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1 Introduction

Let I ⊂ R be an interval and c be a positive number. Following Polyak [16]
a function f : I → R is called strongly convex with modulus c if

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2) − ct(1 − t)(x1 − x2)
2 (1)

for all x1, x2 ∈ I and t ∈ [0, 1]. f is called strongly concave with modulus c

if −f is strongly convex with modulus c. Many properties and applications
of strongly convex functions can be found in the literature (see, for instance,
[9], [12], [17], [15], [22]). Recently Huang [5], extended the definition (1) of
strongly convex function to set-valued maps. He used such maps to investigate
error bounds for some inclusion problems with set constraints. Some further
properties of strongly convex set-valued maps can be found in [6]. Strongly
concave set-valued maps were investigated in [8].

The aim of this paper is to present counterparts of the integral and discrete
Jensen inequalities and the Hermite-Hadamard double inequalities for strongly
convex set-valued maps.

2 Preliminaries

Throughout this paper Y be a Banach space, B be a closed unit ball in Y ,
I ⊂ R be an open interval and c be a positive constant.

Denote by n(Y ) the family all nonempty subsets of Y and by cl(Y ) the
family of all closed nonempty subsets of Y . A set-valued map F : I → n(Y )
is called strongly convex with modulus c if

tF (x1) + (1 − t)F (x2) + ct(1 − t)(x1 − x2)
2B ⊂ F (tx1 + (1 − t)x2) (2)

for all x1, x2 ∈ I and t ∈ [0, 1] (see [5], [6]). The usual notion of convex set-
valued maps corresponds to relation (2) with c = 0 (cf. e.g. [2], [3], [11], [20],
[21]).

Clearly, the definition of strongly convex set-valued maps is motivated by
that of strongly convex functions. The following lemma characterizes strongly
convex set-valued maps with values in cl(R) and shows connections between
conditions (1) and (2) (cf. [7] where analogous result for convex set-valued
maps is given).

Lemma 2.1 A set-valued map F : I → cl(R) is strongly convex with mod-
ulus c if and only if it has one of the following forms:
a) F (x) = [f1(x), f2(x)], x ∈ I,

b) F (x) = [f1(x),+∞), x ∈ I,

c) F (x) = (−∞, f2(x)], x ∈ I,



Jensen and Hermite-Hadamard inequalitiesfor strongly convex set-valued maps981

d) F (x) = (−∞,+∞), x ∈ I,

where f1 : I → R is strongly convex with modulus c and f2 : I → R is strongly
concave with modulus c.

Proof. The “if” part is clear. To prove the “only if” part note first that
by (2) the values of F are convex. Moreover, if F (x0) is bounded from above
(from below) for some x0 ∈ I, then F (x) is bounded from above (from below)
for every x ∈ I. Define

f1(x) = inf F (x), if F (x) is bounded from below

and
f2(x) = supF (x), if F (x) is bounded from above.

Then by the strong convexity of F its follows that f1 is strongly convex
with modulus c and f2 is strongly concave with modulus c. Since the values
of F are closed and convex, the result follows. �

3 The Jensen inequalities

It is well know that if a function f : I → R is convex, then if satisfies the
integral Jensen inequalities

f

(
∫

X

ϕ(x)dµ

)

≤

∫

X

f(ϕ(x))dµ (3)

for each probability measure space (X,Σ, µ) and all µ-integrable functions
ϕ : X → I.

In [9] the following version of the Jensen inequality for strongly convex
functions was proved:

f

(
∫

X

ϕ(x)dµ

)

≤

∫

X

f (ϕ(x)) dµ− c

∫

X

(ϕ(x) −m)2 dµ (4)

where m =
∫

X
ϕ(x)dµ. A counterpart of (3) for set-valued maps was obtained

in [7]. The next Theorem gives a counterpart of (4) for set-valued maps.
Throughout this paper the integral of a set-valued map is understood in

the sense of Aumann, i.e. it is the set of integrals of all integrable selections
of this map.

Theorem 3.1 Let (X,Σ, µ) be a probability measure space. If F : I →
cl(Y ) is strongly convex with modulus c, then for each square-integrable func-
tion ϕ : X → I

∫

X

F (ϕ(x))dµ + c

∫

X

(ϕ(x) −m)2 dµB ⊂ F

(
∫

X

ϕ(x)dµ

)

, (5)

where m =
∫

X
ϕ(x)dµ.
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Proof. The proof is divided into two steps. First, we assume that Y = R.
Then, by Lemma 2.1, F has one of the forms a)- d). Assume that F (x) =
[f1(x), f2(x)], x ∈ I (the proof in the remaining cases is similar). Let h : X →
R be a µ-integrable selection of F ◦ ϕ. Then, by the Jensen inequality for
strongly convex function (4), we have

f1

(
∫

X

ϕ(x)dµ

)

≤

∫

X

f1(ϕ(x))dµ− c

∫

X

(ϕ(x) −m)2 dµ

≤

∫

X

(h(x))dµ− c

∫

X

(ϕ(x) −m)2 dµ

and

f2

(
∫

X

ϕ(x)dµ

)

≥

∫

X

f2(ϕ(x))dµ + c

∫

X

(ϕ(x) −m)2 dµ

≥

∫

X

(h(x))dµ + c

∫

X

(ϕ(x) −m)2 dµ.

Hence
∫

X

(h(x))dµ + c

∫

X

(ϕ(x) −m)2 dµ [−1, 1] ⊂ F

(
∫

X

ϕ(x)dµ

)

.

Consequently
∫

X

F (ϕ(x))dµ + c

∫

X

(ϕ(x) −m)2 dµ [−1, 1] ⊂ F

(
∫

X

ϕ(x)dµ

)

,

which finishes the proof in the case Y = R.
Now, assume that Y is an arbitrary Banach space. Take a nonzero continuous

linear functional y∗ ∈ Y ∗ and considerer the set-valued map x 7→ y∗(F (x)),
x ∈ I. This set-valued map is strongly convex with modulus c||y∗|| and has
closed values in R. Therefore, by the previous step,
∫

X

y∗(F (ϕ(x)))dµ + c||y∗||

∫

X

(ϕ(x) −m)2 dµ [−1, 1] ⊂ y∗
(

F

(
∫

X

ϕ(x)dµ

))

. (6)

Fix a point b ∈ B and take an arbitrary µ-integrable selection h of F ◦ ϕ.
Then, by (6) and the fact that

∫

X

y∗(h(x))dµ = y∗
(
∫

X

h(x)dµ

)

,

we get

y∗
(
∫

X

h(x)dµ + c

∫

X

(ϕ(x) −m)2 dµ b

)

∈

∫

X

y∗(h(x))dµ + c||y∗||

∫

X

(ϕ(x) −m)2 dµ [−1, 1]

⊂ y∗
(

F

(
∫

X

ϕ(x)dµ

))

.
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Since this condition holds for arbitrary y∗ ∈ Y ∗ and the set y∗(F
(∫

X
(ϕ(x)dµ

)

)
is convex closed, by the separation theorem (see [18], Corollary 2.5.11) we ob-
tain

∫

X

h(x)dµ + c

∫

X

(ϕ(x) −m)2 dµ b ∈ F

(
∫

X

ϕ(x)dµ

)

Thus

∫

X

F (ϕ(x))dµ + c

∫

X

(ϕ(x) −m)2 dµB ⊂ F

(
∫

X

ϕ(x)dµ

)

,

which was to be proved. �

Now, assume that X = I, ϕ(x) = x for x ∈ I, and x1, . . . , xn ∈ I are
distinct points. Moreover, assume that µ is a probability measure concentrate
at x1, . . . , xn, that is µ(x1) = ti > 0, i = 1, . . . , n and t1 + · · · + tn = 1. Then

m =

∫

X

ϕ(x)dµ =
n
∑

i=1

tixi,

∫

X

(ϕ(x) −m)2 dµ =
n
∑

i=1

ti(xi −m)2

and
∫

X

F (ϕ(x))dµ =

n
∑

i=1

tiF (xi).

Therefore, as the consequence of Theorem 3.1, we get the following discrete
Jensen inequality for strongly convex set-valued maps.

Corollary 3.2 If f : I → cl(Y ) is strongly convex with modulus c, then

n
∑

i=1

tiF (xi) + c

n
∑

i=1

ti(xi −m)2B ⊂ F

(

n
∑

i=1

tixi

)

for all n ∈ N, x1, . . . , xn ∈ I, t1, . . . , tn > 0 with t1 + · · · + tn = 1 and
m = t1x1 + · · · + tnxn.

4 The Hermite-Hadamard inequality

It is known that if a function f : I → R is convex then it satisfies the Hermite-
Hadamard double inequality

f

(

a + b

2

)

≤
1

b− a

∫

b

a

f(x)dx ≤
f(a) + f(b)

2
, a, b ∈ I, a < b. (7)
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The following version of the Hermite-Hadamard inequality for strongly con-
vex functions was recently proved in [9]:

f

(

a + b

2

)

+
c

12
(a− b)2 ≤

1

b− a

∫

b

a

f(x)dx ≤
f(a) + f(b)

2
−

c

6
(a− b)2, (8)

for all a, b ∈ I, a < b.

In this section we present a counterpart of the above inequality (8) for
strongly convex set-valued maps. The Hermite-Hadamard inequality for con-
vex set-valued maps was obtained in [19] (cf. also [14], [10]) .

Theorem 4.1 If a set-valued map F : I → cl(Y ) is strongly convex with
modulus c, then

1

b− a

∫

b

a

F (x)dx +
c

12
(a− b)2B ⊂ F

(

a + b

2

)

(9)

and

F (a) + F (b)

2
+

c

6
(a− b)2B ⊂

1

b− a

∫

b

a

F (x)dx (10)

for all a, b ∈ I, a < b.

Proof. Condition (9) follows from Theorem 3.1. To show this take X =
[a, b], ϕ(x) = x, x ∈ [a, b] and µ = 1

b−a
λ, where λ is the Lebesgue measure on

R. Then

m =

∫

X

ϕ(x)dµ =
a + b

2
, F

(
∫

X

ϕ(x)dµ

)

= F

(

a + b

2

)

,

∫

X

(ϕ(x) −m)2 dµ =
1

2
(a− b)2 and

∫

X

F (ϕ(x)) dµ =
1

b− a

∫

b

a

F (x)dx.

Substituting these equalities to (5) we get (9).

To prove condition (10) take arbitrary z = u+v

2
+ c

6
(a − b)2β, where u ∈

F (a), v ∈ F (b) and β ∈ B. Considerer the function f : [a, b] → Y defined by

f(x) =
b− x

b− a
u +

x− a

b− a
v + c(b− x)(x− a)β.

By the strong convexity of F we get

f(x) ∈
b− x

x− a
F (a)+

x− a

b− a
F (b)+c

b− x

b− a

x− a

b− a
(b−a)2B ⊂ F

(

b− x

b− a
a +

x− a

b− a
b

)

= F (x),
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which means that f is a selection of F .
Simple calculations gives

∫

b

a

f(x)dx = (b− a)

[

u + v

2
+

1

6
cβ(a− b)2

]

= (b− a)z.

Hence

z =
1

b− a

∫

b

a

f(x)dx ∈
1

b− a

∫

b

a

F (x)dx,

which finishes the proof. �

5 The converse of Hermite-Hadamard theo-

rem

It is known that if a continuous function f : I → R satisfies the left or the
right-hand side inequality in (7), then it is convex (cf. e.g. [2], [4], [13]). An
analogous result holds also for strong convexity: If f : I → R is continuous
and satisfies the left or the right-hand side inequality in (8), then it is strongly
convex with modulus c (see [9]). In this section we present a set-valued coun-
terpart of that result. Recall that a set-valued map F : I → n(Y ) is said to
be continuous at a point x0 if for every neighbourhood V of zero in Y there
exist a neighbourhood U of zero in R such that

F (x) ⊂ F (x0) + V and F (x0) ⊂ F (x) + V

for all x ∈ (x0 + U) ∩ I.
In what follows we assume that Y is a separable Banach space and denote

by bccl(Y ) the family of all bounded convex closed and non-empty subsets of
Y .

Theorem 5.1 If F : I → bccl(Y ) is continuous and satisfies

1

b− a

∫

b

a

F (x)dx +
c

12
(a− b)2B ⊂ F

(a + b

2

)

, a, b ∈ I, a < b. (11)

or

F (a) + F (b)

2
+

c

6
(a− b)2B ⊂

1

b− a

∫

b

a

F (x)dx, a, b ∈ I, a < b, (12)

then F is strongly convex with modulus c.
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Proof. Assume that F satisfies (11) (if F satisfies (12) the proof is analo-
gous). Define G(x) = F (x) + cx2B, x ∈ I. Then

1

b− a

∫

b

a

G(x)dx =
1

b− a

∫

b

a

F (x)dx +
1

b− a

∫

b

a

cx2Bdx

=
1

b− a

∫

b

a

F (x)dx + c
a2 + ab + b2

3
B

=
1

b− a

∫

b

a

F (x)dx + c
(a− b)2

12
B + c

(a + b

2

)2

B

⊂ F
(a + b

2

)

+ c
(a + b

2

)2

B = G
(a + b

2

)

.

Thus G satisfies the Hermite-Hadamard-type inclusion and it is also contin-
uous. Therefore, by [10, Theorem 8], G is convex. Hence, using the definition
of G and the characterization of strongly convex set-valued maps given in [6],
we obtain that F is strongly convex with modulus c. This finished the proof.
�
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