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Abstract

The purpose of this paper is to introduce a iterative sequence for

finding a common element of the set of fixed points of a totally quasi-φ-

asymptotically nonexpansive mapping and the set of zeros of an inverse-

strongly monotone operator in a Banach space. We show the strong

convergence of the given iterative sequence.
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1 Introduction

Let E be a real Banach space with dual space E∗ and C be a closed and
convex subset of E. For all x ∈ E and x∗ ∈ E∗, 〈x, x∗〉 denotes the generalized
duality pairing. The normalized duality mapping J : E → E∗ is defined by

J(x) = {x∗ ∈ E : 〈x, x∗〉 = ‖x‖2, ‖x∗‖ = ‖x‖}, ∀x ∈ E.

Let A : C → E∗ be a nonlinear operator. The classical variational inequal-
ity for A is to find x∗ ∈ C such that

〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1)
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The set of solutions of (1) is denoted by V I(C,A). Such a problem is connected
with the convex minimization problem, the complementarity, the problem of
finding a point x∗ ∈ E satisfying 0 = Ax∗.

The variational inequality (1) has been studied by many authors. If E is a
Hilbert space, the metric projection operator PC : E → E plays a very impor-
tant role in solving the variational inequality (1). In general Banach spaces,
the metric projection operator may not be defined. Alber [6] introduced that
the generalized projection πC : E∗ → E and ΠC : E → E in uniformly convex
and uniformly smooth spaces. In [23], by applying the general projection oper-
ator πC : E∗ → E, J. L. studied the existence of the solution of the variational
inequality

〈Ax− ξ, y − x〉 ≥ 0, ∀y ∈ C.

By using the general projection operator ΠC : E → C, Iiduka and Taka-
hashi [11] introduced the iterative scheme for finding the solution of the vari-
ational inequality problem (1) for an inverse-strongly monotone operator A in
a Banach space: x1 = x ∈ C and

xn+1 = ΠCJ
−1(Jxn −Axn), ∀n ≥ 1.

They proved that if J is weakly sequentially continuous, then the sequence {xn}
converges weakly to some point z ∈ V I(C,A), where z = limn→∞ΠV I(C,A)xn.

The notion of monotone mapping was introduced by Zarantonello [3] , G.J.
Minty [4] and Kacurovskii [5] in Hilbert space. This notion has been extended
to Banach spaces by several authors (see [6, 7, 8, 9, 10]).

We recall that a mapping A : E → E∗ is said to be
(1) monotone if

〈Ax− Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

(2) α-inverse-strongly monotone if

〈Ax−Ay, x− y〉 ≥ α‖Ax− Ay‖2, ∀x, y ∈ C,

where α > 0.
Take a functional φ : E × E → ℜ is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2,

for all x, y ∈ E. In a Hilbert space, J = I, where I is identity mapping,
φ(x, y) = ‖x− y‖2.

Let T : C → C be a mapping. A point p ∈ C is called an asymptotic fixed
point of T , if C contains a sequence {xn} which converges weakly to p such
that limn→∞ ‖xn − Txn‖ = 0.

A mapping T is said to be
(1) relatively nonexpansive [17, 18], if F̂ (T ) = F (T ) and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ),
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where F̂ (T ) is the asymptotic fixed point set of T .
(2) relatively asymptotically nonexpansive [19], if F̂ (T ) = F (T ) and there
exists a sequence {kn} ⊂ [1,+∞) with kn → 1 as n→ ∞ such that

φ(p, T nx) ≤ knφ(p, x), ∀x ∈ C, p ∈ F (T );

(3) quasi-φ-nonexpansive , if F (T ) 6= ∅ and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T );

(4) quasi-φ-asymptotically nonexpansive, if F (T ) 6= ∅ and

φ(p, T nx) ≤ knφ(p, x), ∀x ∈ C, p ∈ F (T );

(5) totally quasi-φ-asymptotically nonexpansive, if F (T ) 6= ∅ and there exist
nonnegative real sequences νn, µn with νn → 0, µn → 0 as n → ∞ and a
strictly increasing continuous function ψ : ℜ+ → ℜ+ with ψ(0) = 0 such that

φ(p, T nx) ≤ φ(p, x) + νnψ(φ(p, x)) + µn, ∀x ∈ C, p ∈ F (T ).

Remark 1.1 Every relatively nonexpansive mapping implies a relatively quasi-
nonexpansive mapping, a quasi-φ-nonexpansive mapping implies a quasi-φ-
asymptotically nonexpansive mapping and a quasi-φ -asymptotically nonex-
pansive mapping implies a totally quasi-φ-asymptotically nonexpansive map-
ping, but the converses are not true.

Alber [6] introduced that the generalized projection ΠC : E → C is a
mapping that assigns to an arbitrary point x ∈ E the minimum point of the
functional φ(x, y), that is, ΠCx = x, where x is a solution of the minimization
problem

φ(x, x) = inf
y∈C

φ(x, y).

The problem of finding a common element of the set of the variational
inequalities for monotone operators in the framework of Hilbert spaces and
Banach spaces has been intensively studied by many authors, please see [8, 12,
6].

In 2006, Wu and Huang [13] introduced a new generalized f -projection
operator in Banach spaces. Let G : C×E∗ → ℜ∪{+∞} be a function defined
by

G(x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2 + 2ρf(x),

where x ∈ C, x∗ ∈ E∗, ρ is a positive number and f : C → ℜ ∪ {+∞} is
proper, convex and lower semicontinuous. From the definition of G(x, x∗), Wu
and Huang [13] studied the following properties of G(x, x∗):
(1) G(x, x∗) is convex and continuous with respect to x∗ when x is fixed;
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(2) G(x, x∗) is convex and lower semicontinuous with respect to y when x∗ is
fixed.

We say that πf
C : E∗ → 2C is a generalized f -projection operator if

π
f
Cx

∗ = {u ∈ C : G(u, x∗) = inf
y∈C

G(y, x∗), x∗ ∈ E∗}.

Wu and Huang [13] studied the properties of πf
C .

Let E be a reflexive Banach space with dual space E∗, and C be a nonempty
closed convex subset of E. Then the following statements hold:
(1) πf

Cx
∗ is a nonempty, closed and convex subset of C for all x∗ ∈ E∗;

(2) if E is smooth, then for all x∗ ∈ E∗, x ∈ π
f
Cx

∗ if and only if

〈x− y, x∗ − Jx〉+ ρf(y)− ρf(x) ≥ 0, ∀y ∈ C;

(3) if E is strictly convex and f is positive homogeneous (i.e., f(tx) = tf(x))
for all t > 0 such that tx ∈ C, then π

f
Cx

∗ is a single-valued mapping (this
property is also can be seen in [20]).

It is well known that J is a single-valued mapping when E is a smooth
space. There exists a unique element x∗ ∈ E∗ such that x∗ = Jy, y ∈ E. So,
we can define the following function

H(x, y) = G(x, Jy) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 + 2ρf(x).

We consider the second generalized f -projection operator in Banach spaces.
Πf

C : E → 2C is a generalized f -projection oprator if

Πf
Cx = {u ∈ C : G(u, Jx) = inf

y∈C
G(y, Jx), ∀x ∈ E}.

If f(y) > 0 for all y ∈ C and f(0) = 0, then the definition of totally quasi-
φ-asymptotically nonexpansive mapping T is equivalent to the following:
If F (T ) 6= ∅ and there exist nonnegative sequences νn, µn with νn → 0, µn → 0
as n → ∞ and a strictly increasing continuous function ϕ : ℜ+ → ℜ+ with
ϕ(0) = 0 such that:

G(p, JT nx) ≤ G(p, Jx) + νnϕ(G(p, Jx)) + µn, ∀x ∈ C, p ∈ F (T ).

In 2013, S. Saewan et al. [16] introduced a new hybrid projection algorithm
by the generalized f -projection operator for a countable family of totally quasi-
φ-asymptotically nonexpansive mappings in a uniformly smooth and strictly
convex Banach space with the Kadec-Klee property.





yn = J−1(αnJxn + (1− αn)JT
n
i xn)

Cn+1,i = {u ∈ Cn : G(u, Jyn,i) ≤ G(u, Jxn) + βn}
Cn+1 = ∩∞

i=1Cn,i,

xn+1 = Πf
Cn+1

x1.
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They proved {xn} strongly converges to a point Πf⋂
∞

i=1
F (Ti)

x1 under suitable

conditions.
Motivated by Zegeye and Shahzad [14], Wu and Huang [13], and S. Saewan

et al. [16], we introduce a new scheme for finding the common element of the
zero of a inverse strongly monotone operator and the fixed point set of a
totally quasi-φ-asymptotically nonexpansive mapping, and prove the strong
convergence of the scheme under suitable conditions.

2 Preliminary Notes

Let E be a real Banach space. The modules of smoothness of E is defined
by the function ρE(τ) : [0,+∞) → [0,+∞),

ρE(τ) := sup{
‖x− y‖+ ‖x+ y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ}.

If ρE(τ) > 0, ∀τ > 0, E is called smooth, and E is said to be uniformly smooth
if and only if

lim
t→0+

ρE(t)

t
= 0.

Let B = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. E is said to be strictly
convex if for any x, y ∈ B, x 6= y, implies ‖x+y

2
‖ < 1. It is said to be uniformly

convex if for each ε ∈ (0, 2], there exists δ > 0 such that for any x, y ∈ B,
‖x− y‖ ≥ ε implies ‖x+y

2
‖ < 1− δ.

It is well known that a uniformly convex Banach space is reflexive and
strictly convex. The modules of convexity of E is a function δE : (0, 2] → [0, 1]:

δE(ε) := inf{1−
‖x− y‖+ ‖x+ y‖

2
‖ : x, y ∈ B, ‖x− y‖ = ε}.

We can know that E is uniformly convex if and only if δE(ε) > 0 for all
ε ∈ (0, 2]. Let p > 1, E is said to be p-uniformly convex if there exists a
constant c > 0 such that δE(ε) > cεp for all ε ∈ (0, 2]. Every p-uniformly
convex Banach space is a uniformly convex Banach space.

Some basic properties of E, E∗, J and J−1 are as follows (see [1, 2]):
(1) if E is a uniformly smooth Banach space, then J is uniformly norm-to-
norm continuous on each bounded set of E;
(2) if E is a reflexive, smooth and strictly convex Banach space, then the
normalized duality mapping J is single-valued, one-to-one and onto;
(3) if E is a reflexive, smooth and strictly convex Banach space and J is the
duality mapping from E into E∗, then J−1 is also single-valued, bijective and
is the duality mapping from E∗ into E and thus JJ−1 = IE∗, J−1J = IE .

(4) if E is a reflexive and strictly convex Banach space, then J−1 is norm-
weak∗-continuous.
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Recall that a Banach space E has Kadec-Klee property: if for any sequence
{xn} ⊂ E and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn − x‖ → 0 as
n → ∞. It is well known that if E is a uniformly convex Banach space, then
E has the Kadec-Klee property.

Definition 2.1 if E is a uniformly smooth Banach space, then J is uni-
formly norm-to-norm continuous on each bounded set of E;

Definition 2.2 if E is a reflexive, smooth and strictly convex Banach space,
then the normalized duality mapping J is single-valued, one-to-one and onto;

Definition 2.3 if E is a reflexive, smooth and strictly convex Banach space
and J is the duality mapping from E into E∗, then J−1 is also single-valued, bi-
jective and is the duality mapping from E∗ into E and thus JJ−1 = IE∗, J−1J =
IE .

Definition 2.4 if E is a reflexive and strictly convex Banach space, then
J−1 is norm-weak∗-continuous.

Recall that a Banach space E has Kadec-Klee property: if for any sequence
{xn} ⊂ E and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn − x‖ → 0 as
n → ∞. It is well known that if E is a uniformly convex Banach space, then
E has the Kadec-Klee property.

if E is a reflexive, smooth and strictly convex Banach space, then the
normalized duality mapping J is single-valued, one-to-one and onto;

3 Main Results

In the sequel, we need the following results.

Lemma 3.1 [22]Let E be a 2-uniformly convex Banach space. Then, for
all x, y ∈ E, we have

‖x− y‖ ≤
2

c2
‖Jx− Jy‖, (2)

where J is the normalized duality mapping of E and 0 < c ≤ 1.

Lemma 3.2 [6]Let E be a real reflexive, strictly convex and smooth Banach
space, C be a nonempty closed and convex subset of E. Let x ∈ E, then ∀y ∈ C,

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x). (3)

Lemma 3.3 [9]Let E be a real smooth and uniformly convex Banach space
and let {xn} and {yn} be two sequences of E. If either {xn} or {yn} is bounded
and φ(xn, yn) → 0 as n→ ∞, then ‖xn − yn‖ → 0 as n→ ∞.
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Applying the definition of φ and J , we define the functional V : E × E∗ → ℜ
studied in[6] by

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2

for all x ∈ E and x∗ ∈ E∗, that is V (x, x∗) = φ(x, J−1x∗). We know the
following result:

Lemma 3.4 Let E be a real reflexive, strictly convex, smooth Banach space
with dual space E∗, then

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗), (4)

for all x ∈ E and x∗, y∗ ∈ E∗.

In [15], Li et al. introduced the following properties of Πf
C :

Lemma 3.5 Let E be a reflexive Banach smooth space and C be a nonempty,
closed and convex subset of E. The following statements hold:
(1) Πf

C is nonempty, closed and convex subset of C for all x ∈ E;
(2) for all x ∈ E, x̂ ∈ Πf

Cx if and only if

〈x̂− y, Jx− Jx̂〉+ ρf(y)− f(x) ≥ 0, ∀y ∈ C;

(3) if E is strictly convex, then Πf
C is a single-valued mapping.

Lemma 3.6 [15] Let E be a real reflexive smooth Banach space and C be
a nonempty closed and convex subset of E. If x̂ ∈ Πf

Cx for all x ∈ E, then

φ(y, x̂) +G(x̂, Jx) ≤ G(y, Jx), ∀y ∈ C.

We also need the following Lemmas for the proof of our main results.

Lemma 3.7 [21] Let E be a Banach space and f : E → ℜ ∪ {+∞} be a
lower semicontinuous convex function. Then there exists x∗ ∈ E∗ and β ∈ ℜ
such that

f(x) ≥ 〈x, x∗〉+ β, ∀x ∈ E.

Lemma 3.8 [24] Let C be a nonempty closed convex subset of a uniformly
smooth and strictly convex Banach space E with Kadec-Klee property. Let T :
C → C be a closed and totally quasi-φ-asymptotically nonexpansive mapping
with µn and νn of nonnegative real numbers with µn → 0, νn → 0 and a strictly
increasing continuous function ψ : ℜ+ → ℜ+ with ψ(0) = 0. If µ1 = 0, then
the fixed points set F (T ) is a closed convex subset of C.
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Lemma 3.9 [25] Let E be a real smooth Banach space, A : E → 2E
∗

be a
maximal monotone mapping, then A−1(0) is a closed and convex subset of E
and the graph of A, G(A), is demiclosed in the following sense: ∀{xn} ⊂ D(A)
with xn ⇀ x in E, and ∀yn ∈ Axn with yn → y in E∗ implies that x ∈ D(A)
and y ∈ Ax.

In order to prove our results, we make use the following function H∗(x, x∗) :
E × E∗ → ℜ defined by

H∗(x, x∗) = G(x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2 + 2ρf(x), ∀x ∈ E, x∗ ∈ E∗.

That is H∗(x, x∗) = H(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗. Using the defini-
tion of H∗(x, x∗),Using the definition of H∗(x, x∗), in according to Lemma 3.4,
we can have:

Lemma 3.10 Let E be a reflexive strictly convex and smooth Banach space
with its dual space E∗, then

H∗(x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ H∗(x, x∗ + y∗),

for all x ∈ E and x∗, y∗ ∈ E∗.

Theorem 3.11 Let E be a real uniformly smooth and 2-uniformly convex
Banach space with dual space E∗ and C be a nonempty closed convex subset
of E. Let A : C → E∗ be an inverse strongly monotone operator with constant
γ, and Ti : C → C, (i = 1, 2, · · ·) be a countable family of closed and uniformly
totally quasi-φ-asymptotically nonexpansive mapping with the sequence νn and
µn of nonnegative real numbers and νn → 0, µn → 0 as n → ∞. A strictly
increasing continuous function ψ : ℜ+ → ℜ+ with ψ(0) = 0, and assume that
Ti is uniformly asymptotically regular for all i ≥ 1 with F =

⋂
∞

i=1 F (Ti) 6= ∅
and such that Σ = A−1(0)∩F 6= ∅. For an initial point x0 ∈ E with x1 = Πf

Cx0
and C1,i = C and C1 =

⋂
∞

i=1C1,i, define the sequence {xn} by





yn = J−1(Jxn − αnAxn)
zn,i = T n

i yn
Cn+1,i = {u ∈ Cn : G(u, Jzn,i) ≤ G(u, Jxn) + βn}
Cn+1 =

⋂
∞

i=1Cn+1,i

xn+1 = Πf
Cn+1

x0.

where 0 < αn ≤ b0 := γc2

2
and βn = νn supψ(G(p, Jxn)) + µn, J is the nor-

malized duality mapping on E, then the sequence {xn} is well defined for each
n ≥ 1 and converges strongly to Πf

Σx0.
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Proof: We first show that Cn+1 is closed and convex. From the definition,
C1 =

⋂
∞

i=1C1,i = C is closed and convex. Suppose that Cn,i is closed and
convex, for any z ∈ Cn,i, note that

H(u, zn,i) ≤ H(u, xn) + βn

is equivalent to

2〈z, Jxn − Jzn,i〉 ≤ ‖xn‖
2 − ‖zn,i‖

2 + βn, ∀i ≥ 1.

So, Cn+1,i is closed and convex, hence Cn+1 =
⋂

∞

i=1Cn+1,i is closed and convex
for all n ≥ 1.

Next we show that Σ = A−1(0)∩F ⊂ Cn. Let p ∈ Σ, by Ti is a totally quasi-
φ-asymptotically nonexpansive mapping, A is a γ-inverse-strongly monotone
operator, we have

G(p, Jyn) = H(p, yn)

= H(p, J−1(Jxn − λnAxn))

= H∗(p, Jxn − λnAxn)

≤ H∗(p, Jxn − λnAxn + λnAxn)− 2〈J−1(Jxn − λnAxn)− p, λnAxn〉

= H∗(p, Jxn)− 2〈yn − p, λnAxn〉

= H(p, xn)− 2λn〈xn − p, λn(Axn −Ap)〉 − 2λn〈yn − xn, Axn − Ap〉

≤ H(p, xn)− 2λn〈xn − p, Axn −Ap〉+ 2λn‖yn − xn‖‖Axn −Ap‖

≤ H(p, xn)− 2λnγ‖Axn − Ap‖2 + 2λn‖J
−1(Jxn − λnAxn)− J−1Jxn‖

×‖Axn −Ap‖

≤ H(p, xn)− 2λnγ‖Axn − Ap‖2 + 2λn‖JJ
−1(Jxn − λnAxn)− JJ−1Jxn‖

×‖Axn −Ap‖

≤ H(p, xn)− 2λnγ‖Axn − Ap‖2 +
4

c2
λ2n‖Axn −Ap‖2

≤ H(p, xn)− 2λn(γ −
2

c2
λn)‖Axn −Ap‖2

≤ H(p, xn) = G(p, Jxn). (5)

By the definition of totally quasi-φ-asymptotically nonexpansive mapping and
the property of ψ, we obtain

G(p, Jzn,i) = G(p, JT n
i yn) ≤ G(p, Jyn) + νnψ(G(p, Jyn)) + µn

≤ G(p, Jxn) + νnψ(G(p, Jxn)) + µn

= G(p, Jxn) + βn (6)

this shows that p ∈ Cn+1, which implies Σ := F ∩ A−1(0) ⊂ Cn+1, hence
Σ ⊂ Cn.
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step 1. {xn} is bounded sequence. Since f : E → ℜ is convex and lower
semicontinuous function, from Lemma 3.7, there exists x∗ ∈ E∗ and β ∈ ℜ
such that f(x) ≥ 〈x, x∗〉+ β, ∀x ∈ E. From xn ∈ E, it follows that

G(xn, Jx0) = ‖xn‖
2 − 2〈xn, Jx0〉+ ‖x0‖

2 + 2ρf(xn)

≥ ‖xn‖
2 − 2〈xn, Jx0〉+ ‖x0‖

2 + 2ρ〈xn, x
∗〉+ 2ρβ

≥ ‖xn‖
2 − 2〈xn, Jx0 − ρx∗〉+ ‖x0‖

2 + 2ρβ

≥ ‖xn‖
2 − 2‖xn‖‖Jx0 − ρx∗‖+ ‖x0‖

2 + 2ρβ

= (‖xn‖ − ‖Jx0 − ρx∗‖)2 + ‖x0‖
2 + 2ρβ − ‖Jx0 − ρx∗‖2.

For any p ∈ Σ, from xn = Πf
Cn
x0, we have

(‖xn‖−‖Jx0−ρx
∗‖)2+‖x0‖

2+2ρβ−‖Jx0−ρx
∗‖2 ≤ G(xn, Jx0) ≤ G(p, Jx0)

i.e.,

(‖xn‖ − ‖Jx0 − ρx∗‖)2 ≤ G(p, Jx0)− ‖x0‖
2 − 2ρβ + ‖Jx0 − ρx∗‖2

≤ G(p, Jx0) + ‖Jx0 − ρx∗‖2.

This implies that{xn} is bounded and so are {yn}, {z
i
n}.

Step 2. {xn} strongly converges to a point q ∈ C.
Since xn+1 = Πf

Cn+1
x0 ∈ Cn+1 ⊂ Cn, and xn = Πf

Cn
x0, from lemma 3.6, we

have

0 ≤ ‖xn+1 − xn‖
2 ≤ φ(xn+1, xn) ≤ G(xn+1, Jx0)−G(xn, Jx0).

So, the {G(xn, Jx0)} is nondecreasing and bounded, this implies that limn→∞G(xn, Jx0)
exists. We also obtain

lim
n→∞

φ(xn+1, xn) = 0. (7)

Since {xn} is bounded and E is reflexive Banach space, Cn is bounded and
convex subset of E, we can have xn ⇀ q ∈ Cn. Next we show that xn → q.
From xn = Πf

Cn
x0 and q ∈ Cn, we get

G(xn, Jx0) ≤ G(q, Jx0),

and from f is convex and lowercontinuous, we have

lim inf
n→∞

G(xn, Jx0) = ‖xn‖
2 − 2〈xn, Jx0〉+ ‖x0‖

2 + 2ρf(xn)

≥ ‖q‖2 − 2〈q, Jx0〉+ ‖x0‖
2 + 2ρf(q)

= G(q, Jx0).

So,

G(q, Jx0) ≤ lim inf
n→∞

G(xn, Jx0) ≤ lim sup
n→∞

G(xn, Jx0) ≤ G(q, Jx0).
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That is limn→∞G(xn, Jx0) = G(q, Jx0), which implies that ‖xn‖ → ‖q‖, by
the virtue of the Kadec-Klee property of E, it follows that

lim
n→∞

xn = q.

Step 3. We show that q ∈ Σ.
Since {xn} is bounded, it follows that limn→∞ βn = 0.
From xn+1 = Πf

Cn+1
x0 ∈ Cn+1 ⊂ Cn, we have

G(xn+1, Jzn,i) ≤ G(xn+1, Jxn) + βn

⇔ ‖xn+1‖
2 − 2〈xn+1, Jzn,i〉+ ‖zn,i‖+ 2ρf(xn+1)

≤ ‖xn+1‖
2 − 2〈xn, Jxn〉+ ‖xn‖+ 2ρf(xn+1) + βn

⇔ φ(xn+1, zn,i) ≤ φ(xn+1, xn) + βn

So, from (7) and limn→∞ βn = 0, we have φ(xn, zn,i) → 0, i.e.,

‖xn+1 − zn,i‖ → 0.

We also obtain

‖xn − zn,i‖ ≤ ‖xn+1 − xn‖+ ‖xn − zn,i‖ → 0. (8)

Take p ∈ Σ, from (5), we have

H(p, zn,i) = G(p, T n
i yn)

≤ H(p, yn) + νnψ(H(p, yn)) + µn

≤ H(p, xn)− 2λn(γ −
2

c2
λn)‖Axn −Ap‖2 + νnψ(H(p, yn)) + µn, (9)

i.e., 0 < a < λn < b = c2γ
2
,

2λn(γ −
2

c2
λn)‖Axn − Ap‖2 ≤ H(p, xn)−H(p, zn,i) + νnψ(H(p, yn)) + µn,

further,

2a(γ −
2

c2
b)‖Axn − Ap‖2

≤ H(p, xn)−H(p, zn,i) + νnψ(H(p, yn)) + µn

= 2〈p, Jzn,i − Jxn〉+ (‖xn‖
2 − ‖zn,i‖

2) + νnψ(H(p, yn)) + µn, (10)

notice that νn → 0, µn → 0, ‖xn − zn,i‖ → 0 and {H(q, yn)} is bounded, we
have ‖Axn −Ap‖ → 0.
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From Lemma 3.1, we obtain

2〈yn − xn,−λnAxn〉 = 2〈J−1(Jxn − λnAxn)− J−1Jxn,−λnAxn〉

≤ 2‖J−1(Jxn − λnAxn)− J−1Jxn‖‖λnAxn‖

≤
4

c2
‖JJ−1(Jxn − λnAxn)− JJ−1Jxn‖‖λnAxn‖

=
4

c2
λ2n‖Axn‖

2 ≤
4

c2
λ2n‖Axn − Ap‖2. (11)

Applying Lemma 3.4, (11), we have

φ(xn, yn) = φ(xn, J
−1(Jxn − λnAxn))

= V (xn, Jxn − λnAxn)

≤ V (xn, Jxn − λnAxn + λnAxn)− 2〈J−1(Jxn − λnAxn)− xn, λnAxn〉

= φ(xn, xn) + 2〈yn − xn,−λnAxn〉

≤
4

c2
λ2n‖Axn −Ap‖2

Therefore, φ(xn, yn) → 0, i.e., ‖xn − yn‖ → 0.

‖T n
i yn − q‖ = ‖zn,i − q‖ ≤ ‖zn,i − xn‖+ ‖xn − q‖ → 0.

‖T n
i xn − q‖ ≤ ‖T n

i xn − T n
i yn‖+ ‖T n

i yn − q‖

≤ L‖xn − yn‖+ ‖T n
i yn − q‖ → 0. (12)

From the uniformly asymptotically regular of T , we have

‖T n+1
i xn − q‖ ≤ ‖T n+1

i xn − T nxn‖+ ‖T n
i xn − q‖ → 0. (13)

i.e., T (T nxn) → p. From the continuity and closedness of T , we have Tp = p,
so, p ∈ F (T ). Since the normalized duality mapping J is uniformly contin-
uous on bounded set, we have limn→∞ λn‖Axn‖ = limn→∞ ‖Jyn − Jxn‖ →
0, (n→ ∞), then Axn → 0. Since A is Lipschitz continuous and monotone, it
is maximal monotone (see, e,g., [1]), so by the Lemma 3.9, we have q ∈ A−10.

Step 4. we show that q = Πf
Fx0.

Since F is closed and convex, Πf
Fx0 is single-valued, which is denoted by

w. By the definition xn = Πf
Cn
x0 and w ∈ F ⊂ Cn, we obtain

G(xn, Jx0) ≤ G(w, Jx0).

By the definition of G and f , we can know that G(ξ, Jx) is convex and lower
semicontinuous with respect to ξ and so

G(q, Jx0) ≤ lim inf
n→∞

G(xn, Jx0) ≤ lim sup
n→∞

G(xn, Jx0) ≤ G(w, Jx0).

From the definition of Πf
Fx0, q ∈ F , we have w = q = Πf

Fx0.
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