}^x) \to (Y, \mathcal{F}^{\phi(x)})$ is an L-filter map for each $x \in X$, then $\phi: (X, \mathcal{N}_{\tau_1}^x) \to (Y, \mathcal{N}_{\tau_2}^{\phi(x)})$ is an L-filter map for each $x \in X$.
- (4) Let $\phi: (X, \tau_1) \to (Y, \tau_2)$ be LF-continuous and $\phi: (X, \mathcal{F}^x) \to (Y, \mathcal{F}^{\phi(x)})$ an L-filter map for each $x \in X$. If $\mathcal{F} \to x(\mathcal{F}^x, *)$, then $\phi^{\Rightarrow}(\mathcal{F}) \to \phi(x)(\mathcal{F}^{\phi(x)}, *)$. Furthermore, we have $\phi(\lim_{\mathcal{T}_1}(\mathcal{F})(\mathcal{F}^x, *)) \leq \lim_{\mathcal{T}_2}(\phi^{\Rightarrow}(\mathcal{F}))(\mathcal{F}^{\phi(x)}, *)$.
- (5) Let $\phi: (X, \tau_1) \to (Y, \tau_2)$ be LF-continuous and $\phi: (X, \mathcal{F}^x) \to (Y, \mathcal{F}^{\phi(x)})$ an L-filter map for each $x \in X$. If $\mathcal{F} \propto x(\mathcal{F}^x, *)$, then $\phi^{\Rightarrow}(\mathcal{F}) \propto \phi(x)(\mathcal{F}^{\phi(x)}, *)$. Furthermore, we have $\phi(clu_{\tau_1}(\mathcal{F})(\mathcal{F}^x, *)) \leq clu_{\tau_2}(\phi^{\Rightarrow}(\mathcal{F}))(\mathcal{F}^{\phi(x)}, *)$.

Proof. (1) By Theorem 2.11 and Lemma 2.8(7), we have:

$$\mathcal{N}_{\tau_{2}}^{\phi(x)}(h) \to \mathcal{N}_{\tau_{1}}^{x}(\phi^{\leftarrow}(h))
\leq \left(\mathcal{N}_{\tau_{1}}^{x}(\phi^{\leftarrow}(h)) \Rightarrow \mathcal{F}(\phi^{\leftarrow}(h))\right) \Rightarrow \left(\mathcal{N}_{\tau_{2}}^{\phi(x)}(h) \to \phi^{\Rightarrow}(\mathcal{F})(h)\right)\right)$$

- (2) It follows from Lemma 2.8(6).
- (3) Since $\mathcal{N}_{\tau_2}^{\phi(x)}(h) \to \mathcal{N}_{\tau_1}^x(\phi^{\leftarrow}(h)) = \top$, we have $\mathcal{N}_{\tau_2}^{\phi(x)}(h) \leq \mathcal{N}_{\tau_1}^x(\phi^{\leftarrow}(h))$.
- (4) Let \mathcal{F} be an (L, \odot) -filter and $x \in X$ such that $\mathcal{F} \to x(\mathcal{F}^x, *)$. Since $\mathcal{F} \to x(\mathcal{F}^x, *)$, we have $\mathcal{N}_{\tau_1}^x \leq \mathcal{F}$. Since $\mathcal{N}_{\tau_2}^{\phi(x)}(g) \leq \mathcal{N}_{\tau_1}^x(\phi^{\leftarrow}(g))$ from (1), we have

$$\mathcal{N}_{\mathcal{T}_2}^{\phi(x)}(g) \leq \mathcal{N}_{\mathcal{T}_2}^x(\phi^{\leftarrow}(g)) \leq \mathcal{F}(\phi^{\leftarrow}(g)) = \phi^{\Rightarrow}(\mathcal{F})(g).$$

Thus, $\phi^{\Rightarrow}(\mathcal{F}) \to \phi(x)(\mathcal{F}^{\phi(x)}, *)$.

(5) Let $\mathcal{N}_{\tau_2}^{\phi(x)}(h) * \phi^{\Rightarrow}(\mathcal{F})(g) \neq \bot$. By (2), since

$$\top = \left(\mathcal{N}_{\tau_2}^{\phi(x)}(h) * \phi^{\Rightarrow}(\mathcal{F})(g)\right) \to \left(\mathcal{N}_{\tau_1}^{x}(\phi^{\leftarrow}(h)) * \mathcal{F}(\phi^{\leftarrow}(g))\right),$$

we have

$$\mathcal{N}_{\tau_1}^x(\phi^{\leftarrow}(h)) * \mathcal{F}(\phi^{\leftarrow}(g)) \ge \mathcal{N}_{\tau_2}^{\phi(x)}(h) * \phi^{\Rightarrow}(\mathcal{F})(g) \ne \bot.$$

Since $\mathcal{F} \infty x(\mathcal{F}^x, *)$, we have $\phi^{\leftarrow}(h) \odot \phi^{\leftarrow}(g) \neq \bot$. Thus $h \odot g \neq \bot$.

Example 3.6 Let $X = \{x, y\}$ be a set and $f_1(x) = 0.6, f_1(y) = 0.5$. Let $(L = [0, 1], \odot = *)$ be stsc-quantales where $a \odot b = a * b = (a + b - 1) \vee 0$. Then

 \odot dominates \odot . We define ([0,1], \odot)-fuzzy topologies $\tau_1, \tau_2 : [0,1]^X \to [0,1]$ as follows:

$$\tau_{1}(f) = \begin{cases} 1, & \text{if } f = \overline{0} \text{ or } \overline{1}, \\ 0.6, & \text{if } f = f_{1}, \\ 0.3, & \text{if } f = f_{1} \odot f_{1}, \\ 0, & \text{otherwise}, \end{cases} \quad \tau_{2}(f) = \begin{cases} 1, & \text{if } f = \overline{0} \text{ or } \overline{1}, \\ 0.6, & \text{if } f = f_{1}, \\ 0.5, & \text{if } f = f_{1} \odot f_{1}, \\ 0, & \text{otherwise}. \end{cases}$$

(1) Since $\mathcal{N}_{\tau_i}^x(f) = \bigvee_{g \leq f} ([x](g) \odot \tau_i(g))$ for $i \in \{1,2\}$, we obtain $([x], \odot)$ -neighborhood filters $\mathcal{N}_{\tau_1}^x = \mathcal{N}_{\tau_2}^x, \mathcal{N}_{\tau_1}^y = \mathcal{N}_{\tau_2}^y : [0,1]^X \to [0,1]$ as follows:

$$\mathcal{N}^{x}_{\tau_{1}}(f) = \begin{cases} 1, & \text{if } f = \overline{1}, \\ 0.2, & \text{if } f_{1} \leq f \neq \overline{1}, \\ 0, & \text{otherwise,} \end{cases} \quad \mathcal{N}^{y}_{\tau_{1}}(f) = \begin{cases} 1, & \text{if } f = \overline{1}, \\ 0.1, & \text{if } f_{1} \leq f \neq \overline{1}, \\ 0, & \text{otherwise.} \end{cases}$$

An identity map $id_X:(X,\tau_1)\to (X,\tau_2)$ is not LF-continuous because 0.5 =

- $\tau_2(f_1 \odot f_1) \not\leq \tau_1(f_1 \odot f_1) = 0.3$. We have the following properties: (A) Since $\mathcal{N}_{\tau_2}^x = \mathcal{N}_{\tau_1}^x$, $\mathcal{N}_{\tau_2}^y = \mathcal{N}_{\tau_1}^y$ for each $x, y \in X$, then $id_X : (X, \mathcal{N}_{\tau_1}^x) \to (X, \mathcal{N}_{\tau_2}^x)$ is an L-filter map for each $x \in X$.
 - (B) $\mathcal{F} \infty x([x], \odot)$ iff $id_X(\mathcal{F}) = \mathcal{F} \infty x([x], \odot)$ for each $x \in X$.
 - (C) $\mathcal{F} \to x([x], \odot)$ iff $id_X(\mathcal{F}) = \mathcal{F} \to x([x], \odot)$ for each $x \in X$.
 - (D) $\lim_{\tau_1}(\mathcal{F})([x], \odot) = \lim_{\tau_2}(\mathcal{F})([x], \odot) \text{ and } clu_{\tau_1}(\mathcal{F})([x], \odot) = clu_{\tau_2}(\mathcal{F})([x], \odot).$
- (2) Since $\mathcal{N}_{\tau_i}^x(f) = \bigvee_{g \leq f} (\inf(g) \odot \tau_i(g))$ for $i \in \{1, 2\}$, we obtain (\inf, \odot) -neighborhood filters $\mathcal{N}_{\tau_1}^x = \mathcal{N}_{\tau_2}^x = \mathcal{N}_{\tau_1}^y = \mathcal{N}_{\tau_2}^y : [0, 1]^X \to [0, 1]$ as follows:

$$\mathcal{N}_{\tau_1}^y(x) = \begin{cases} 1, & \text{if } f = \overline{1}, \\ 0.1, & \text{if } f_1 \le f \ne \overline{1}, \\ 0, & \text{otherwise.} \end{cases}$$

We have the following properties:

- (E) Since $\mathcal{N}_{\tau_2}^x = \mathcal{N}_{\tau_1}^x = \mathcal{N}_{\tau_2}^y = \mathcal{N}_{\tau_1}^y$ for each $x, y \in X$, then $id_X : (X, \mathcal{N}_{\tau_1}^x) \to (X, \mathcal{N}_{\tau_2}^x)$ is an L-filter map for each $x \in X$.
 - (F) $\mathcal{F} \infty x(\inf, \odot)$ iff $id_X(\mathcal{F}) = \mathcal{F} \infty x(\inf, \odot)$ for each $x \in X$.
 - (G) $\mathcal{F} \to x(\inf, \odot)$ iff $id_X(\mathcal{F}) = \mathcal{F} \to x(\inf, \odot)$ for each $x \in X$.
 - (H) $\lim_{\tau_1}(\mathcal{F})(\inf, \odot) = \lim_{\tau_2}(\mathcal{F})(\inf, \odot) \text{ and } clu_{\tau_1}(\mathcal{F})(\inf, \odot) = clu_{\tau_2}(\mathcal{F})(\inf, \odot).$

References

- [1] M.H.Burton, M.Muraleetharan and J.Gutierrez Garcia, Generalised filters 1, Fuzzy Sets and Systems, 106(1999), 275-284.
- [2] M.H.Burton, M.Muraleetharan and J.Gutierrez Garcia, Generalised filters 2, Fuzzy Sets and Systems, **106**(1999), 393-400.

[3] M. Demirci, Neighborhood structures in smooth topological spaces, *Fuzzy Sets and Systems*, **92**(1997), 123-128.

- [4] W.Gähler, The general fuzzy filter approach to fuzzy topology I, Fuzzy Sets and Systems, **76**(1995), 205-224.
- [5] W. Gähler, The general fuzzy filter approach to fuzzy topology II, Fuzzy Sets and Systems, **76**(1995), 225-246.
- [6] U.Höhle and A.P.Sostak, Axiomatic foundation of fixed-basis fuzzy topology, Chapter 3 in Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, Handbook of fuzzy set series, Kluwer Academic Publisher, Dordrecht, 1999.
- [7] G. Jäger, Pretopological and topological lattice-valued convergence spaces, Fuzzy Sets and Systems, 158(2007), 424-435.
- [8] Y.C. Kim and J.M. Ko, Images and preimages of L-filter bases, *Fuzzy Sets and Systems*, **173**(2005), 93-113.
- [9] Y.C. Kim and Y.S. Kim, (L, \odot) -fuzzy topologies induced by (L, \odot) -filters, International Mathematical Forum, 4(27)(2009), 1337-1345.
- [10] Y.C. Kim, The properties of (L, \odot) -filters, Int. J. Contemp. Math. Sciences, 7(13)(2012), 630-640.

Received: December, 2010