
Mathematica Aeterna, Vol. 3, 2013, no. 6, 473 - 487

Iterating Linear Causal Recurrence Relations
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Abstract

The iteration formula of the linear causal recurrence relations with

variable coefficients in a ring is given. Using this formula, the initial

value problem for such relations is solved. Particular cases and appli-

cations to combinatorics, especially to sequences of numbers and poly-

nomials, and to quicksort theory are given. The paper continues the

author’s concerns related to the study of linear and non-linear recur-

rence relations, published in a series of articles cited in References.
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1 Introduction

We give here a formula for the iterations of the causal linear recurrence re-
lations (difference equations) with variable coefficients in a commutative ring
with unity. Particularly, the closed formula for the solution of this recurrence
relation is given. Some relations of the coefficients appearing in these formulas
are given. The obtained results contain as particular cases those given by H.
W. Gould and Jocelyn Quaintance for Bell numbers and polynomials, vari-
ant sequences, floor and roof functions. Several applications to generalized
Fibonacci sequences in rings, particularly to Fibonacci numbers and polyno-
mials, Pell and Jacobstahl numbers, are presented. The closed form and the
iteration formula for Horadam sequences in rings are also obtained, they being
the solutions of the second order linear recurrence relations, with arbitrary
initial values. Particular cases of Lucas numbers and polynomials, Pell-Lucas
and Jacobstahl-Lucas numbers, and Chebyshev polynomials are considered.
As a last application of the iteration formula, a new derivation of the form of
the general term of the quicksort recurrence relation is given.
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2 Iteration Formula for the Linear Causal Re-

currence Relations with Variable Coefficients

in Rings

Let R be a commutative ring with multiplicative identity 1, and an(k) ∈ R,
for k = 0, 1, . . . , n.

Theorem 2.1. If the elements f(n) ∈ R satisfy the linear causal recurrence
relation with variable coefficients

f(n+ 1) =
n

∑

k=0

an(k)f(k), n = 0, 1, 2, . . . , (1)

then their iterations are given, for n = 0, 1, 2, . . . and r = 1, 2, . . ., by formula

f(n+ r) =

n
∑

k=0

r−1
∑

j=0

Ar
j(n)an+j(k)f(k), (2)

the coefficients Ar
j(n) ∈ R satisfying the linear recurrence relation

Ar
j(n) =

r−1
∑

i=j+1

Ai
j(n)an+r−1(n + i), j = 0, 1, . . . , r − 2, (3)

and the condition
Ar

r−1(n) = 1. (4)

Proof. We prove by induction after r. From relation (1) it follows that (2) is
true for r = 1, if A1

0(n) = 1. According to relation (1), we have

f(n+ 2) =

n+1
∑

k=0

an+1(k)f(k) =

n
∑

k=0

an+1(k)f(k) + an+1(n + 1)f(n+ 1) =

=
n

∑

k=0

an+1(k)f(k) + an+1(n+ 1)
n

∑

k=0

an(k)f(k),

hence (2) is true for r = 2, if A2
0(n) = an+1(n + 1) and A2

1(n) = 1, according
to (3) and (4). We suppose that (2), (3) and (4) are true for every natural
number less or equal than a given natural number r. Then, using again the
relation (1), it follows that

f(n+ r + 1) =

n+r
∑

k=0

an+r(k)f(k) =

n
∑

k=0

an+r(k)f(k) +

r
∑

i=1

an+r(n+ i)f(n+ i) =
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=

n
∑

k=0

an+r(k)f(k) +

r
∑

i=1

n
∑

k=0

i−1
∑

j=0

an+r(n + i)Ai
j(n)an+j(k)f(k) =

=

n
∑

k=0

an+r(k)f(k) +

n
∑

k=0

r−1
∑

j=0

r
∑

i=j+1

an+r(n+ i)Ai
j(n)an+j(k)f(k) =

=
n

∑

k=0

r
∑

j=0

Ar+1
j (n)an+j(k)f(k),

where, for j = 0, 1, . . . , r − 1, we denote

Ar+1
j (n) =

r
∑

i=j+1

Ai
j(n)an+r(n+ i), (5)

and Ar+1
r (n) = 1, n = 0, 1, 2, . . . . Therefore (2), (3) and (4) are true for r+1.

According to the induction axiom, the relations (2), (3) and (4) are true for
every natural number r.

Example 2.2. We have A1
0(n) = 1; A2

0(n) = an+1(n + 1), A2
1(n) = 1;

A3
0(n) = an+2(n+1)+an+2(n+2)an+1(n+1), A3

1(n) = an+2(n+2), A3
2(n) = 1;

A4
0(n) = an+3(n+1)+an+3(n+2)an+2(n+1)+an+3(n+3)an+2(n+1)+an+3(n+

3)an+2(n + 2)an+1(n + 1), A4
1(n) = an+3(n + 2) + an+3(n + 3)an+2(n + 2),

A4
2(n) = an+3(n + 3), A4

3(n) = 1.

3 Shift Properties for Coefficients

Theorem 3.1. For r,m = 1, 2, . . . and j = 0, 1, . . . , r − 1, we have the
following formula

Ar+m
j+m(n) = Ar

j(n +m), n = 0, 1, 2, . . . . (6)

Proof. First we prove relation (6) for m = 1, hence the equality

Ar+1
j+1(n) = Ar

j(n+ 1), n = 0, 1, 2, . . . , r = 1, 2, . . . , j = 0, 1, . . . , r − 1, (7)

by induction on r. The equality (7) is obvious for r = 1 and j = 0. We
suppose that (7) is true for a natural number r, when j = 0, 1, . . . , r − 1 and
n is arbitrary. In this case, using (5) we have

Ar+1
j (n+1) =

r
∑

i=j+1

Ai
j(n+1)an+r+1(n+i+1) =

r
∑

i=j+1

Ai+1
j+1(n)an+r+1(n+i+1) =
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=

r+1
∑

i=j+2

Ai
j+1(n)an+r+1(n+ i) = Ar+2

j+1(n), j = 0, 1, . . . , r − 1.

This relation, also true for j = r, is exactly the relation (7) for r substituted
with r + 1. According to induction axiom, the relation (7) is true in the
specified conditions.
Now we show the relation (6) by induction after m. According to (7), it is true
for m = 1. We suppose relation (6) true for a natural number m. Then, using
(7) we have

Ar+m+1
j+m+1(n) = Ar+1

j+1(n+m) = Ar
j(n +m+ 1).

According to the induction axiom, the relation (6) is true, in the specified
conditions, for every natural number m.

Definition 3.2. For r = 1, 2, . . . and j = 0, 1, . . . , r − 1, we denote

Ar
j = Ar

j(0). (8)

With this notation, taking n = 0 and substituting m with n, formula (6)
becomes

Ar
j(n) = Ar+n

j+n, r = 1, 2, . . . , j = 0, 1, . . . , r − 1, n = 0, 1, 2, . . . , (9)

therefore the coefficients Ar
j(n) can be obtained from the coefficients Ar

j .

Example 3.3. We have Ar
r−1 = 1, r = 1, 2, . . ., A1

0 = 1; A2
0 = a1(1), A

2
1 =

1; A3
0 = a2(1) + a2(2)a1(1), A

3
1 = a2(2), A

3
2 = 1; A4

0 = a3(1) + a3(2)a1(1) +
a3(3)a2(1) + a3(3)a2(2)a1(1), A

4
1 = a3(2) + a3(3)a2(2), A

4
2 = a3(3), A

4
3 = 1.

4 Solving Linear Causal Recurrence Relations

First application of the iteration theorem 2.1 is to determine the general form
of the solutions of the linear causal recurrence relation (1). This will be given
in the following theorem.

Theorem 4.1. The sequence f(n) is solution of the linear causal recurrence
relation (1) if and only if has the form

f(n) =

n−1
∑

j=0

An
j aj(0)f(0), n = 1, 2, . . . , (10)

the coefficients An
j being given by the recurrence formula

An
j =

n−1
∑

i=j+1

Ai
jan−1(i), j = 0, 1, . . . , n− 2, (11)
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and
An

n−1 = 1. (12)

Proof. Taking n = 0 in the formulas (2),(3) and (4), we obtain the formulas
(10), (11) and (12), if the variable r is substituted with n. Reciprocally, if f(n)
is given by formula (10), then using (11) and (12) we have

n
∑

k=0

an(k)f(k) = an(0)f(0) +

n
∑

k=1

an(k)

k−1
∑

j=0

Ak
jaj(0)f(0) =

= an(0)f(0) +

n−1
∑

j=0

n
∑

k=j+1

Ak
jan(k)aj(0)f(0) =

= an(0)f(0) +

n−1
∑

j=0

An+1
j aj(0)f(0) =

=

n
∑

j=0

An+1
j aj(0)f(0) = f(n+ 1), n = 1, 2, . . . ,

therefore the sequence f(n) is solution of the relation (1).

Remark. From the theorem 4.1 follows the existence and unicity of the
solution f(n) of the recurrence relation (1), when its first term f(0) is given.

5 Two Particular Cases

We briefly present the two cases in which the coefficients an(k) do not depend
on one variable, solved by obviously telescoping procedures.
1) If the relation (1) has the stationary form

f(n+ 1) =

n
∑

k=0

a(k)f(k), n = 1, 2, . . . ,

then its general term is

f(n) = (1 + a(n− 1))(1 + a(n− 2)) · · · (1 + a(1))a(0)f(0).

2) If the relation (1) has the form

f(n+ 1) = an

n
∑

k=0

f(k), n = 1, 2, . . . ,

then its general term is

f(n) = an−1(1 + an−2)(1 + an−3) · · · (1 + a0)f(0).
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6 General Term of a Linear Causal Recurrence

Relation Expressed Relative to Some Initial

Terms

Another application of the theorem 2.1 is to determine the general term of the
equation (1) relative to a finite number of initial terms.

Theorem 6.1. If the initial terms f(0), f(1) = a0(0)f(0), . . . , f(m) =
∑m−1

j=0 Am
j aj(0)f(0), are given for a fixed m = 0, 1, 2, . . . , then the general term

of the linear causal recurrence relation (1) is given by the formula

f(n) =
m
∑

k=0

n−1
∑

j=m

An
j aj(k)f(k), n > m . (13)

Proof. Substituting n with m and r with n, the formula (2) becomes

f(n+m) =

m
∑

k=0

n−1
∑

j=m

An
j (m)aj+m(k)f(k) , n ≥ 1. (14)

According to (9), equation (14) gives

f(n+m) =

m
∑

k=0

n−1
∑

j=0

An+m
j+maj+m(k)f(k) =

m
∑

k=0

n+m−1
∑

j=m

An+m
j aj(k)f(k) . (15)

Substituting n with n−m, for n > m, equation (15) reduces to (13).

Example 6.2. For m = 1, 2, we obtain from (13) following formulas

f(n) =

n−1
∑

j=1

An
j aj(0)f(0) +

n−1
∑

j=1

An
j aj(1)f(1), n ≥ 2, (16)

f(n) =
n−1
∑

j=2

An
j aj(0)f(0) +

n−1
∑

j=2

An
j aj(1)f(1) +

n−1
∑

j=2

An
j aj(2)f(2), n ≥ 3. (17)

7 Closed Formulas for Coefficients

Theorem 7.1. For n = 2, 3, . . . and m = 0, 1, . . . , n− 2, we have

An
m =

n−1
∑

j=m+1

An
j aj(m+ 1) . (18)
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Proof. Applying (13) for m and m+ 1, one obtains for n ≥ m+ 2,

f(n) =

m
∑

k=0

n−1
∑

j=m

An
j aj(k)f(k) =

m+1
∑

k=0

n−1
∑

j=m+1

An
j aj(k)f(k) ,

hence
m
∑

k=0

An
mam(k)f(k) +

m
∑

k=0

n−1
∑

j=m+1

An
j aj(k)f(k) =

m
∑

k=0

n−1
∑

j=m+1

An
j aj(k)f(k) +

n−1
∑

j=m+1

An
j aj(m+ 1)f(m+ 1) ,

therefore

An
m

m
∑

k=0

anm(k)f(k) =
n−1
∑

j=m+1

An
j aj(m+ 1)f(m+ 1). (19)

Using (1) for n = m, relation (19) becomes

An
mf(m+ 1) =

n−1
∑

j=m+1

An
j aj(m+ 1)f(m+ 1),

from which one obtains the formula (18).

Example 7.2. For m = n− 2, n− 3, n− 4, from formula (18) one obtains
An

n−2 = an−1(n − 1), An
n−3 = an−1(n − 1)an−2(n − 2) + an−1(n − 2), An

n−4 =
an−1(n−1)an−2(n−2)an−3(n−3)+an−1(n−2)an−3(n−3)+an−1(n−1)an−2(n−
3) + an−1(n− 3). For m = 0, 1, formula (18) becomes

An
0 =

n−1
∑

j=1

An
j aj(1) =

n−1
∑

j=1

A
j
0an−1(j), n ≥ 2, (20)

An
1 =

n−1
∑

j=2

An
j aj(2) =

n−1
∑

j=2

A
j
1an−1(j), n ≥ 3. (21)

8 A New Closed Formula for Solutions

In accordance with relations (9) and (18), we define A0
−1 = A1

0(−1) = 1 and

An
−1 = An+1

0 (−1) =
n−1
∑

j=0

An
j aj(0), n = 1, 2, . . . . (22)

Theorem 8.1. The causal linear recurrence equation (1) has the solutions

f(n) = An
−1f(0), n = 0, 1, . . . . (23)

Proof. Formula (23) results from (10) and (22).
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9 Particular Cases

We present here some particular cases contained especially in the work of H.
W. Gould and Jocelyn Quaintance.

9.1 Bell Numbers

It is well known that the real numbers that satisfy the relation (1) with the
coefficients an(k) =

(

n

k

)

are the Bell numbers f(n) = B(n). Aspects of iterating
linear recurrence relations presented in a general setting in our paper and other
related results were given in the ring of real numbers for Bell numbers in the
works [7], [8]. See also [9].

9.2 Bell Polynomials

In the ring of polynomials and for the coefficients an(t) =
(

n

k

)

t, the solutions
of the recurrence equation (1) are named Bell polynomials. Aspects of the
iteration theory in this situation were given in [7].

9.3 Variant Sequences

Gould and Quaintance studied in [9] the so-called variant sequences, namely
solutions in the ring of real numbers of the recurrence relation (1), with coeffi-
cients an(k) =

(

n

k

)

akbn−k, where a and b are given real numbers. For a = b = 1
the Bell numbers are obtained and for a = 1 and b = −1, are obtained the
Uppuluri-Carpenter numbers, given in the paper [15].

9.4 Floor and Roof Functions

In [10] other particular situations are given in which some recurrence relations
are iterated.

10 Applications

10.1 Application to Generalized Fibonacci Sequences

For p, q ∈ R, let F
(p,q)
n ∈ R, n = 0, 1, 2, . . ., be the generalized Fibonacci

sequence, that has the initial values F
(p,q)
0 = 0, F

(p,q)
1 = 1 and satisfies the

second order linear recurrence relation

F
(p,q)
n+1 = pF (p,q)

n + qF
(p,q)
n−1 , n = 1, 2, . . . . (24)
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Example 10.1. F
(p,q)
2 = p, F

(p,q)
3 = p2 + q, F

(p,q)
4 = p3 + 2pq, F

(p,q)
5 =

p4 + 3p2q + q2.

Theorem 10.2. The generalized Fibonacci sequences satisfy the iteration
formula

F
(p,q)
n+r = F (p,q)

r F
(p,q)
n+1 + qF

(p,q)
r−1 F (p,q)

n , n = 0, 1, . . . , r = 1, 2, . . . . (25)

Proof. We denote f(n) = F
(p,q)
n+1 , n = 0, 1, 2, . . .. Taking a0(0) = a1(1) =

p, a1(0) = q, an(k) = 0 for k = 0, 1, . . . , n− 2, and an(n− 1) = q, an(n) = p,
for n = 1, 2, . . ., it follows that the sequence f(n) satisfies recurrence relation
(1), hence its iterates are given by relation (2), from which it follows

F
(p,q)
n+r = f(n+ r − 1) =

n−1
∑

k=0

r−1
∑

j=0

Ar
j(n− 1)an−1+j(k)F

(p,q)
k+1 =

=

r−1
∑

j=0

Ar
j(n− 1)an−1+j(n− 1)F (p,q)

n +

r−1
∑

j=0

Ar
j(n− 1)an−1+j(n− 2)F

(p,q)
n−1 =

= pAr
0(n− 1)F (p,q)

n + qAr
1(n− 1)F (p,q)

n + qAr
0(n− 1)F

(p,q)
n−1 =

= Ar
0(n− 1)F

(p,q)
n+1 + qAr

1(n− 1)F (p,q)
n . (26)

For j = 0, 1, . . . and n ≥ j + 2, from (11) it follows

An+1
j =

n
∑

k=j+1

Ak
jan(k) = pAn

j + qAn−1
j . (27)

Because A
j+1
j = 1 and A

j+2
j = aj+1(j + 1) = p, by the uniqueness of the

sequence of generalized Fibonacci numbers, one obtains An
j = F

(p,q)
n−j , n =

1, 2, . . . and j = 0, 1, . . . , n− 1. Particularly, using (9), we have Ar
0(n − 1) =

Ar+n−1
n−1 = F

(p,q)
r and Ar

1(n − 1) = Ar+n−1
n = F

(p,q)
r−1 , therefore the relation (26)

reduces to formula (25).

Corollary. The generalized Fibonacci sequences satisfy for n = 1, 2, . . . the
formula

F
(p,q)
2n =

[

F
(p,q)
n+1 + qF

(p,q)
n−1

]

F (p,q)
n , (28)

from which it follows that the generalized Fibonacci number F
(p,q)
2n is divisible

by F
(p,q)
n and

F
(p,q)
2n+1 =

(

F
(p,q)
n+1

)2

+ q
(

F (p,q)
n

)2
. (29)

Proof. Both formulas result from (25) for r = n, respectively for r = n + 1.
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Particular cases.

1. Fibonacci Numbers. In the ring of natural numbers, for p = q = 1,
the sequence F

(1,1)
n = Fn is the sequence of Fibonacci numbers that satisfy the

recurrence relation Fn+1 = Fn + Fn−1 and have initial values F0 = 0, F1 = 1.
Then (25) reduces to the well known iteration formula

Fn+r = FrFn+1 + Fr−1Fn, n = 0, 1, . . . , r = 1, 2, . . . . (30)

From (28) and (29), one obtains the formulas

F2n = (Fn+1 + Fn−1)Fn , (31)

F2n+1 = F 2
n+1 + F 2

n . (32)

Remark. Similar formulas, derived by (28) and (29), also occur in the
other cases presented below, but are omitted.

2. Fibonacci Polynomials. In the ring of polynomials, for p = x and q = 1,
the polynomials F

(x,1)
n (x) = Fn(x) are the usually Fibonacci polynomials that

satisfy the recurrence relation Fn+1(x) = xFn(x) + Fn−1(x) and have initial
values F0(x) = 0 and F1(x) = 1. Then (25) reduces to the iteration formula

Fn+r(x) = Fr(x)Fn+1(x) + Fr−1(x)Fn(x), n = 0, 1, . . . , r = 1, 2, . . . . (33)

3. Pell Numbers. In the ring of natural numbers, for p = 2 and q = 1,
the numbers F

(2,1)
n = Pn are the Pell numbers. They satisfy the recurrence

relation Pn+1 = 2Pn + Pn−1 and have initial values P0 = 0, P1 = 1. Then (25)
reduces to the iteration formula

Pn+r = PrPn+1 + Pr−1Pn, n = 0, 1, . . . , r = 1, 2, . . . . (34)

4. Jacobstahl Numbers. In the ring of natural numbers, for p = 1
and q = 2, the numbers F

(2,1)
n = Jn are the Jacobstahl numbers. They satisfy

the recurrence relation Jn+1 = Jn + 2Jn−1 and have initial values J0 = 0 and
J1 = 1. Then (25) reduces to the iteration formula

Jn+r = JrJn+1 + 2Jr−1Jn, n = 0, 1, . . . , r = 1, 2, . . . . (35)

10.2 Second Order Linear Recurrence Relations with

Arbitrary Initial Values

For p and q integer numbers, let S
(p,q)
n ∈ R, n = 0, 1, 2, . . ., be the Horadam

sequence, see [13], that has the initial values S
(p,q)
0 and S

(p,q)
1 , and satisfies the

second order linear recurrence relation
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S
(p,q)
n+1 = pS(p,q)

n + qS
(p,q)
n−1 , n = 1, 2, . . . , (36)

Remark. The generalized Fibonacci numbers S
(p,q)
n = F

(p,q)
n are solutions of

equation (36) with initial values S
(p,q)
0 = 0 and S

(p,q)
1 = 1.

Theorem 10.3. The solutions of the equation (34) with initial values S
(p,q)
0

and S
(p,q)
1 are given by the relation

S(p,q)
n = S

(p,q)
1 F (p,q)

n + qS
(p,q)
0 F

(p,q)
n−1 , n = 1, 2, . . . , (37)

and satisfy the iteration formula

S
(p,q)
n+r = F (p,q)

r S
(p,q)
n+1 + qF

(p,q)
r−1 S(p,q)

n , n = 0, 1, . . . , r = 1, 2, . . . , (38)

where F
(p,q)
n are generalized Fibonacci numbers.

Proof. If S
(p,q)
n is given by relation (37), using (24) we have

S
(p,q)
n+1 = S

(p,q)
1 F

(p,q)
n+1 + qS

(p,q)
0 F (p,q)

n =

= S
(p,q)
1 [pF (p,q)

n + qF
(p,q)
n−1 ] + qS

(p,q)
0 [pF

(p,q)
n−1 + qF

(p,q)
n−2 ] =

= p[S
(p,q)
1 F (p,q)

n + qS
(p,q)
0 F

(p,q)
n−1 ] + q[S

(p,q)
1 F

(p,q)
n−1 + qS

(p,q)
0 F

)p,q)
n−2 ] = pS(p,q)

n + qS
(p,q)
n−1 ,

hence S
(p,q)
n verify the equation (36). Using (37) and (25), we have

S
(p,q)
n+r = S

(p,q)
1 F

(p,q)
n+r + qS

(p,q)
0 F

(p,q)
n+r−1 =

= S
(p,q)
1 [F (p,q)

r F
(p,q)
n+1 + qF

(p,q)
r−1 F (p,q)

n ] + qS
(p,q)
0 [F (p,q)

r F (p,q)
n + qF

(p,q)
r−1 F

(p,q)
n−1 ] =

= F (p,q)
r [S

(p,q)
1 F

(p,q)
n+1 + qS

(p,q)
0 F (p,q)

n ] + qF
(p,q)
r−1 [S

(p,q)
1 F (p,q)

n + qS
(p,q)
0 F

(p,q)
n−1 ] =

= F (p,q)
r S

(p,q)
n+1 + qF

(p,q)
r−1 S(p,q)

n .

Particular Cases

1. Lucas Numbers S
(1,1)
n = Ln satisfy the recurrence relation Ln+1 = Ln +

Ln−1 and have the initial values L0 = 2, L1 = 1. For these numbers, (38)
becomes

Ln+r = FrLn+1 + Fr−1Ln, n = 0, 1, . . . , r = 1, 2, . . . . (39)

2. Lucas Polynomials S
(x,1)
n (x) = Ln(x) satisfy the recurrence relation

Ln+1(x) = xLn(x)+Ln−1(x) and have the initial values L0(x) = 2 and L1(x) =
1. The relation (38) becomes

Ln+r(x) = Fr(x)Ln+1(x) + Fr−1(x)Ln(x), n = 0, 1, . . . , r = 1, 2, . . . . (40)
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3. Pell-Lucas Numbers S
(2,1)
n = (PL)n satisfy the recurrence relation

(PL)n+1 = 2(PL)n + (PL)n−1 and have the initial values (PL)0 = 2 and
(PL)1 = 2. The relation (38) becomes

(PL)n+r = Pr(PL)n+1 + Pr−1(PL)n, n = 0, 1, . . . , r − 1, 2, . . . . (41)

4. Jacobstahl-Lucas Numbers S
(1,2)
n = (JL)n satisfy the recurrence

relation (JL)n+1 = (JL)n + 2(JL)n−1 and have the initial values (JL)0 = 2
and (JL)1 = 1. The relation (38) becomes

(JL)n+r = Jr(JL)n+1 + 2Jr−1(JL)n, n = 0, 1, . . . , r = 1, 2, . . . . (42)

5. Chebyshev polynomials of first kind. Tn(x) = Sn(2x,−1; 1, x) =
cos(n arccos(x)) satisfy the recurrence relation Tn+1(x) = 2xTn(x) − Tn−1(x)
and the initial conditions T0(x) = 1 and T1(x) = x. For these polynomials we
have

Tn(x) = xFn(2x,−1)(x)− Fn−1(2x,−1)(x), (43)

and
Tn+r(x) = Fr(2x,−1)(x)Tn+1(x)− Fr−1(2x,−1)(x)Tn(x), (44)

for n, r = 1, 2, . . . . Here Fn(2x,−1)(x) are the generalized Fibonacci polyno-
mials that satisfy the recurrence relation Fn+1(2x,−1)(x) = 2xFn(2x,−1)(x)−
Fn−1(2x,−1)(x) and the initial conditions F0(2x,−1)(x) = 0 and F1(2x,−1)(x) =
1.
6. Chebyshev polynomials of second kind. Un(x) = Sn(2x,−1; 1, 2x)
satisfy the same recurrence relation Un+1(x) = 2xUn(x) − Un−1(x) and the
initial conditions U0(x) = 1 and U1(x) = 2x. We have

Un(x) = 2xFn(2x,−1)(x)− Fn−1(2x,−1)(x), (45)

and

Un+r(x) = Fr(2x,−1)(x)Un+1(x)− Fr−1(2x,−1)(x)Un(x). (46)

10.3 Quicksort Theory

The quicksort algorithm was developed by C.A.R. Hoare [12], (see [11] and
[14]), by employing a divide and conquer strategy to divide a list into sub-lists.
The average number of comparison over all permutations of the input sequence
can be estimated accurately by solving the quicksort recurrence relation

Cn+1 = n +
2

n+ 1

n
∑

k=0

Ck, n = 0, 1, . . . . (47)
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with the initial value C0 = 0. Taking f(0) = 1, f(n) = Cn, n ≥ 1, and
an(0) = n, an(k) = 2

n+1
, k ≥ 1, n = 0, 1, 2, . . ., it follows that the quicksort

equation has the form (1). Using (10), we have

f(n) =
n−1
∑

j=0

An
j aj(0)f(0) =

n−1
∑

j=1

jAn
j . (48)

Using (18), we obtain for n = 3, 4, . . . and m = 0, 1, . . . , n− 3,

An
m =

n−1
∑

j=m+1

An
j aj(m+ 1) =

n−1
∑

j=m+1

2

j + 1
An

j =

=
2

m+ 2
An

m+1 +

n−1
∑

j=m+2

2

j + 1
An

j =
2

m+ 2
An

m+1 + An
m+1 =

m+ 4

m+ 2
An

m+1,

because An
m+1 =

∑n−1
j=m+2

2
j+1

An
j . Therefore, for m ≤ n− 3, we obtain

An
m =

m+ 4

m+ 2
An

m+1 =
(m+ 4)(m+ 5)

(m+ 2)(m+ 3)
An

m+2 =
(m+ 4)(m+ 5)(m+ 6)

(m+ 2)(m+ 3)(m+ 4)
An

m+3 =

= · · · =
(m+ 4)(m+ 5)(m+ 6) · · · (n− 1)n(n+ 1)

(m+ 2)(m+ 3)(m+ 4) · · · (n− 3)(n− 2)(n− 1)
An

n−2 =

=
n(n+ 1)

(m+ 2)(m+ 3)
an−1(n− 1) =

n(n + 1)

(m+ 2)(m+ 3)

2

n
=

2(n+ 1)

(m+ 2)(m+ 3)
. (49)

Taking into account the above obtained relations and also the values An
n−1 = 1

and An
n−2 = an−1(n− 1) = 2

n
, one obtains

f(n) =

n−3
∑

j=1

jAn
j + (n− 2)An

n−2 + (n− 1)An
n−1 =

=
n−3
∑

j=1

2(n+ 1)j

(j + 2)(j + 3)
+ (n− 2)

2

n
+ n− 1 = 2(n+ 1)

n−3
∑

j=1

(
3

j + 3
−

2

j + 2
)+

n2 + n− 4

n
= 2(n+1)

(

n
∑

j=4

1

j
+
2

n
−
2

3

)

+
n2 + n− 4

n
= 2(n+1)

n
∑

j=1

1

j
−4n . (50)

Remark. The above obtained formula (50) is well-known, being usually
proved by generating function method. We showed above how this formula
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can be deduced from the iteration theory of recurrence relations, but a sim-
ple and elementary proof by telescoping method can be given. So, from the
quicksort recurrence relation (47) it follows

jCj − (j− 1)Cj−1 = j(j− 1)+ 2

j−1
∑

k=0

Ck − (j− 1)(j− 2)− 2

j−1
∑

k=0

Ck = 2(j− 1)+

+2Cj−1, hence jCj − (j + 1)Cj−1 = 2(j − 1), or 1
j+1

Cj −
1
j
Cj−1 = 2(j−1)

j(j+1)
.

Writing the last relation for j = 2, 3, . . . , n and adding the obtained relations,
it follows that 1

n+1
Cn = 2

∑n

j=2
j−1

j(j+1)
= 2

∑n

j=2(
2

j+1
−

1
j
) = 2

∑n

j=3
1
j
−1+ 4

n+1
=

2
∑n

j=1
1
j
−

4n
n+1

, hence one obtains the formula (50).
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[5] M. I. Ĉırnu, Linear recurrence relations with the coefficients in progression
(submitted).
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