
Mathematica Aeterna, Vol. 3, 2013, no. 9, 753 - 770

Introduction to d–spaces theory

Krzysztof Drachal

Faculty of Mathematics and Information Science
Warsaw University of Technology

Koszykowa 75, 00 – 662 Warsaw, Poland

Abstract

The aim of this paper is to present the basics of differential spaces

theory. In particular differential spaces in a sense of Sikorski are exposed.

They are some generalisation of a smooth manifold concept. Except a

concise and general exposition to the topic at the introductory level, also

some new ideas of gluing two spaces are sketched.
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1 Introduction

The aim of this paper is to present the basics of the differential spaces the-
ory. (Also shortened phrase ”d–spaces” is used.) A differential space concept
emerged as a generalisation of the manifold concept in 1960s. This kind of
generalisation, which will be presented in this paper comes from R. Sikorski
[14]. However generalisations in the similar fashion were studied also by other
authors (e.g. K. Chen [1], A. Kriegl and P. Michor [8], A. Mallios and E.
Rosinger [9], M. Mostow [10], J. Nestruev [11], J. Souriau [16], K. Spallek
[17]).

2 Fundamentals

Let M be a set, M 6= ∅. Let C be a family (finite or infinite) of some real
functions on M , i.e. C := {f1, . . . , fi, . . . | ∀i fi : M → R}.

Definition 2.1. The weakest topology in which all functions from C are
continuous will be called topology induced by C on M . This topology will be
denoted by τC .
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It can simply be proved [14] that:

Fact 2.2. The base of τC is generated by ∅ and sets
⋂n

i=1{p ∈ M | ai <
f i(p) < bi}, where n ∈ N , a1, . . . , an, b1, . . . , bn ∈ R and f 1, . . . , fn ∈ C.

The notion of the continuity of a function is often misunderstood. There-
fore it is briefly summarised in Sec. 3.

Let us consider some function f defined on some subset A ⊂ M .

Definition 2.3. If ∀p∈A ∃B∋p ∃g∈C f |B = g|B and B is open in topological
space (A, τA) then f would be called local C–function. The set of all local
C–functions on a given set A ⊂ M will be denoted by CA.

M. Kreck [7] calls this property local detectability. This name nicely resem-
bles some physical consequences. The family of functions may be interpreted as
some collection of laboratory machines, used for making measurements (clas-
sical, not quantum). Value f(x) of a function f is the result of a measurement
done by machine f on the system in a state x [11]. So the family of func-
tions may be understood as the apparatus to recover information about M . It
is commonly interpreted that large–scale (global) physics is constructed from
local physics (local results of measurements). In other words any statements
about global structure are formulated relying on the information taken out
form local experiments. The introduced definition proposes rather different
way of reasoning. It is the local physics, which has to be consistent with the
global one! Local measurements only decode the global information. More
discussion about this philosophical consequences can be found e.g. in [5].

Example 2.4. Notice that for function f(x) = 1
x

and set M = (0, 1) ∈ R it
happens that f ∈ C∞(M), but f /∈ C∞(R)|M . However f(x) ∈ (C∞(R)|M)M .

Fact 2.5. For a set M and families of real functions on this set, C and D,
it happens that:

• C ⊂ CM ,

• C ⊂ D ⇒ CM ⊂ DM ,

• (CM)M = CM .

Sometimes the above properties are summarised in stating that mapping every
C to CM is an algebraic closure in set of all families of real functions on M
[18].

Proof. These properties can be checked very easily from the definition.
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Definition 2.6. Superposition closure of a family of functions C, denoted
scC, is defined as

scC := {ω ◦ (f1, . . . , fn) | n ∈ N , ω ∈ C∞(Rn) , f1, . . . , fn ∈ C} .

Fact 2.7. For a set M and families of real functions on this set, C and D,
it happens that:

• C ⊂ scC ,

• C ⊂ D ⇒ scC ⊂ scD ,

• sc(scC) = scC .

Sometimes the above properties are summarised in stating that mapping every
C to scC is an algebraic closure in set of all families of real functions on M
[18].

Proof. These properties can be checked very easily from the definition.

Definition 2.8. C is called differential structure on M if it is closed with
respect to localisation (C = CM) and closed with respect to superposition with
smooth Euclidean functions (C = scC).

Definition 2.9. A pair (M, C) such that M is an arbitrary set, and C is a
family of functions such that C = (scC)M is called a differential space.

Definition 2.10. If C0 := {f1, . . . , fn} is some family of real functions on
M and C = (scC0)M then the pair (M, C) would be called differential space
generated by C0. It is denoted by C = genC0. Functions f1, . . . , fn are called
generators then.

Definition 2.11. If C0 consists of finite number of functions, then (M, C)
is called finitely generated.

Now let us consider two differential spaces (M, C) and (N, D).

Definition 2.12. Mapping F : M → N would be called smooth if

∀f∈D f ◦ F ∈ C .

It can be simply proved that in order to verify smoothness one does not
have to check all functions from D = genD0. It is enough to check smoothness
on generators from D0.

Definition 2.13. F would be called diffeomorphism if it is bijective and
both F and F−1 are smooth.
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Having in mind the remark about physical systems, the diffeomorphic dif-
ferential spaces gives rise to physically the same systems. I.e. consisting of
equivalent states and possible outcomes of measurements on them.

In case there exist some fixed n ∈ N and a countable (or finite) covering
{A}i∈I of M such that for all i ∈ I there exists diffeomorphism Fi : (Ai, CAi

) →
(Rn, C∞(Rn)) then (M, C) is called a manifold. This definition is equivalent to
the classical definition of a smooth manifold [14]. However it is interesting that
differential calculus and differential geometry can be studied also on differential
spaces (as the name suggests), which are not smooth manifolds. This is why
differential spaces are generalisation of a classical manifold concept.

It is worth to notice that in Relativity spacetime is modelled by 4–dimensional,
smooth, connected manifold equipped with Lorentzian metric. In [4] it is
shown that (under some assumptions) differential space may be equipped with
Lorentzian metric. However if differential space is not a manifold, then the
equivalence principle is not valid. I.e. locally spacetime is not Minkowskian
[5].

Moreover let us notice that classically any function f ∈ C∞(Rn) is called
smooth. Therefore if one considers some differential space (M, C), which might
not be a manifold, the family of functions C can be treated as some analogue
of family of classically smooth functions. Therefore it can be introduced

Definition 2.14. If (M, C) is a differential space, then any f ∈ C is called
a smooth function.

Classically smooth functions are also smooth in the category of differential
spaces. Despite this fact a function can be smooth in the category of differential
spaces and not be such classically. From now on smoothness will be understood
in the category of differential spaces (if not stated otherwise). This kind of
smoothness may be also called ”in a sense of Sikorski”.

Example 2.15. Let C := gen{π}, where π denotes the projection on R.

Then (R, C) is diffeomorphic to (R, C∞(R)). Let C̃ := gen{π, |x|}. Then

(R, C̃) and (R, C∞(R)) are not diffeomorphic. Although it is consistent with
the definition to say that |x| is smooth (even in 0) when considered on the

differential space (R, C̃).

Example 2.16. Consider the usual topology on M = R. Let C consist of all
continuous real functions on R, i.e. C = C0(R). Then (M, C) is a differential
space.

Definition 2.17. It is said that (M, C) has a Hausdorff property if for each
p, q ∈ M, p 6= q there exists some function fp,q ∈ C such that fp,q(p) 6= fp,q(q).

Fact 2.18. The above definition is equivalent to the classical one.
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Proof. If there is a function hp,q ∈ C such that hp,q(p) 6= hp,q(q), then take ǫ =
1
2
|hp,q(p)−hp,q(q)|. Then (hp,q(p)−ǫ , hp,q(p)+ǫ)∩(hp,q(q)−ǫ , hp,q(q)+ǫ) = ∅.

Moreover p ∈ A := h−1
p,q((hp,q(p)− ǫ , hp,q(p) + ǫ)) and q ∈ B := h−1

p,q((hp,q(q)−
ǫ , hp,q(q) + ǫ)). Of course A, B ∈ τC and A ∩B = ∅, so classical definition of
Hausdorff property is satisfied.

On the other hand assume that classical definition of Hausdorff property
is satisfied. Let assume that there are some p, q ∈ M such that there is no
f ∈ C for which f(p) 6= f(q). Then from Fact 2.2 it is clear that for each
A, B ∈ τC if p ∈ A and q ∈ B then also p, q ∈ A ∩ B. So there are no disjoint
neighbourhoods of p and q. Contradiction.

In order to check Hausdorff property it is not necessary to consider all
functions from C. It is enough to check the behaviour of functions from C0,
where C = genC0.

Definition 2.19. Let (M, C) be a differential space generated by

C0 = {f1, f2, . . . , fn} .

Let F : M → R
n be such that F (p) := (f1(p), . . . , fn(p)). Then F is called a

generator embedding.

The generator embedding is a nice tool, which allows to ”see” particular
differential space in the familiar Euclidean space. For example it simply and
nicely allows to see how modifying generators changes the differential space.
This will be presented in further examples. As far as now, it will be proved
that:

Theorem 2.20. If (M, C) is generated by C0 and has Hausdorff property
then generator embedding

F : (M, C) → (F (M), C∞(Rn)F (M))

is a diffeomorphism.

Proof. Indeed F and F−1 are smooth. It is enough to check the smoothness
on generators. C∞(Rn)F (M) is generated by the projections

π1|F (M), . . . , πn|F (M) ,

therefore it is enough to show that πi|F (M) ◦ F ∈ C for all i = 1, . . . , n. From
definition of F we see that (πi|F (M) ◦F )(p) = πi|F (M)(f1(p), . . . , fn(p)) = fi(p).
So globally πi|F (M)◦F = fi ∈ C. Due to Hausdorff property of (M, C) for each
q ∈ F (M) exists precisely one p ∈ M such that F (p) = q. Then F−1(q) = p
is an inverse mapping. But fi(F

−1(q)) = πi|F (M)(q). So fi ◦ F−1 = πi|F (M) ∈
C∞(Rn)F (M). So F−1 is smooth. Finally we obtain that F is injective because
of Hausdorff property.
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The symbol C∞(Rn)F (M) may be a bit misleading when compared to the
notation introduced in Def. 2.3. However it is used due to historical reasons.
To avoid misunderstandings:

Definition 2.21.

C∞(Rn)F (M) := (C∞(Rn)|F (M))F (M) = (sc{π1|F (M), . . . , πn|F (M)})F (M) .

Moreover if (M, C) has not Hausdorff property, we can introduce some
equivalence relation in order to impose the required property. That will be
described in Sec. 4.

Definition 2.22. A tangent vector to (M, C) at a point p ∈ M is any linear
mapping

vp : C → R ,

such that the Leibniz rule is satisfied, i.e.:

∀f1,f2∈C vp(f1 · f2) = vp(f1) · f2(p) + f1(p) · vp(f2) .

Of course C is a R–algebra (with pointwise operations). (Moreover (M, C)
is also a ringed space in a language of sheaves.) Therefore a tangent vector is
a derivation of the algebra C in a point p.

To avoid any misunderstandings a definition of a K–algebra is given:

Definition 2.23. Let K be a field, A be a vector space over K and

· : A · A → A

a binary operation. Assume that ∀ a, b, c ∈ A , k, l ∈ K the following identities
hold:

• (a + b) · c = a · c + b · c,

• a · (b + c) = a · b + a · c,

• (ka) · (lb) = (kl)(a · b).

Then A is called an algebra over K or a K–algebra.

Definition 2.24. The linear space of all tangent vectors to (M, C) at p ∈ M
is called a tangent space and is denoted by TpM .

Definition 2.25. We define df : TM → R by requiring that

∀vp∈TM,f∈C (df)(vp) = vp(f) .

The differential structure generated by {f ◦ π | f ∈ C} ∪ {df | f ∈ C} on TM
is denoted by TC.
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Definition 2.26. A mapping V : M → TM , V : p 7→ Vp is called a
tangent vector field to (M, C). (Sometimes the word ”tangent” will be omitted.)
It is called smooth, if for all α ∈ C, f defined as f : p 7→ Vp(α) belongs to
C.

All smooth vector fields tangent to (M, C) constitute a C–module denoted
by X(M). Every vector field X ∈ X(M) is a smooth section of π : TM → M .

Definition 2.27. d is called a derivation of a K–algebra A, if d : A → A
and for all a, b ∈ A, k ∈ K d(a + b) = d(a) + d(b), d(ka) = kd(a) and
d(ab) = ad(b) + d(a)b. Der(A) denotes all derivations of an algebra A.

Theorem 2.28. Smooth vector fields to (M, C) are in 1−1 correspondence
with derivations of a R–algebra C.

Proof. Consider a mapping ∂V : C → C given by the formula ∂V (α) = V (α),
where α ∈ C and V is a smooth vector field. Let β ∈ C and p ∈ M . (V is
fixed, the other objects are variable.)

∂V (αβ)(p) = V (αβ)(p) = Vp(αβ) = Vp(α)β(p) + α(p)Vp(β)

= (V (α)β + αV (β))(p)

Therefore

∂V (αβ) = V (α)β + αV (β) = ∂V (α)β + α∂V (β) .

Similarly it is easy to check that ∂V (α + β) = ∂V (α) + ∂V (β) and ∂V (kα) =
k∂V (α) for an arbitrary k ∈ R.

So every smooth vector field constitutes a derivation of a R–algebra C.
Consider now a derivation ∂ : C → C and the mapping V ∂ defined by the

formula V ∂
p (α) = (∂α)(p), where α ∈ C, p ∈ M . (∂ is fixed and the other

objects are variable.) For an arbitrary p ∈ M

V ∂
p (αβ) = (∂(αβ))(p) = (∂(α)β + α∂(β))(p) = (∂α)(p)β(p) + α(p)(∂β)(p)

= V ∂
p (α)β(p) + α(p)V ∂

p (β) .

Similarly it is easy to check that V ∂
p (α + β) = V ∂

p (α) + V ∂
p (β) and V ∂

p (kα) =
kV ∂

p (α) for an arbitrary k ∈ R. So V ∂ : M → TM , because it has just been
proved that V ∂

p is a tangent vector to (M, C) at point p. Of course V ∂(α) = ∂α.
V ∂(α) ∈ C, because ∂α ∈ C, so V ∂ is a smooth vector field.

Finally the above means that every derivation of R–algebra C constitutes
a smooth tangent vector field to (M, C).

Resuming both parts of this proof, it can be concluded that

X(M) ∼= Der(C) .
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Definition 2.29. A k–form on (M, C) is any k–linear mapping

θ : TM × · · · × TM → R ,

such that
θp := θ|TpM×···×TpM → R

is k–linear for every p ∈ M .

Definition 2.30. A k–form is a differential k–form, if it is skew–symmetric.

Definition 2.31. A metric is a symmetric, nondegenerate 2–form on (M, C).

3 Continuity of a function

In many books the notion of continuity of a function is taken to be equivalent
to the fact that the graph of the function is a single, unbroken, with no ”gaps”.
The well known ”example” is f(x) = 1

x
. This kind of breakage of the law

of continuity was formulated by Arbogast (Louis François Antoine Arbogast
(1759 – 1803): a French mathematician, criticised Euler’s notion of a function.)
He was using the term discontiguos.

The notion of a function was evolving through the time. For example for
Euler the function must have been written by a single formula. The currently
agreed formal definition of a function states that it is a triple (D, C, f), where
D is a domain, C is a codomain and f is some assignment rule. I.e. f assigns
for each element from D exactly one element from C. Equivalently f is a
relation on (a subset of) D × C such that for all d ∈ D there exists c ∈ C
satisfying (d, c) ∈ f . Let us notice that due to this definition two functions are
equal if and only if all three elements from their definitions coincide.

In our case we consider some topologies on D and C. Then it may be
defined that

Definition 3.1. (D, C, f) is continuous at d ∈ D, if for every open set
O ∈ C containing f(d) there exists an open set, containing d, completely
mapped by f to O.

Example 3.2 ([2], [15]). There is no sense in considering continuity of
(R\{0}, R, 1

x
) in 0, because this function is not defined in point 0. Because it

is continuous in every point of its domain, it is a continuous function.

4 Gluing relation

Definition 4.1. Let (M, C) be generated by C0 and denote by ρC0
a relation

such that
p ρC0

q ⇔ ∀f∈C0
f(p) = f(q) .
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Then this relation is called a gluing relation.

We glue points which are the same for generators and we obtain quotient
differential space (M/ρC0

, C/ρC0
).

Definition 4.2. Differential structure C/ρC0
consists of

{ϕ : M/ρC0
→ R | ϕ ◦ πρC0

∈ C} ,

where πρC0
: M → M/ρC0

is a projection on the equivalence classes.

It is easy to see that C/ρC0
is generated by functions ϕi, i = 1, . . . , n, where

ϕi([p]) := fi(p), p ∈ M , [p] ∈ M/ρC0
.

Definition 4.3. Function f ∈ C is called ρ–consistent if

∀x,y∈M (x ρ y ⇒ f(x) = f(y)) .

All ρ–consistent functions are denoted by Cρ. If F : (M, C) → (N, D),
then we may introduce F ⋆ : D → C defined by the formula F ⋆(g) := g ◦ F ,
g ∈ D. If f ∈ D then F ⋆(f) ∈ C, so f ∈ (F ⋆)−1(C). Therefore the differential
structure (F ⋆)−1(C) is maximal one which preserves F smooth, due to the fact
D ⊂ (F ⋆)−1(C).

Definition 4.4. Differential structure (F ⋆)−1(C) is called coinduced from
the differential structure C on N by the mapping F .

Lemma 4.5. π⋆
ρ|C/ρ : C/ρ → Cρ is an isomorphism.

Proof. πρ : (M, C) → (M/ρ, C/ρ), so π⋆
ρ(C/ρ) ⊂ C. Moreover π⋆

ρ(C/ρ) = Cρ.
First we will show that Cρ ⊂ π⋆

ρ(C/ρ). Indeed, let f ∈ Cρ. Then
∀x,y∈M (x ρ y ⇒ f(x) = f(y)). Let define f̂ : M/ρ → R by the formula
f̂([x]) := f(x), where [x] := πρ(x). This definition does not depend on
class representative. f̂ ∈ (π⋆

ρ)
−1(C), because π⋆

ρ(f̂) = f . Indeed π⋆
ρ(f̂)(x) =

(f̂ ◦ πρ)(x) = f̂(πρ(x)) = f̂([x]) = f(x) for all x ∈ M . Therefore f̂ ∈ C/ρ,
f = π⋆

ρ(f̂) ∈ π⋆
ρ(C/ρ).

It will be shown now that π⋆
ρ(C/ρ) ⊂ Cρ. Let g ∈ π⋆

ρ(C/ρ). Then g ∈
π⋆

ρ((π
⋆
ρ)

−1(C)). Of course g ∈ C. It will be shown that g is constant on
equivalence classes. g ∈ π⋆

ρ(C/ρ) ⇒ g = π⋆
ρ(h), h ∈ C/ρ, g = h ◦ πρ. If x ρ y,

then πρ(x) = πρ(y). Then g(x) = g(y), so g ∈ Cρ.
πρ : (M, C) → (M/ρ, C/ρ) is ”onto”. Therefore π⋆

ρ is a monomorphism.
Indeed π⋆

ρ(j) = 0, j ∈ C/ρ ⇒ j ◦ πρ = 0. Therefore j([x]) = 0 for all x ∈ M .
So j = 0.

As being both monomorphism and epimorphism, π⋆
ρ|C/ρ is an isomorphism.
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Example 4.6. Consider (R, C∞(R)) and the relation ρ

x ρ y ⇔ x − y = 2kπ , k ∈ Z .

Cρ = {ω(sin x, cos x) | ω ∈ C∞(R)} ⊂ C∞(R). Cρ is generated by {f1, f2},

where f1(x) = sin x, f2(x) = cos x. C/ρ is generated by {f̂1, f̂2}. Let F :=
(f̂1, f̂2). F : (M/ρ, C/ρ) → (R2, C∞(R2)). F (R/ρ) = {(f̂1(x), f̂2(x)) ∈
R

2 | x ∈ R} = {(f̂1(x), f̂2(x)) ∈ R
2 |[f1(x)]2 + [f2(x)]2 = 1} = {(p, q) ∈

R
2 | p2 + q2 = 1}.

Finally, due to recent considerations, in case (M, C) not being Hausdorff:

Theorem 4.7. (M/ρC0
, C/ρC0

) and (F (M/ρC0
), C∞(Rn)F (M/ρC0

)) are dif-
feomorphic.

It will also be useful to introduce a disjoint union concept.

5 Disjoint union

It is reminded that

Definition 5.1. If some family of sets {Ai | i ∈ I} is considered then by
disjoint union we denote the set

⊔
i∈I Ai :=

⋃
i∈I {(x, i) | x ∈ Ai}.

Example 5.2. A0 = {1, 2} , A1 = {1}. Then A0 ⊔ A1 = {(1, 0), (2, 0), (1, 1)}.

Disjoint unions of differential spaces were thoroughly studied by W. Sasin
[13]. In case of differential spaces we define

Definition 5.3. The disjoint union of differential spaces is given by the
formula

(M1, C1) ⊔ (M2, C2) := (M1 ⊔ M2, C1 ⊔ C2) ,

where C1 ⊔ C2 := {f1 ⊔ f2 | f1 ∈ C1, f2 ∈ C2} and f1 ⊔ f2 is understood as:

(f1 ⊔ f2)(x) :=

{
f1 x ∈ M1

f2 x ∈ M2
.

Of course the topology on (M1 ⊔M2, C1 ⊔ C2) is given by the collection of
sets U1 ⊔U2, where U1 ∈ τC1

, U2 ∈ τC2
. This topology is denoted by τC1

⊔ τC2
.

It is the weakest topology for which any f1 ⊔ f2 ∈ C1 ⊔ C2 is continuous on
M1 ⊔ M2.

Let us consider a simple
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01

02

(R−, C∞(R)R−
)

(R+, C∞(R)R+
)

Figure 1: Gluing one–dimensional spaces

Example 5.4. Let M := R−⊔R+ be a disjoint sum. Consider a differential
structure C on M . Let C be generated by π := π|R−

⊔π|R+
. Of course π(01) =

π(02). The quotient space (M/ρπ, C/ρπ) is diffeomorphic with (R, C∞(R)).

π : (M/ρπ, C/ρπ) → (R, C∞(R))

In the above example the final differential space occurred to be a classi-
cally smooth manifold. It was obtained by taking the disjoint union of two
differential spaces: (R−, C−) and (R+, C+), where C− = gen{π|R−

} and C+ =
gen{π|R+

}. But this result strongly depends on the fact that the generators
of the initial spaces were suitably selected. In fact we could have considered
different generators, e.g. (R−, C−) and (R+, C+), where C− = gen{−π|R−

}
and C+ = gen{π|R+

}. Each of these differential spaces is still diffeomor-
phic with previously considered corresponding differential spaces. Nevertheless
(R− ⊔ R+, C− ⊔C+) = (R− ⊔ R+, gen{|x|}) is obtained then. Using generator
embedding it can be concluded that this differential space (after implement-
ing gluing relation on it – in order to make it Hausdorff) is diffeomorphic to
(R+, C∞(R)R+

). So it is different from what was obtained in Ex. 5.4.

Definition 5.5. Such a method of taking suitable generators of initial spaces
in order to obtain new glued space will be called generator gluing technique.

Definition 5.6. The disjoint union of tangent spaces to (M, C) is given by
TM :=

⊔
p∈M TpM , with a canonical projection π : TM → M .

It is useful to consider also generalised definitions of some concepts intro-
duced in Sec. 2:

Definition 5.7. A mapping X1 ⊔X2 : X1 ⊔X2 → T (M1 ⊔M2), X1 ⊔X2 :
p 7→ (X1 ⊔X2)p is called a disjoint tangent vector field to (M1 ⊔M2, C1 ⊔C2).
Whereas (X1 ⊔ X2)p is understood as below:

(X1 ⊔ X2)p :=

{
X1p p ∈ M1

X2p p ∈ M2
.
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Then it is easy to prove

Lemma 5.8. If X1 ∈ X(M1) and X2 ∈ X(M2) then X1⊔X2 ∈ X(M1⊔M2).

Proof. It must be shown that for arbitrary p ∈ M1 ⊔ M2 and arbitrary f ∈
C1⊔C2 it is true that (X1⊔X2)p(f1⊔f2) ∈ C1⊔C2. Indeed, from the definitions:

(X1⊔X2)p(f1⊔f2) =

{
X1p(f1) p ∈ M1

X2p(f2) p ∈ M2
=

{
g1 ∈ C1

g2 ∈ C2
= g1⊔g2 ∈ C1⊔C2 .

It is important to remember that smoothness above is not understood clas-
sically, but in the differential spaces category.

Definition 5.9. A disjoint tangent vector to (M1 ⊔M2, C1 ⊔C2) at a point
p ∈ M1 ⊔ M2 is any mapping

(v1 ⊔ v2)p : C1 ⊔ C2 → R ,

such that

(v1 ⊔ v2)p :=

{
v1 p ∈ M1

v2 p ∈ M2
,

where v1 is some tangent vector to (M1, C1) and v2 is some tangent vector to
(M2, C2).

Of course

Fact 5.10. A disjoint tangent vector (v1 ⊔ v2)p satisfies Leibniz rule.

Proof. From the definitions

(v1 ⊔ v2)p((f1 ⊔ f2) · (g1 ⊔ g2)) =

{
v1p(f1 · g1) p ∈ M1

v2p(f2 · g2) p ∈ M2
.

But, as being tangent vectors, both v1p and v2p satisfy Leibniz rule.

Definition 5.11. We define d(f1 ⊔ f2) : T (M1 ⊔ M2) → R by requiring
that

∀(v1⊔v2)p∈TM1⊔TM2,f1⊔f2∈C1⊔C2
(d(f1 ⊔ f2))((v1 ⊔ v2)p) = (v1 ⊔ v2)p(f1 ⊔ f2) .

The differential structure generated by {(f1 ⊔ f2) ◦ prM1⊔M2
| f1 ⊔ f2 ∈

C1⊔C2}∪{d(f1⊔f2) | f1⊔f2 ∈ C1⊔C2} on T (M1⊔M2) is denoted by T (C1⊔C2).
From further considerations (Fact 5.14) it will be clear that this structure is
also generated by ({f1 ◦prM1

| f1 ∈ C1}⊔{f2 ◦prM2
| f2 ∈ C2})∪ ({d(f1) | f1 ∈

C1} ⊔ {d(f2) | f2 ∈ C2}). Moreover T (C1 ⊔ C2) = T (C1) ⊔ T (C2).
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Definition 5.12. A disjoint k, l–form on (M1 ⊔ M2, C1 ⊔ C2) is any k + l–
linear mapping

θ : (TM1 × · · · × TM1) ⊔ (TM2 × · · · × TM2) → R ,

such that

θp :=

{
θ|TpM1×···×TpM1

→ R p ∈ M1

θ|TpM2×···×TpM2
→ R p ∈ M2

is {
k−linear for every p ∈ M1

l−linear for every p ∈ M2
.

Definition 5.13. A disjoint metric is a symmetric, nondegenerate 2,2–form
on (M1 ⊔ M2, C1 ⊔ C2), where symmetry and nondegeneracy is understood as
for metric in Def. 2.31 for θ|TpM1×TpM1

→ R or θ|TpM2×TpM2
→ R depending

on whether p ∈ M1 or p ∈ M2.

At first sight a little bit of confusion may arise, when considering the
above definitions in case of ”disjoint generalisation”. In particular one may ask
whether e.g. Def. 2.26 and Def. 5.7 are consistent if consider M = M1 ⊔ M2.
Happily the below facts in a very natural way confirm the correctness of the
introduced definitions.

Fact 5.14. T (M1 ⊔ M2) = TM1 ⊔ TM2

Proof. Indeed, from the definitions:

T (M1 ⊔ M2) =
⊔

p∈M1⊔M2

Tp(M1 ⊔ M2)

=
⊔

p∈M1

Tp(M1 ⊔ M2) ⊔
⊔

p∈M2

Tp(M1 ⊔ M2)

=
⊔

p∈M1

Tp(M1) ⊔
⊔

p∈M2

Tp(M2)

= TM1 ⊔ TM2 .

Fact 5.15. A disjoint union of k–form on (M1, C1) and l–form on (M2, C2)
is a disjoint k, l–form on (M1 ⊔ M2, C1 ⊔ C2) in a sense of Def. 5.12.

Proof. Let θ be a k–form on (M1, C1) and ω be a l–form on (M2, C2). Then

(θ ⊔ ω)p =

{
θ|TpM1×···×TpM1

→ R p ∈ M1

ω|TpM2×···×TpM2
→ R p ∈ M2

.

It is also trivial that

θ ⊔ ω : (TM1 × · · · × TM1) ⊔ (TM2 × · · · × TM2) → R .
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Fact 5.16. Generally

(TM1 × TM1) ⊔ (TM2 × TM2) 6= (TM1 ⊔ TM2) × (TM1 ⊔ TM2) .

Proof. is trivial. It requires just combinatorial computations, explicitly basing
on Def. 5.1 and that of Cartesian product.

Although Fact 5.16 is very trivial, it is important when studying disjoint
k, l–forms. It means that e.g. k, k–form cannot be in general decomposed into
k pairwise products of 1, 1 forms.

Definition 5.17. A disjoint k, l–form, θ ⊔ ω, is a differential disjoint k, l–
form, if θ is skew–symmetric on (M1, C1) and ω is skew–symmetric (M2, C2).

The exterior product and exterior derivation may be trivially constructed in
case of differential disjoint k, l–forms by considering disjoint union of (classical)
differential k–form and l–form. More about differential forms in category of
differential spaces may be found in [6].

It is interesting to discuss some of the restrictions that the gluing relation
described in Sec. 4 imposes on the disjoint union of differential spaces. For
example consider the disjoint union of two differential spaces (M1⊔M2, C1⊔C2).
Assume that this space is not Hausdorff. But it has been showed (Def. 4.1)
that (M1 ⊔ M2, C1 ⊔ C2) may be transformed to possess Hausdorff property.
In order to keep clarity assume that there are only two points in M1 ⊔ M2,
for which the gluing relation will hold. Denote them by p1 and p2, where
p1 ∈ M1, p2 ∈ M2. The first interesting question is whether a smooth disjoint
tangent vector field will be still smooth after the gluing procedure. The answer
depends on how the two spaces are glued. The importance of this fact was
anticipated in the discussion after Ex. 5.4. At first let us consider that (as in
Def. 5.3)

Definition 5.18. C1 ⊔ C2 := {f1 ⊔ f2 | f1 ∈ C1, f2 ∈ C2}.

I.e. C1 ⊔ C2 consists of all possible glued pairs of functions from C1 and
C2. Then:

Theorem 5.19. A smooth disjoint tangent vector field X1 ⊔ X2 ∈ X(M1 ⊔
M2) is smooth after the gluing procedure, i.e. X1⊔X2 ∈ X(M1⊔M2/ρC0,1⊔C0,2

),
if and only if X1(p1) = 0 and X2(p2) = 0.

Proof. First of all notice that (M1 ⊔ M2, C1 ⊔ C2) is generated by C0,1 ⊔ C0,2.
I.e. C0,1 ⊔ C0,2 = {f1i ⊔ f2j | f1i ∈ C0,1, f2j ∈ C0,2}, where C1 = genC0,1 and
C2 = genC0,2.

In view of Lem. 4.5 instead of C1⊔C2/ρC0,1⊔C0,2
it may be (C1⊔C2)ρC0,1⊔C0,2

considered.
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If X1(p1) = 0 and X2(p2) = 0, then X1(p1) = X2(p2), so ∀f∈(C1⊔C2)ρC0,1⊔C0,2

X1p1
(f) = X2p2

(f) .

But this means that (X1 ⊔ X2)(f) ∈ (C1 ⊔ C2)ρC0,1⊔C0,2
, so X1 ⊔ X2 ∈ X(M1 ⊔

M2/ρC0,1⊔C0,2
).

On the other hand assume that X1⊔X2 ∈ X(M1⊔M2/ρC0,1⊔C0,2
). It means

that X1p1
(f) = X2p2

(f) for an arbitrary f ∈ (C1 ⊔ C2)ρC0,1⊔C0,2
. In particular

let f be such that f |M1
= f1 and f |M2

= f2 = f1(p1) = const. Then

X1p1
(f1) = X1p1

(f) = X2p2
(f) = X2p2

(f2) = X2p2
(const.) = 0 .

But from arbitrariness of f1

X1p1
≡ 0 .

Therefore X1(p1) = 0 = X2(p2).

It can be seen that the above proof strongly depends on the fact that f such
that f |M1

= f1 and f |M2
= f2 = f1(p1) = const belongs to (C1 ⊔ C2)ρC0,1⊔C0,2

.
In the above case it was true, because the structure C1 ⊔ C2 was very large.
It consisted of all glued pairs of functions from C1 and C2. But it is very
interesting to consider some restrictions, i.e. not to glue all available functions
from both structures C1 and C2, but to properly chose just generators of each
space C1 and C2. Then to glue them and use them to generate (M1 ⊔M2, C).

The structure C is now not unique, but depends on which generators were
glued. In order to avoid misunderstandings such a structure would be denoted
by

C1 ⊔G C2 .

The sign G would indicate how the generators from the initial structures and
which of them were glued.

It is actually the core of the introduced (see. Def. 5.5) generator gluing
technique that different pairwise combinations of f1i ∈ C0,1 and f2j ∈ C0,2 may
lead to different spaces (see Ex. 5.4).

Definition 5.20. The G–disjoint union of differential spaces (or shortly:
G–union) is given by the formula

(M1, C1) ⊔G (M2, C2) := (M1 ⊔ M2, C1 ⊔G C2) ,

where C1⊔GC2 := gen{fi | i = 1, . . . , k} and fi = gi,1⊔gi,2 for some gi,1 ∈ C0,1

and gi,2 ∈ C0,2. (C0,1 = genC1 and C0,2 = genC2.)
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6 Differential dimension

It is interesting to consider the dimension of a differential space (in the differ-
ential spaces category sense).

Definition 6.1. The differential dimension in a point p ∈ M of a differen-
tial space (M, C) is the (classical, i.e. in a sense of a vector space) dimension
of a tangent space in this point, i.e. dim TpM .

As it is well known the dimension of a (classical) manifold is constant,
i.e. the same for each point of the manifold. The above definition does not
incorporate any new knowledge in case of a differential space which is a mani-
fold. For example if consider a line as a differential space (R, C∞(R)) or plane
(R2, C∞(R2)), their differential dimensions are respectively 1 and 2. On the
other hand (R, C̃) from Ex. 2.15 has differential dimension 1 in each point
p ∈ (−∞, 0)∪ (0,∞), but 2 in p = 0. So the break up of the property of being
a manifold is signalised by the change in differential dimension (in a sense of
Def. 6.1). It is also easy to proof that there are no non–zero tangent vectors
to the differential space from Ex. 2.16.

Consider the inclusion mapping

i1 : M1 → M1 ⊔ M2

i1(p) = (p, 1)

and similarly
i2 : M2 → M1 ⊔ M2

i2(p) = (p, 2) .

By i1p∗ and i2q∗ we will denote pushforwards of respectively i1 and i2 in point
p ∈ M1 and q ∈ M2.

i1p∗ : TpM1 → Ti1(p)(M1 ⊔ M2)

i1p∗(vp) = (v(p,1), 1)

and similarly
i2q∗ : TqM2 → Ti2(q)(M1 ⊔ M2)

i1q∗(vq) = (v(q,2), 2) .

It can be checked that in a sense of Def. 2.12

Fact 6.2. The above mappings are smooth.
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Proof. Consider i1 : M1 → M1 ⊔ M2. It has to be shown that

∀f1⊔f2∈C1⊔C2
(f1 ⊔ f2) ◦ i ∈ C1 .

Indeed, take an arbitrary p ∈ M1, then

((f1 ⊔ f2) ◦ i1)(p) = (f1 ⊔ f2)(p, 1) = f1(p) ,

so
((f1 ⊔ f2) ◦ i1)( · ) = f1( · ) .

Therefore (f1 ⊔ f2) ◦ i1 ∈ C1, which by Def. 2.12 means that i1 is smooth.
The remaining three proofs are similar.

Of course all four above mappings are injective. As a result

T (M1 ⊔ M2) =
⊕

(p,j), j=1,2

ijT(p,j)Mj .

7 Final remarks

The presented theory may be interesting as a branch of pure mathematics,
dealing with concepts more general than classical smooth manifolds. But cur-
rently there is no agreement which generalisation is the best one. As it has
been stated at the beginning, many concepts are explored. Nevertheless the
presented concept of generator gluing technique seems to be very useful and
more workable than similar competing concepts from other theories. This
particular application will be presented with more details in another paper.

Differential spaces in a sense of Sikorski may be also useful when differential
geometry needs to be studied in non–smooth cases. Such a situation occurs in
many real life engineering problems, and also in theoretical physics (see e.g.
[12]). Some examples from different branches of science are sketched e.g. in [3].
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